大洋锰结核氨浸渣的表征及其对气体中H_2S的去除
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锰结核氨浸渣煅烧产物具有纳米颗粒特性,比表面积大,化学活性高,主要成分是四价锰,是理想的深度脱硫材料。
     本项目研究的主要目的是利用大洋锰结核的矿物学特性,开发大洋锰结核氨浸渣作为天然气、煤气、氮肥工业变换气深度脱除H_2S,及以H_2S、硫醇、硫醚为主的恶臭气体的应用技术。
     本文首先对大洋锰结核及其氨浸渣进行了表征;并通过实验分析研究了氨浸渣分解氧化的最佳煅烧条件;再利用煅烧产物的氧化性进行了脱除硫化氢的实验研究;探讨了矿物粒径、煅烧温度等因素对脱硫效果的影响;并通过对脱硫产物及脱硫尾气的检测简要分析了大洋锰结核氨浸渣的脱硫反应机理。实验所用大洋锰结核氨浸渣总锰含量约23.38 %,总铁含量约5.80 %;其480℃管式炉中煅烧产物的总锰含量约为27.01 %,MnO2含量约为40.45 %,氧化度为3.80,比表面积约135.9 m2/g;载气、矿物粒径、煅烧温度、水分都会对煅烧产物的脱硫效果产生一定影响,且在氮气做载气、矿物粒径<0.125 mm、480℃管式炉煅烧、气体未干燥条件下,煅烧氨浸渣对硫化氢的脱除容量可达310 mgS2-/(g·煅烧产物)。同时,用1.000 g 480℃管式炉煅烧氨浸渣脱除硫化氢,再生使用可达5次,总脱硫容量达到974 mgS2-/(g·煅烧产物)。
The calcined products of manganese nodule leached residue are ideal desulfurization material with nano-characteristic, large surface area, strong chemical activity, and the principal constituent of Mn4+.
     The purpose of this project is to develop a application technology over the ocean manganese nodule leached residue by its mineralogy character which can remove H2S and malodorous gas by H2S, mercaptane, thio-ether primarily in the natural gas, the coal gas and the nitrogenous fertilizer industry converted gas.
     This paper researches characterization of ocean manganese nodule and ammonia leached residue firstly, then analyses the best calcination conditions of oxidative decomposition over ammonia leaching residue through experimental, and studies some factors effecting desulfurization such as mineral partical size, calcined temperature, etc. in the desulfurization experiment using calcined products of ammonia leaching residue, and deduces the desulfurization reaction mechanism from the analysis of desulfurization products and desulfurization exhaust gas. The ammonia leaching residue contains 23.38 % total manganese and 5.80 % total iron, and the calcined product at 480℃contains 27.01 % total manganese and 40.45 % MnO2, oxidation degree 3.80, specific surface area about 135.9 m2/g,. Carrier gas, mineral partical size, calcined temperature, moisture all will effect the desulfurization. The desulfurization capacity can excess 310 mgS2-/ (g·calcined product) when mineral partical size is <0.125mm, calcined temperature is 480℃, the carrier gas is moisture- bearing. Renewable time of desulfurization agent can be up to 5, and the total desulfurization capacity can excess 974 mgS2-/ (g·calcined product) using 1.000 g calcined product at 480℃.
引文
[1]蒋开喜,蒋训雄,王胜东,等.大洋锰结核还原氨浸工艺研究[J].有色金属, 2005, 57(4): 54-58.
    [2]蒋训雄,蒋开喜,汪胜东,等.我国深海金属矿产资源加工利用技术[J].有色金属, 2005, 57(6): 2-6.
    [3]王淀佐,张亚辉,孙传尧.大洋多金属结核的处理技术评述[J].国外金属矿选矿, 1996, (9): 3-131.
    [4]白志民,尹才硚,蒋训雄,等.大洋多金属结核与富钴结壳浸出渣的纳米属性[J].科学通报, 2002, 47(11): 869-872.
    [5] Weisz P B. Deep sea manganese nodules as oxidation catalyst[J]. Journal of Catalysis, 1968, 10: 407-408.
    [6]张云,管永诗,田玉珍.大洋锰结核资源的研究现状[J].矿产保护与利用, 2000, 6: 39-42.
    [7] Piper D Z, Riley J P, Skirrow G. Oxidation state of marine manganese nodules[J]. Geochmica et Cosmochimica Acta, 1984, 48: 2347-2355.
    [8]郭世勤,孙文泓.太平洋中部多金属结核矿物学[M].海洋出版社, 1992: 22-58.
    [9]姚德,梁宏峰,张丽洁,等.太平洋中部多金属结核稀土元素地球化学[J].海洋与湖沼, 1993, 24(6): 571-576.
    [10]孙传尧,谭欣,周秀英,等.大洋多金属结核及富钴结壳矿物材料的研究述评(I)[J].国外金属矿选矿, 2003, 9: 4-11.
    [11]孙传尧,谭欣,周秀英,等.大洋多金属结核及富钴结壳矿物材料的研究述评(II)[J].国外金属矿选矿, 2003, 10: 4-7.
    [12]北京矿冶研究总院.大洋多金属结核催化活性及直接应用可能性研究[R]. 1999.
    [13]牛京考.大洋多金属结核开发研究述评[J].中国锰业, 2002, 20(2): 20-26.
    [14] Cardwell P H. Extractive metallurgy of manganese nodules[J]. Mining Congress Journal, 1973, 59 (11): 38-43.
    [15] Sridhar R, Jones W E, Warner J S. Extraction of copper, nickel and cobalt from sea nodules[J]. Journal of Metals, 1976, 28(4): 32-37.
    [16] Yin C Q, Jiang X X, Zhou B Y. Treatment of solution from atmospheric acid leaching of ocean polymetallic nodules[C]. Proceedings of the Third International Conference on Hydrometallurgy, 1998: 370-375.
    [17] Agarwal J C, Beecher D S, Hubred V K, et al. Processing of ocean nodules, A technical and economic review[J]. Journal of Metals, 1976, 28(4): 24-31.
    [18]尹才硚,蒋训雄,周冰毅.大洋多金属结核活化硫酸浸出[J].有色金属, 1997, 49(1): 62-69.
    [19]蒋训雄,尹才硚.大洋多金属结核催化还原氨浸提取镍钴铜[J].有色金属, 1997, 49(3): 46-51.
    [20]李先柏,周勤俭,杨静,等.大洋多金属结核常温常压盐酸浸出工艺流程研究[J].湖南有色金属, 1998, 14(1): 30-33.
    [21]贺泽全,段兴无,钟祥.大洋多金属结核熔炼合金锈蚀工艺研究[J].矿冶工程, 1996, 16(4): 40-43.
    [22]毛拥军,屈曙光,沈裕军,等.还原熔炼大洋多金属结核[J].矿冶工程, 1998, 18(2): 42-45.
    [23]白志民,常有军,陈锦,等.大洋锰结核氨浸渣作为陶瓷原料的实验研究[J].矿物岩石, 2005, 25(3):18-22.
    [24] Bai Z M, Yin C Q, Jiang X X, et al. Nanometer properties of leaching residues of oceanic polymetallic nodules and cobalt-rich crusts[J]. Chinese Science Bulletin, 2002, 47(11): 867-872.
    [25]鲁安怀.环境矿物材料基本性能—无机界矿物天然自净化功能[J].岩石矿物学杂志, 2001, 20(4): 371-381.
    [26] Parida K M, Mallick S, Mohapatra B K, et al. Studies on manganese nodule leached residues: 1. Physicochemical characterization and its adsorption behavior toward Ni2+ in aqueous system[J]. Journal of Colloid and Interface Science, 2004, 277: 48-54.
    [27] Parida K M, Dash S S, Mallik S, Das J. Effect of heat treatment on the physico-chemical properties and catalytic activity of manganese nodules leached residue towards decomposition of hydrogen peroxide[J]. Journal of Colloid and Interface Science, 2005, 290: 431-436.
    [28] Dash S S, Mallick S, Parida K M, et al. Studies on manganese nodule leached residues: 4. Physicochemical characterization and catalytic of acetic acid treated manganese nodule leached residue[J]. Journal of Colloid and Interface Science, 2006, 294: 117-121.
    [29]韩杰,叶瑛,沈忠悦,等.大洋锰结核氨浸渣对甲基橙的吸附[J].有色金属, 2005, 57(1): 53-55.
    [30] Parida K M, Mallick S, Dash S S. Studies on manganese nodule leached residues: 2. Adsorption of aqueous phosphate on manganese nodule leached residues[J]. Journal of Colloid and Interface Science, 2005, 290: 22-27.
    [31] Parida K M, Satapathy P K, Das N. Studies on Indian Ocean Manganese Nodules IV. Adsorption of Some Bivalent Heavy Metal Ions onto Ferromanganese Nodules[J]. Journalof Colloid and Interface Science, 1996, 181: 456-462.
    [32] Sahoo R N, Das S C, Reddy B R, et al. Adsorption of copper on manganese nodule residue obtained from NH3-SO2 leaching[J]. Hydrometallurgy, 2001, 62: 185-192.
    [33] Mallick S, Dash S S, Parida K M. Adsorption of hexavalent chromium on manganese nodule leached residue obtained from NH3-SO2 leaching[J]. Journal of Colloid and Interface Science, 2006, 297: 419-425.
    [34] Dash S S, Parida K M. Studies on selenite adsorption using manganese nodule leached residues[J]. Journal of Colloid and Interface Science, 2007, 307: 333-339.
    [35] Agrawal A, Sahu K K, Pandey B D. Systematic studies on adsorption of lead on sea nodule residues[J]. Journal of Colloid and Interface Science, 2005, 281: 291-298.
    [36] Agrawal A, Sahu K K. Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue[J]. Journal of Hazardous Materials, 2006, 137: 915-924.
    [37]朱晓燕,叶瑛,沈忠悦.大洋锰结核在功能材料领域的应用前景与研究进展[J].有色金属, 2004, 56(4): 61-65.
    [38] Parida K M, Gorai B, Das N. Studies on Indian ocean manganese nodules III: Adsorption of aqueous selenite on ferromanganese nodules[J]. Journal of Colloid and Interface Science, 1997, 185: 355-362.
    [39] Wiltshire J C. Beneficial uses of ferromanganese marinemineral tailings[J]. Recent Advances in Marine Science and Technology, 1993: 405.
    [40] Elswaifys S, Chromec W. The agricultural potential of manganese nodule waste material[J]. Marine Mining, 1985: 208.
    [41] Wiltshire J C. Innovative tailings management for marine ferromanganese nodule and crust processing[J]. Proceedings of Ocean’s 95, 1995: 723.
    [42] Wiltshire J C. Innovations in marine ferromanganese oxide tailings disposal[J], In: CRONAN D S ed. Handbook of Marine Minerals Deposits[M]. London: CRC Press , 2000, 281-305.
    [43] Lay G F, Wiltshire J C. Formulation of specialty glasses and glazes employing marine, mineral tailings[C]. Recent Advances in Marine Science and Technology, 1997: 347.
    [44]赵磊,蒋开喜,蒋训雄,等.大洋多金属结核氨浸渣制备锂离子筛的前驱体合成[J].有色金属, 2006, 58(3): 62-65.
    [45]白志民,文智慧,常有军,等.大洋锰结核氨浸渣制备防锈涂料及其性质[J].硅酸盐学报, 2005, 33(5): 615-620.
    [46]白志民,常有军,陈锦,等.大洋锰结核氨浸渣作为陶瓷原料的实验研究[J].矿物岩石, 2005, 25(3): 18-22.
    [47]江德恩,赵璧英,谢有畅. H2S、SO2的吸附(干法)脱除研究进展[J].化学通报, 2000, (2): 25-31.
    [48]郭建辉,金振声,张敏,等. TiO2光催化消除H2S的研究[J].感光科学与光化学, 2004, 22(3): 211-216.
    [49]张晶华.煤气中硫化氢含量的测定[J].山西焦煤科技, 2005, 7: 4-6.
    [50]王文善.国内外脱硫技术的发展状况及需要研究的问题[J].小氮肥设计技术, 2006, 27(2): 1-6.
    [51]王睿,石冈,魏伟胜,等.工业气体中H2S的脱除方法-发展现状与展望[J].天然气工业, 1999, 19(3): 85-93.
    [52]李发永,曹作刚,刘相.含H2S酸性气体处理新工艺过程研究[J].化学工程, 2001, 29(4): 55-58.
    [53] Zhong L, Zhang T Y, Chen J J, et al. Effect of H2S flow rate and concentration on performance of H2S/Air solid oxide fuel cell[J]. Research Notes, 2004, 12(2): 306-309.
    [54]张文辉,戴和武,谢可玉,等.煤气净化用多功能电捕试验研究[J].煤炭科学技术, 1997, 25(6): 42-44.
    [55]诸林,邓兰.一种新的天然气脱硫方法-电化学膜法[J].石油与天然气化工, 1997, 26(2): 107-110.
    [56]杜永林,黄兵,孙佩石.生物膜法净化低浓度硫化氢气体的试验研究[J].云南化工, 1998, (4): 26-28.
    [57]麦穗海,李菊,白海梅.生物填料塔脱除H2S的现场试验[J].中国给水排水, 2002, 18(2): 49-52.
    [58]何运昭,刘林,曾念兰,等. PDS脱硫剂的脱硫性能研究[J].湘潭大学自然科学学报, 1997, 19(1): 80-83.
    [59]任爱玲,郭斌,杨景亮,等. SW型脱硫剂脱硫性能的研究[J].环境科学, 1994, 15(6): 38-42.
    [60]邓益强.植物粉料焙烧软锰矿制备硫酸锰的新工艺研究[J].材料研究与应用, 2008, 2(1): 55-58.
    [61]魏文韫,王向东,代伟,等.软锰矿微生物催化氧化烟气脱硫[J].环境科学, 2007, 28(1): 48-52.
    [62]陈岗,陈天虎,宋垠先,等.软锰矿对酸性大红GR的氧化脱色研究[J].地质学报, 2006, 80(4): 597-597.
    [63]陈玲,赵建夫.环境监测[M].北京,化学工业出版社, 2004.
    [64]王秀军,秦洒平.油气田开发与炼化企业硫化氢危害分析与预防[J].安全技术, 2006, 6(12): 16-20.
    [65]陈中元,含硫臭味污染气体的危害和防治[J].贵州化工, 2005, 30(6): 32-34.
    [66]王莉红,汤福隆,胡玲.近十年水中硫化物测定方法的进展[J].上海环境科学, 1997, 16(3): 41-45.
    [67]徐华成,徐晓军,翁娜娜,等.恶臭气体的净化处理方法[J].山东轻工业学院学报, 2007, 21(2): 87-89.
    [68]李晓星.锰矿石脱硫(H2S)及其产物处理含重金属废水的研究[D].合肥工业大学, 2008.
    [69]陈天虎,冯军会,徐晓春,等.尾矿中硫化物风化氧化模拟实验研究[J].岩石矿物学杂志, 2002, 21(3): 298-302.
    [70]陈天虎,李晓星,黄晓鸣,等.锰氧化物脱除硫化氢的容量、产物和机理[J].矿物岩石地球化学通报, 2007, 26: 163-165.
    [71] Chang D Y, Li X X, Chen T H. Removal of Cadmium by the Desulfurized Manganese Ore in a Upflow Fixed-bed Reactor[J]. Asian-European Enviromental Technology and Knowledge Transfer, 2008: 299-303.
    [72] Dumont E, Andrès Y, P. Cloirec L, Gaudin F. Evaluation of a new packing material for H2S removed by biofiltration[J]. Biochemical Engineering Journal. 2008: 120-127.
    [73]陈锦,白志民.大洋多金属结核浸出渣动态吸附Cu2+的实验研究[J].矿物岩石, 2007, 27(2): 116-120
    [74]白志民,常有军,陈锦,等.大洋锰结核氨浸渣作为陶瓷原料的实验研究[J].矿物岩石, 2005, 25(3): 18-22.
    [75]白志民,文智慧,常有军,等.大洋锰结核氨浸渣制备防锈涂料及其性质[J]. 2005, 33(5): 5-12.
    [76]白志民,尹才硚,蒋训雄,等.大洋多金属结核与富钻结壳浸出渣的纳米属性[J]. 2002, 47(11): 869-872.
    [77] Mallick S, Dash S S, Parida K M. Adsorption of hexavalent chromium on manganese nodule leached residue obtained from NH3-SO2 leaching[J]. Colloid and Interface Science, 2006: 419-425.
    [78] Parida K M, Dash S S. Surface characterization and catalytic evaluation of manganese nodule leached residue toward oxidation of benzene to phenol [J]. Colloid and Interface Science, 2007: 541-546.
    [79] GB/T 1506—2002,硫酸亚铁铵滴定法测定锰矿中锰含量[S].
    [80]李自友.锰矿中锰的测定方法[J].金属矿山, 1996, (7): 49.
    [81] ISO 2597-I.2006铁矿石铁总含量的测定.第1部分:氯化锡(II)还原后滴定法[S].
    [82] E.P.伯廷著. X-射线光谱分析的原理和应用[M].北京:国防工业出版社, 1983.301-314, 397-453.
    [83]李国会,王晓红,王毅民. X射线荧光光谱法测定大洋多金属结核中的多种元素[J].岩矿测试, 1998, 17( 3): 197~201.
    [84]夏晨光,武朝辉,刘牧. X射线荧光光谱法测定海底钴结壳的方法研究[J].科学技术与工程, 2006, 6(18): 2967~2971.
    [85]黄伯龄.矿物差热分析鉴定手册[M].科学出版社, 1987.
    [86] GB/T1507-2006,锰矿石有效氧含量的测定重铬酸钾滴定法[S].
    [87]矿产地质研究院.锰矿石分析[M].北京:地质出版社, 1991.
    [88]周方钦,彭美春,黄刚,等.软锰矿中二氧化锰的快速滴定[J].环境工程, 2004, 24(3): 46-47.
    [89]李伟善,王涛,何文辉.软锰矿MnO2含量的准确分析法[J].电池, 1995, 25(3): 146-148.
    [90]赵巍,崔浩杰,冯雄汉,等.水钠锰矿的锰氧化度与Pb2+吸附量的关系[J].环境科学, 2009, 30(2): 535-542.
    [91] Laverdiere M R , Weaver R M. Charge characteristic of spodichorizons [J]. Soil Sci. Am. J, 1977, 41: 505-510.
    [92] GB/T11060.1·1998,天然气中硫化氢含量的测定碘量法[S].
    [93]曹仁权,杨新斌.碘量法测定废渣中可溶性S2-含量[J].广西化工, 2001, 30(1): 25-26.
    [94]肖瑞华.炼焦化学产品生产技术问答[M].冶金工业出版社, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700