基于有机废水降解的表面修饰型空心微珠负载TiO_2复合光催化剂的制备及降解行为和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水污染一直是人们关注最多的环境问题,其污染源主要来自工业废水、生活废水和医药废水。如常见的染料废水具有色度深、毒性大、成分复杂、比较难于处理的特点;医药废水中的抗生素残存所带来的负面效应直接影响到环境生态和人体的健康,越来越引起人们的关注。目前废水处理的手段主要有物理法、化学法、生物化学法等,但众多废水处理技术或存在运行成本高、或带有二次污染等缺点,使得处理效果不能令人满意。
     半导体光催化降解技术是一种高级氧化技术,是一种最有可能利用自然界太阳光实现清洁去污的环境友好技术,目前已成为人们关注较多的废水处理方法。在众多光催化用半导体材料中TiO2光催化剂具有低廉、无污染、抗光腐蚀等优点被誉为环境友好的污染处理材料,在环保和节能的应用前景受到广泛的关注,其主要应用于废水、废气处理及抗菌、自清洁产品的开发等领域。但是TiO2本身也存在局限性,如其光吸收阈值局限在紫外光区、光量子效率比较低、光催化降解缺乏选择性等。因此,近年来具有可见光响应能力强、光催化活性高、有选择性降解能力的新型光催化剂的开发成为研究的热点。
     据此我们选取空心微珠(粉煤灰漂珠)为载体,制备TiO2/粉煤灰漂珠负载光催化剂,并对负载光催化剂实施表面敏化修饰和导电聚合物表面修饰,提高光催化剂的光催化效率及对可见光的响应能力;采用分子印迹表面修饰提高光催化剂光降解的特异识别性和选择性。
     本论文研究主要包括以下三个方面的内容:
     Ⅰ敏化TiO2/粉煤灰漂珠光催化剂的制备及光催化降解染料废水的研究
     a.采用溶胶-凝胶技术,以磺化酞菁钴为光敏剂,在低温条件下对二氧化钛溶胶进行敏化,制备了CoPcS/TiO2/粉煤灰漂珠光催化剂;利用电子扫描显微镜(SEM)、X-射线衍射仪(XRD)、傅立叶红外光谱仪(FT-IR)和固体紫外漫反射(UV-vis DRS)对催化剂的结构及性能进行了表征;以亚甲基蓝溶液为模拟废水进行光催化降解试验。研究结果表明:低温条件下制备的光敏型TiO2光催化剂中,二氧化钛的晶型主要以混晶态存在(锐钛矿、板钛矿和金红石型);CoPcS/TiO2/粉煤灰漂珠光催化剂在600-700nm范围内具有较强的吸收,并且在可见光下具有较好的催化活性;可见光照射180min,亚甲基蓝废水的降解率可以达到73.36%。
     b.采用简单的溶胶凝胶法制备了AgCl光敏剂敏化的TiO2/粉煤灰漂珠光催化剂,并利用X-射线衍射仪(XRD)、电子扫描显微镜(SEM)、热重-差热分析仪(TG-DSC)和固体紫外漫反射(UV-vis DRS)对制备的光催化剂进行了结构及性能表征,同时也考察了光催化剂在可见光下光催化降解罗丹明B废水的性能。结果显示:粉煤灰漂珠表面包所覆的AgCl/TiO2薄层厚度大约为2μm;在可见光照射下,AgCl/TiO2/粉煤灰漂珠光催化剂对罗丹明B废水有较好的降解效果;当掺杂AgCl含量为0.21 g时,可见光光照180min,罗丹明B光降解率可达到94.96%,TOC降解率为20.34%。
     c.以双氧水为敏化剂对TiO2/粉煤灰漂珠表面进行敏化修饰,制备出表面修饰的复合光催化剂。采用扫描电镜、X-射线衍射、固体紫外漫反射、荧光光谱和X-射线光电能谱对制备的表面修饰光催化剂进行结构和化学成分的表征。在可见光条件下,通过光降解亚甲基蓝废水来考察表面修饰光催化剂的光催化活性。结果表明:H2O2对TiO2/粉煤灰漂珠的表面修饰可以有效的提高对光的吸收性能,在可见光条件下,H2O2表面修饰的TiO2/粉煤灰漂珠光催化对亚甲基蓝的降解率比表面未修饰TiO2/粉煤灰漂珠高42.5%,而且其光催化活性也远高于公认的P25TiO2。
     Ⅱ导电聚合物修饰TiO2/粉煤灰漂珠的制备及光催化降解抗生素废水研究
     a.采用光引发聚合功能单体邻苯二胺来敏化修饰TiO2/粉煤灰漂珠,制备出导电聚合物表面修饰的TiO2/粉煤灰漂珠复合光催化剂(POPD/TiO2/粉煤灰漂珠);通过扫描电镜(SEM)、能量色散光谱(EDS)、比表面积(BET)、X-射线衍射(XRD)、红外光谱(FT-IR)和固体紫外漫反射(UV-vis DRS)等手段对催化剂进行结构及性能表征;在可见光条件下,考察了一系列聚邻苯二胺表面修饰TiO2/粉煤灰漂珠复合光催化剂对抗生素废水的降解性能。结果表明:光诱导聚合物修饰改性后的光催化剂在可见光区具有较好的吸收;POPD/TiO2/粉煤灰漂珠光催化剂的优化制备条件为,pH=3或者pH=4的反应体系,光诱导聚合时间为40 min。在pH=3的反应体系下,紫外光引发聚合40 min制备的改性光催化剂对罗红霉素废水的降解率接近60%,表明以导电聚邻苯二胺作为修饰剂改性的复合光催化剂用于降解抗生素废水是可行的。
     b.以十六烷基三甲基溴化铵(CTAB)为模板,通过溶胶-凝胶法制备表面多孔道TiO2/粉煤灰漂珠光催化剂;采用光诱导聚合法使聚邻苯二胺(POPD)对多孔道光催化剂表面进行进一步的表面修饰。利用XRD、Raman、SEM、UV-visDRS和FT-IR等对催化剂材料进行表征,催化剂的光催化活性采用在可见光条件下光催化降解环丙沙星抗生素废水的性能来评价。实验结果表明:多孔道结构在光催化剂表面较好地形成;POPD表面修饰后催化剂光催化剂活性有了明显增强。多孔道POPD/TiO2/粉煤灰漂珠光催化降解环丙沙星抗生素废水的降解率可达到71.36%,比未修饰的TiO2/粉煤灰漂珠光催化降解率高出36%,催化剂的多孔道性和导电聚合物POPD修饰可明显提高光催化剂的光催化活性。
     Ⅲ表面印迹TiO2/粉煤灰漂珠的制备及光催化降解抗生素废水的研究
     a.采用离子印迹技术制备出Fe2+/Fe3+循环体系的P-OPD/TiO2/粉煤灰漂珠表面离子印迹光催化剂;利用XRD、XPS、SEM、FT-IR、UV-vis DRS对制备的光催化剂进行表征,光催化剂的活性通过在可见光条件下光催化降解环丙沙星抗生素废水进行评价。结果显示:铁离子印迹光催化剂能有效促使Fe2+与Fe3+之间的相互转化,使光生电子与空穴能较好地分离,进而提高了光催化效率。可见光照射60min,铁离子印迹光催化剂光催化降解环丙沙星抗生素废水的降解率可达80%。
     b.以环丙沙星为模板分子,采用表面分子印迹技术制备出表面分子印迹修饰TiO2/粉煤灰漂珠光催化剂;利用XRD、SEM、FT-IR、UV-vis DRS等对制备的光催化剂进行表征,通过在可见光条件下光催化降解抗生素废水来评价分子印迹光催化剂的选择性和光催化降解光活性。结果表明:表面分子印迹光催化剂可有效实现选择性优先降解模板分子目标物,光催化活性也有明显提高,可见光照射60min其降解效率可达70%,其光催化降解模板分子相对于非印迹光催化剂及实验中的其它非模板分子的选择性系数最大可达3.5299,显示出较好的选择性降解能力。
     c.以La3+与土霉素的配合物为模板分子,利用分子印迹技术制备出分子/离子型的表面印迹La3+@POPD/TiO2/粉煤灰漂珠光催化剂;采用XRD、SEM、FT-IR、UV-vis DRS对催化剂的晶相、表面结构、形貌及吸光特性进行表征;在可见光条件下考察了分子/离子型表面印迹光催化剂光催化降解抗生素废水的性能。结果显示:表面分子印迹使得催化剂的选择性降解能力得到了有效提高的同时,离子印迹促进了催化剂的光催化活性。可见光照射60 min,光降解土霉素废水的降解效率最高可达76%,相对于离子印迹光催化剂以及其它非模板分子配体,其对模板分子配体光催化降解是选择性系数最大可达4.5146,显示较好的选择性降解能力。
Water pollution is always the most considered environmental problem, the industry waste water, living waste water and medical waste water are main polluted source. Especially the dye waste water, which has dark coloure, great toxicity and complex component, is difficult to treat. The medical waste water which contained antibiotic can result in negative influences, and it is directed to influence the environmental zoology and health of the living, so it is more and more attented by us. The treated methods of waste water mainly included physics, chemical, biochemical, et al. The tradiational technology of treated the waste water were always high cost or seconded pollution can not reach the better results. Semiconductor Photocatalysis which belonged advanced oxided technology is one friendly environmentally technology, and may be the ideally realized clear removal pollutant. TiO2 photocatalyst, as one friendly materials, is widely used for treated the waste water and waste gas, and prepared the self-clean products. But TiO2 has limitation, such as the adsorbted light limited UV range, low photons efficiency and lacked selectivity. Thus, the devolopment of strong respond to visible light, high photocatalytic activity and choice new photocatalysts is the hot research.
     Herein, we chose the fly-ash cenospheres as the carrier and prepared TiO2/fly-ash cenospheres the photocatalyst. Then the loaded catalyst was modified by surface sensitization method which could improve the responds for visible light, and it was enhanced the choice via surface imprinted technology.
     The work mainly included the following items:
     I Preparaton of sensitized TiO2/fly-ash cenospheres and degradation of waste dye
     a. Cobalt Sulfophthalocyanine (CoPcS) sensitized TiO2 Sol samples were prepared through a Sol-Gel method using cobalt sulfophthalocyanine as a sensitizer. Loading and modified floating photocatalyst was prepared by hydrothermal method using fly-ash cenospheres as a carrier. The properties of the samples were characterized by Scanning electron microscopy(SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and UV-vis diffuse reflectance spectrum (DRS). Photocatalytic activity was studied by degrading waste water of methylene blue under visible light. The results indicate that the fly-ash cenospheres are covered by modified TiO2 film which composed of the anatase, brookite and rutile mischcrystal phase. CoPcS/TiO2/fly-ash cenospheres samples have good catalytic activity under visible light, and have strong absorbency during 600-700nm. The sensitization of CoPcS can enhance visible light catalytic activity of TiO2/Fly-ash cenospheres. The degradation rate of methylene blue reaches 73.36% in 180 min under the visible light illumination. But too much CoPcS can decrease its catalytic activity.
     b. AgCl/TiO2/fly-ash cenospheres photocatalysts were prepared by a simple sol-gel method. The catalysts were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), thermo gravimetric analysis-differential scanning calorimeter (TG-DSC), and UV-vis diffuse reflection spectrum (UV-vis DRS). The results show that the fly-ash cenospheres are coated with about 2μm thickness of AgCl/TiO2 nano-composite films. The fly-ash cenospheres loaded the films of AgCl/TiO2 photocatalysts exhibit high visible-light-induced photocatalytic activity for the decomposition of Rhodamine B waste water. When the photocatalyst contained the dosage of 0.21 g AgCl, the photo-degradation rate could reach 94.96% in 180 min under visible light irradiation, and removal rate of TOC could reach 20.34% in the same condition.
     c. The TiO2/fly-ash cenospheres were prepared via sol-gel method, and the surface of TiO2/fly-ash cenospheres was further modified by hydrogen peroxide (H2O2). Scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS) were applied to characterize structure, performance and chemical composition of as-prepared samples. The photocatalytic activity of as-prepared samples was evaluated by degradation of methylene blue under visible light irradiation. The results indicate that the modified phototcatalyst of TiO2/fly-ash cenospheres is effectively improved the absorption of light. The photocatalytic degradation of methylene blue is enhanced under visible light irradiation, which the degradation rate is higher 42.5%than the untreated TiO2/fly-ash cenospheres with H2O2. Moreover, the simple way to modified TiO2/fly-ash cenospheres and enhancing the photocatalytic activity is better for practical application.
     ⅡPreparation of modified photocatalyst via conductive polymer and degradation of antibiotic waste water
     a. A series of Poly-o-phenylenediamine/TiO2/fly-ash cenospheres (POPD /TiO2/fly-ash cenospheres) composites have been prepared from o-phenylenediamine and TiO2/fly-ash cenospheres under various polymerization conditions. The properties of the samples were characterized by scanning electron microscopy(SEM), energy dispersive spectroscopy (EDS), specific surface area (BET), X-ray diffraction (XRD), fourier transform infrared (FT-IR) and UV-vis diffuse reflectance spectrum (UV-vis DRS). Photocatalytic activity was studied by degradation of antibiotics waste water under visible light. The results indicate that the photo-induced method is viable for preparing modified photocatalysts, and the modified photocatalysts have good absorption in visible light range. The photocatalysts of POPD/TiO2/fly-ash cenospheres which have good performance are prepared at pH=3 and pH=4, and the polymerized time around 40 min. When the photocatalysts are prepared under the conditions of pH=3 and polymerized time 40 min, the degradation rate of roxithromycin waste water could reach near 60%, and it indicates that the way of POPD modified TiO2/fly-ash cenospheres to degrade the antibiotics waste water is viable.
     b. Porous-TiO2/fly-ash cenospheres were prepared via sol-gel with a traditionary surfactant hexadcetyltrimethylammonium bromide (CTAB) as template. The as-prepared porous materials were further modified by the poly o-phenylenediamine (POPD) with photo-induce method. The as-prepared photocatalysts were characterized by XRD, Raman, SEM, UV-vis DRS, FT-IR analyses. The photocatalytic activity was studied via degradation of ciprofloxacin antibiotic waste water under visible light irradiation. The results indicate that porous materials is well formed, the photocatalytic activity of photocatalyst is enhanced with modified POPD. The degradation rate of POPD/porous-TiO2/fly-ash cenospheres could reach 71.36%which improved near 36%than the degradation rate of TiO2/fly-ash cenospheres. It clearly shows that the properties of porous and POPD modification could effectively increase the photocatalytic activity.
     ⅢPreparation surface imprinted photocatalysts and degradation of antibiotic waste water
     a. Fe2+/Fe3+@P-OPD/TiO2/fly-ash cenospheres photocatalysts has been successfully prepared by ions imprinting technology. The as-prepared ions imprinting photocatalysts have been characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), UV-vis diffuse reflectance spectra (UV-vis DRS) and Fourier transform infrared (FT-IR). The photocatalytic activity of the samples was studied by the degradation of ciprofloxacin antibiotics waste water under visible light irradiation. The results showed that the iron ions imprinting photocatalysts could effectively promote the mutual transformationbetween Fe2+and Fe3+, increased the separation rate of photoelectrons and holes in the cycling system, and so improved the photocatalytic activity of photodegradation system on the ciprofloxacin antibiotics.. The photodegradation rate could reach 80 % in 50 min under visible light irradiation. According to our experimental results, a mechanism of preparation and photodegradation system of ions imprinting photocatalyst was also proposed.
     b. The surface molecular imprinted photocatalyst of TiO2/fly-ash cenospheres was prepared by molecular imprinted technology with ciprofloxacin as the template. The imprinted photocatalyst was further characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-vis diffuse reflectance spectra (UV-vis DRS) and Fourier transform infrared (FT-IR). The preferential choice and activity of imprinted photocatalyst was evaluated by degradation of antiobic waste water. The results indicate that the surface imprinted photocatalyst could effectively preferential degradation of template molecular and enhance the photocatalytic activity. The degradation rate of molecular could reach 70% in 60 min under visible light irradiation. The degradation coefficient of relatively selectivity could reach 3.5299 compared with the tetracycline. The degradation intermediate product of ciprofloxacin was further discussed.
     c. The molecular/ion surface imprinted TiO2/fly-ash cenospheres photocatalyst was prepared by molecular imprinted technology with La3+and oxytetracycline. The phase, surface structure and light absorption of as-prepared photocatalyst were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-vis diffuse reflectance spectra (UV-vis DRS) and Fourier transform infrared (FT-IR). The preferential choice and activity of imprinted photocatalyst was evaluated by degradation of antibiotic waste water. The results indicate that molecular/ion surface imprinted photocatalyst could effectively preferential degradation of template molecular and enhance the photocatalytic activity. The degradation rate of molecular could reach 76% in 60 min under visible light irradiation. The degradation coefficient of relatively selectivity could reach 4.5146 compared with the ciprofloxacin.
引文
[1]Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature,1972,238:37-38.
    [2]Carey J H, Lawrence J, Tosine H M. Photodechloination of PCB'S in the Presence of Titanium Dioxide in Aqueous Suspension. Bull. Environ. Contam. Toxicol., 1976,16(1):697-701.
    [3]Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light Photocatalysis in Nitrogen Doped Titanium Oxides. Science,2001,293:269-271.
    [4]盛国栋,李家星,王所伟,等.提高TiO2可见光催化性能的改性方法.化学进展,2009,21(12):2492-2504.
    [5]A. Fujishima, X. T. Zhang, D. A. Tryk. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep.,2008,63(12):515-582.
    [6]M. Ramamoorthy, D. Vanderbilt, R. D. King-Smith. First-principles calculations of the energetics of stoichiometric TiO2 surfaces. Phys. Rev. B,1994, 49:16721-16727.
    [7]R. Hengerer, B. Bolliger, M. Erbudak, et al. Structure and stability of the anatase TiO2 (101) and (001) surfaces. Surface Science,2000,460(1-3):162-169.
    [8]Beltran A., Gracia L., Andres. Density functional theory study of the brookite surfaces and phase transitions between natural titania polymorphs. J. Phys. Chem. B,2006,110 (46):23417-23423.
    [9]Panagiotis Bouras, Elias Stathatos, Panagiotis Lianos. Pure versus metal-ion-doped nanocrystalline titania for photocatalysis. Applied Catalysis B:Environmental, 2007,73 (1-2):51-59.
    [10]Wen-Chi Hung, Ssu-Han Fu, Jeou-Jen Tseng, et al. Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol-gel method. Chemosphere,2007,66 (11):2142-2151.
    [11]Tianzhong Tong, Jinlong Zhang, Baozhu Tian, et al. Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. Journal of Hazardous Materials,2008,155 (3):572-579.
    [12]Minghua Zhou, Jiaguo Yu, Bei Cheng. Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. Journal of Hazardous Materials,2006,137(3):1838-1847.
    [13]Meltem Asilturka, Funda Sayilkan, Ertugrul Arpac. Effect of Fe3+ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation. Journal of Photochemistry and Photobiology A:Chemistry,2009, 203(1):64-71.
    [14]Chung-Chih Yen, Da-Yung Wang, Ming-Huei Shih, et al. A combined experimental and theoretical analysis of Fe-implanted TiO2 modified by metal plasma ion implantation. Applied Surface Science,2010,256(22):6865-6870.
    [15]苏碧桃,孙佳星,胡常林,等.Fe3+掺杂TiO2光催化纤维材料的制备及表征.物理化学学报,2009,25(8):1561-1566.
    [16]L. Sun, J.Li, C.L. et al. An electrochemical strategy of doping Fe3+into TiO2 nanotube array films for enhancement in photocatalytic activity. Solar Energy Materials & Solar Cells,2009.93 (10):1875-1880.
    [17]田宝柱,李春忠,顾锋,等.喷雾燃烧热分解制备Cr掺杂TiO2纳米粒子的可见光催化性能.无机材料学报,2009,24(4):661-665.
    [18]龙绘锦,王恩君,董江舟,等.In离子掺杂二氧化钛纳米管可见光催化活性的研究.化学学报,2009,67(14):1533-1538.
    [19]梁燕萍,贾剑平,吕向菲,等.Co2+掺杂的纳米TiO2薄膜光催化特性及电化学阻抗谱研究.无机化学学报,2010,26(4):633-639.
    [20]Hikmet Sayilkan. Improved photocatalytic activity of Sn4+-doped and undoped TiO2 thin film coated stainless steel under UV-and VIS-irradiation. Applied Catalysis A:General,2007,319:230-236.
    [21]L. Gomathi Devi, Nagaraju Kottam, B. Narasimha Murthy, et al. Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+and Zn2+doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light. Journal of Molecular Catalysis A:Chemical,2010,328 (1-2):44-52.
    [22]Zeinhom M. El-Bahy, Adel A. Ismail, Reda M. Mohamed. Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue). Journal of Hazardous Materials,2009,166 (1):138-143.
    [23]F.B. Li, X.Z. Li. C.H. Ao, et al. Enhanced photocatalytic degradation of VOCs using Ln3+-TiO2 catalysts for indoor air purification. Chemosphere,2005,59(6): 787-800.
    [24]Yibing Xie, Chunwei Yuan, Xiangzhong Li. Photosensitized and photocatalyzed degradation of azo dye using Lnn+-TiO2 sol in aqueous solution under visible light irradiation. Materials Science and Engineering B,2005,117 (3):325-333.
    [25]Dapeng Xu, Lajun Feng, Ali Lei. Characterizations of lanthanum trivalent ions/TiO2 nanopowders catalysis prepared by plasma spray. Journal of Colloid and Interface Science,2009,329 (2):395-403.
    [26]Adrian M.T. Silva, Claudia G. Silva, Goran Drazic, et al. Ce-doped TiO2 for photocatalytic degradation of chlorophenol. Catalysis Today,2009,144(1-2): 13-18.
    [27]Chunhua Liang, Chengshuai Liu, Fangbai Li, et al. The effect of Praseodymium on the adsorption and photocatalytic degradation of azo dye in aqueous Pr3+-Ti02 suspension. Chemical Engineering Journal,2009,147 (2-3):219-225.
    [28]王进贤,郭月秋,董相廷,等.钇或钕掺杂TiO2纳米纤维的制备及光催化性能研究.无机材料学报,2010,25(4):379-385.
    [29]N. Venkatachalam, M. Palanichamy, Banumathi Arabindoo, et al. Alkaline earth metal doped nanoporous TiO2 for enhanced photocatalytic mineralisation of bisphenol-A. Catalysis Communications,2007,8 (7):1088-1093.
    [30]Shaoqin Peng, Yuexiang Li, Fengyi Jiang, et al. Effect of Be2+doping TiO2 on its photocatalytic activity. Chemical Physics Letters,2004,398(1-3):235-239.
    [31]Beata Zielinska, Ewa Borowiak-Palen, Ryszard J. Kalenczuk. Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors. International Journal of Hydrogen Energy,2008,33(7):1797-1802.
    [32]Lv Youjun, Shi Keyu, Zhang Yuying, et al. The characterization of Sr-doped nanocrystal grain microspheres and photodegradation of KN-R dye. Catalysis Communications,2008,9(5):557-562.
    [33]阎建辉,黄可龙,刘素琴,等.碱土金属掺杂纳米TiO2催化剂的制备与光催化活性的评价.无机化学学报,2004,20(4):301-306.
    [34]Christos Sarantopoulos, Alain N. Gleizes, Francis Maury. Chemical vapor deposition and characterization of nitrogen doped TiO2 thin films on glass substrates. Thin Solid Films,2009,518 (4):1299-1303.
    [35]Tien-Syh Yang, Min-Chi Yang, Ching-Bin Shiu, et al. Effect of N2 ion flux on the photocatalysis of nitrogen-doped titanium oxide films by electron-beam evaporation. Applied Surface Science,2006,252(10):3729-3736.
    [36]Dong Lin, Cao Guoxi, Ma Ying, et al. Enhanced photocatalytic degradation properties of nitrogen-doped titania nanotube arrays. Transactions of Nonferrous Metals Society of China,2009,19(6):1583-1587.
    [37]Li Jinlong, Ma Xinxin, Sun Mingren, et al. Fabrication of nitrogen-doped mesoporous TiO2 layer with higher visible photocatalytic activity by plasma-based ion implantation. Thin Solid Films,2010,519(1):101-105.
    [38]Yen-Ping Peng, Shang-Lien Lo, Hsin-Hung Ou, et al. Microwave-assisted hydrothermal synthesis of N-doped titanate nanotubes for visible-light-responsive photocatalysis. Journal of Hazardous Materials,2010, 183(1-3):754-758.
    [39]赵宏生,胡红坡,张凯红,等.氮掺杂二氧化钛薄膜的制备与光催化性能.稀有金属材料与工程,2009,38(10):1815-1817.
    [40]景文珩,王韦岗,邢卫红.大孔-介孔氮掺杂二氧化钛的制备及其光催化性能测试.催化学报,2009,30(5):426-432.
    [41]Hong Shen, Lan Mi, Peng Xu, et al. Visible-light photocatalysis of nitrogen-doped TiO2 nanoparticulate films prepared by low-energy ion implantation. Applied Surface Science,2007,253(17):7024-7028.
    [42]Ming Shen, Zunyi Wu, Hui Huang, et al. Carbon-doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation. Materials Letters, 2006,60(5):693-697.
    [43]杨科,谷景华,张跃.碳掺杂氧化钛薄膜可见光催化性能及机制研究.稀有金属材料与工程,2009,38(suppl2):759-761.
    [44]于爱敏,武光军,严晶晶,等.水热法合成可见光响应的B掺杂TiO2及其光催化活性.催化学报,2009,30(2):137-141.
    [45]Guosheng Wu, Aicheng Chen. Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications. Journal of Photochemistry and Photobiology A:Chemistry,2008,195(1):47-53.
    [46]Di Li, Hajime Haneda, Nitin K. Labhsetwar, Shunichi Hishita, Naoki Ohashi. Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chemical Physics Letters,2005,401(4-6): 579-584.
    [47]陈艳敏,钟晶,陈锋,等.氟掺杂纳米TiO2薄膜的低温制备及其光催化性能.催化学报,2010,31(1):120-125.
    [48]Shouxin Liu, Xiaoyun Chen. A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. Journal of Hazardous Materials,2008,152(1):48-55.
    [49]王玉萍,曹金丽,彭盘英.S掺杂形式对TiO2基光催化剂结构和性能的影响.无机化学学报,2009,25(11):2010-2015.
    [50]Hongqi Sun, ShaobinWang, H. Ming Ang, Moses O. Tade, Qin Li. Halogen element modified titanium dioxide for visible light photocatalysis. Chemical Engineering Journal,2010,162(2):437-447.
    [51]Guosheng Wu, Jiali Wen, Jingpeng Wang, et al. A facile approach to synthesize N and B co-doped TiO2 nanomaterials with superior visible-light response. Materials Letters,2010,64(15):1728-1731.
    [52]Jing Yang, Haizan Bai, Xingchen Tan, et al. IR and XPS investigation of visible-light Photocatalysis Nitrogen-carbon-doped TiO2 film. Applied Surface Science,2006,253(4):1988-1994.
    [53]J.A. Rengifo-Herrera, C. Pulgarin. Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. Solar Energy,2010,84(1): 37-43.
    [54]Fengyu Wei, Liangsuo Ni, Peng Cui. Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalytic activity. Journal of Hazardous Materials,2008,156(1-3):135-140.
    [55]Minghua Zhou, Jiaguo Yu. Preparation and enhanced daylight-induced photocatalytic activity of C, N, S-tridoped titanium dioxide powders. Journal of Hazardous Materials,2008,152(3):1229-1236.
    [56]Jian-Wen Shi, Jing-Tang Zheng, Yan Hu, et al. Influence of Fe3+and Ho3+ co-doping on the photocatalytic activity of TiO2. Materials Chemistry and Physics,2007,106 (2-3):247-249.
    [57]Zhuyi Wang, Cheng Chen, Fengqing Wu, et al. Photodegradation of rhodamine B under visible light by bimetal codoped TiO2 nanocrystals. Journal of Hazardous Materials,2009,164(1):615-620.
    [58]Ping Yang, Cheng Lu, Nanping Hua, et al. Titanium dioxide nanoparticles co-doped with Fe3+and Eu3+ions for photocatalysis. Materials Letters,2002,57 (4):794-801.
    [59]Xiang-Zhong Shen, Zhi-Cheng Liu, Shan-Mei Xie, et al. Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination. Journal of Hazardous Materials,2009,162(2-3): 1193-1198.
    [60]Xin Zhang, Qingquan Liu. Visible-light-induced degradation of formaldehyde over titania photocatalyst co-doped with nitrogen and nickel. Applied Surface Science,2008,254(15):4780-4785.
    [61]张学军,高攀,柳清菊.氮铁共掺锐钛矿相Ti02电子结构和光学性质的第一性原理研究.物理学报,2010,59(7):4930-4938.
    [62]刘万兵,邓健,赵玉宝,等.铁氮共掺杂纳米Ti02复合膜的制备、光谱分析及光催化活性研究.光谱学与光谱分析,2009,29(5):1394-1397.
    [63]K.T. Ranjit, T.K. Varadarajan, B. Viswanathan. Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO2. Journal of Photochemistry and Photobiology A:Chemistry,1996,96 (1-3):181-185.
    [64]鄂磊,徐明霞,雅菁,等.贵金属修饰TiO2_xNx可见光催化活性及催化机理.稀有金属材料与工程,2008,37(suppl.1):138-141.
    [65]S. Sakthivel, M.V. Shankar, M. Palanichamy, et al. Enhancement of photocatalytic activity by metal deposition:characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research,2004,38 (13):3001-3008.
    [66]Hongfan Guo, Marianna Kemell, Mikko Heikkila, et al. Noble metal-modified TiO2 thin film photocatalyst on porous steel fiber support. Applied Catalysis B: Environmental,2010,95(3-4):358-364.
    [67]Xing-Gang Hou, Jun Ma, An-Dong Liu, et al. Visible light active TiO2 films prepared by electron beam deposition of noble metals. Nuclear Instruments and Methods in Physics Research B,2010,268 (6):550-554.
    [68]鄂磊,徐明霞.贵金属修饰型TiO2的催化活性及Fermi能级对其光催化性能的影响.硅酸盐学报,2004,32(12):1538-1541.
    [69]Ni M, Leung M K H, Leung D Y C, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev.,2007,11(3):401-25.
    [70]Lubomir Spanhel, Horst Weller, Arnim Henglein. Photochemistry of Semiconductor Colloids.22. Electron Injection from Illuminated CdS into Attached TiO2 and ZnO Particles. J. Am. Chem. Soc.1987,109(22):6632-6635.
    [71]Didier Robert. Photosensitization of TiO2 by MxOyand MxSy nanoparticles for heterogeneous photocatalysis applications. Catalysis Today,2007,122(1-2): 20-26.
    [72]Ahed H. Zyoud, Nidal Zaatar, Iyad Saadeddin, et al. CdS-sensitized TiO2 in phenazopyridine photo-degradation:Catalyst efficiency, stability and feasibility assessment. Journal of Hazardous Materials,2010,173(1-3):318-325.
    [73]Ming-Chi Hsu, Ing-Chi Leu, Yu-Ming Sun, et al. Fabrication of CdS@TiO2 coaxial composite nanocables arrays by liquid-phase deposition. Journal of Crystal Growth,2005,285(4):642-648.
    [74]Ling Wu, Jimmy C. Yu, Xianzhi Fu. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. Journal of Molecular Catalysis A:Chemical,2006,244(1-2):25-32.
    [75]Juliana C. Tristao, Fabiano Magalhaes, Paola Corio, et al. Electronic characterization and photocatalytic properties of CdS/TiO2 semiconductor composite. Journal of Photochemistry and Photobiology A:Chemistry,2006, 181(2-3):152-157.
    [76]Jum Suk Jang, Hyun Gyu Kim, Upendra A. Joshi, et al. Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. International journal of hydrogen energy,2008,33(21):5975-5980.
    [77]Yu Xiaodan, Wu Qingyin, Jiang Shicheng, et al. Nanoscale ZnS/TiO2 composites: Preparation, characterization, and visible-light photocatalytic activity. Materials Characterization,2006,57(4-5):333-341.
    [78]A. Franco, M.C. Neves, M.M.L. Ribeiro, et al. Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites. Journal of Hazardous Materials,2009,161(1):545-550.
    [79]Zhongyuan He, Yaogang Li, Qinghong Zhang, et al. Capillary microchannel-based microreactors with highly durable ZnO/TiO2 nanorod arrays for rapid, high efficiency and continuous-flow photocatalysis. Applied Catalysis B:Environmental,2010,93(3-4):376-382.
    [80]Jintao Tian, Lijuan Chen, Yansheng Yin, et al. Photocatalyst of TiO2/ZnO nano composite film:Preparation, characterization, and photodegradation activity of methyl orange. Surface & Coatings Technology,2009,204(1-2):205-214.
    [81]M. Cristina Yeber, Jaime Rodriguez, Juanita Freer, et al. Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO. Chemosphere,2000,41 (8):1193-1197.
    [82]S. Sakthivel, B. Neppolian, M.V. Shankar, et al. Solar photocatalytic degradation of azo dye:comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials & Solar Cells,2003,77(1):65-82.
    [83]S.K. Kansal, M. Singh, D.Sud. Studies on TiO2/ZnO photocatalysed degradation of lignin. Journal of Hazardous Materials,2008,153(1-2):412-417.
    [84]Qinghang He, Zhenxi Zhang, Jianwen Xiong, et al. A novel biomaterial-Fe3O4:TiO2 core-shell nano particle with magnetic performance and high visible light photocatalytic activity. Optical Materials,2008,31(2):380-384.
    [85]F.X. Ye, T. Tsumura, K. Nakata, et al. Dependence of photocatalytic activity on the compositions and photo-absorption of functional TiO2-FesO4 coatings deposited by plasma spray. Materials Science and Engineering B,2008,148(1-3): 154-161.
    [86]Fuxing Ye, Akira Ohmori. The photocatalytic activity and photo-absorption of plasma sprayed TiO2-Fe3O4 binary oxide coatings. Surface and Coatings Technology,2002,160(1):62-67.
    [87]T.-F. Hsu, T.-L. Hsiung, James Wang, et al. In situ XANES studies of TiO2/Fe3O4@C during photocatalytic degradation of trichloroethylene. Nuclear Instruments and Methods in Physics Research A,2010,619(1-3):98-101.
    [88]Kaishu Guan. Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surface & Coatings Technology,2005, 191(2-3):155-160.
    [89]Linda Zou, Yonggang Luo, Martin Hooper, et al. Removal of VOCs by photocatalysis process using adsorption enhanced TiO2-SiO2 catalyst. Chemical Engineering and Processing,2006,45(11):959-964.
    [90]S. Qourzal, N. Barka, M. Tamimi, et al. Sol-gel synthesis of TiO2-SiO2 photocatalyst for β-naphthol photodegradation. Materials Science and Engineering C,2009,29(5):1616-1620.
    [91]Minghua Zhou, Jiaguo Yu, Shcngwei Liu, et al. Effects of calcination temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method. Journal of Hazardous Materials,2008,154(1-3):1141-1148.
    [92]Romana Khan, Tae-Jeong Kim. Preparation and application of visible-light-responsive Ni-doped and SnO2-coupled TiO2 nanocomposite photocatalysts. Journal of Hazardous Materials,2009,163(2-3):1179-1184.
    [93]Brian O'Regan, Michael Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films. Nature,1991,353:737-740
    [94]Jimmy C. Yu, Yinde Xie, Hung Yuk Tang, et al. Visible light-assisted bactericidal effect of metalphthalocyanine-sensitized titanium dioxide films. Journal of Photochemistry and Photobiology A:Chemistry,2003,156(1-3):235-241.
    [95]Debabrata Chatterjee, Anima Mahata. Demineralization of organic pollutants on the dye modified TiO2 semiconductor particulate system using visible light. Applied Catalysis B:Environmental,2001,33(2):119-125.
    [96]Jungwoo Moon, Chang Yeon Yun, Kyung-Won Chung, et al. Photocatalytic activation of TiO2 under visible light using Acid Red 44. Catalysis Today,2003, 87(1-4):77-86.
    [97]Debabrata Chatterjee, Anima Mahata. Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface. Journal of Photochemistry and Photobiology A:Chemistry,2002,153(1-3):199-204.
    [98]Jincai Zhao, Taixing Wu, Kaiqun Wu, et al. Photoassisted Degradation of Dye Pollutants.3. Degradation of the Cationic Dye Rhodamine B in Aqueous Anionic Surfactant/TiO2 Dispersions under Visible Light Irradiation:Evidence for the Need of Substrate Adsorption on TiO2 Particles. Environ. Sci. Technol.1998, 32(16):2394-2400.
    [99]Zhiyu Wang, Weiping Mao, Haifeng Chen, et al. Copper(Ⅱ) phthalocyanine tetrasulfonate sensitized nanocrystalline titania photocatalyst:Synthesis in situ and photocatalysis under visible light. Catalysis Communications,2006,7(8): 518-522.
    [100]李晓佩,陈锋,张金龙.酞菁改性的介孔TiO2的制备及其可见光光催化活性.催化学报,2007,28(3):229-233.
    [101]蔡金华,黄锦汪,叶元坚,等.卟啉敏化二氧化钛复合微球的制备及其光催化性能.催化学报,2009,30(5):440-446.
    [102]Kazuhiro Hirano, Eiji Suzuki, Akio Ishikawa, et al. Sensitization of TiO2 particles by dyes to achieve H2 evolution by visible light. Journal of Photochemistry and Photobiology A:Chemistry,2000,136(3):157-161.
    [103]Jimmy C. Yu, Jiaguo Yu, Jincai Zhao. Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment. Applied Catalysis B:Environmental,2002,36(1):31-43.
    [104]YAO Zhongping, JIANG Yanli, JIANG Zhaohua, et al. Calcination/ acid-activation treatment of an anodic oxidation TiO2/Ti film catalyst. RARE METALS,2009,28 (5):428-433.
    [105]Kexin Li, Xia Yang, Yingna Guo, et al. Design of mesostructured H3PWi204o-titania materials with controllable structural orderings and pore geometries and their simulated sunlight photocatalytic activity towards diethyl phthalate degradation. Applied Catalysis B:Environmental,2010,99(1-2): 364-375.
    [106]王知彩,李小君,王平.SO42-改性TiO2催化降解茜素红水溶液.中国环境科学.2003,23(5):535-538.
    [107]付贤智,丁正新,苏文悦,等.二氧化钛基固体超强酸的结构及其光催化氧化性能.催化学报,1999,20(3):321-324.
    [108]Martin Zlamal, Jan M. Macak, Patrik Schmuki, et al. Electrochemically assisted photocatalysis on self-organized TiO2 nanotubes. Electrochemistry Communications,2007,9(12):2822-2826.
    [109]Zulkarnain Zainal, Chong Yong Lee, Mohd Zobir Hussein, et al. Effect of supporting electrolytes in electrochemically-assisted photodegradation of an azo dye. Journal of Photochemistry and Photobiology A:Chemistry,2005,172(3): 316-321.
    [110]Patrick S.M. Dunlop, Trudy A. McMurray, Jeremy W.J. Hamilton, et al. Photocatalytic inactivation of Clostridium perfringens spores on TiO2 electrodes. Journal of Photochemistry and Photobiology A:Chemistry,2008,196(1): 113-119.
    [111]付川,郭劲松,潘杰,等.三维电场协同TiO2光催化降解水中双酚A的研究.中国给水排水,2009,25(7):79-82.
    [112]吴合进,吴鸣, 谢茂松, 等.增强型电场协助光催化降解有机污染物.催化学报,2000,21(5):399-403.
    [113]Marta Mrowetz, Carlo Pirola, Elena Selli. Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO2. Ultrasonics Sonochemistry.2003,10(4-5):247-254.
    [114]Ricardo A. Torres, Jessica I. Nieto, Evelyne Combet, et al. Influence of TiO2 concentration on the synergistic effect between photocatalysis and high-frequency ultrasound for organic pollutant mineralization in water. Applied Catalysis B:Environmental,2008,80(1-2):168-175.
    [115]Shuo Wang, Qianming Gong, Ji Liang. Sonophotocatalytic degradation of methyl orange by carbon nanotube/TiO2 in aqueous solutions. Ultrasonics Sonochemistry,2009,16(2):205-208.
    [116]Zhihui Ai, Peng Yang, Xiaohua Lu. Degradation of 4-chlorophenol by a microwave assisted photocatalysis method. Journal of Hazardous Materials,2005, 124(1-3):147-152.
    [117]Gao Zhanqi, Yang Shaogui, Ta Na, et al. Microwave assisted rapid and complete degradation of atrazine using TiO2 nanotube photocatalyst suspensions. Journal of Hazardous Materials,2007,145(3):424-430.
    [118]李旦振,郑宜,付贤智.微波-光催化耦合效应及其机理研究.物理化学学报,2002,18(4):332-335.
    [119]Hexing Li, Zhenfeng Bian,Jian Zhu, et al. Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity. J. Am. Chem. Soc.2007,129(27):8406-8407.
    [120]Isao Nakamura, Nobuaki Negishi, Shuzo Kutsuna, et al. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. Journal of Molecular Catalysis A:Chemical,2000,161(1-2): 205-212.
    [121]Xueyan Li, Desong Wang, Guoxiang Cheng, et al. Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Applied Catalysis B:Environmental,2008,81(3-4): 267-273
    [122]Liming Yang, Liya E. Yu, Madhumita B. Ray. Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Research,2008,42(13): 3480-3488.
    [123]崔海萍,闫军,张永涛,等.Na2Sn03掺杂TiO2的结构及对TNT的降解研究.稀有金属材料与工程,2009,38(suppll-2):955-958.
    [124]M.A. Behnajady, N. Modirshahla, N. Daneshvar, et al. Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates. Chemical Engineering Journal,2007,127(1-3): 167-176.
    [125]Fabiola Mendez-Arriaga, Santiago Esplugas, Jaime Gimenez. Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Research,2008,42(3):585-594.
    [126]Ning Ma, Xie Quan, Yaobin Zhang, et al. Integration of separation and photocatalysis using an inorganic membrane modified with Si-doped TiO2 for water purification. Journal of Membrane Science,2009,335(1-2):58-67.
    [127]Youji Li, Shuguo Sun, Mingyuan Ma, et al. Kinetic study and model of the photocatalytic degradation of rhodamine B(RhB) by a TiO2-coated activated carbon catalyst:Effects of initial RhB content, light intensity and TiO2 content in the catalyst. Chemical Engineering Journal,2008,142(2):147-155.
    [128]L. Lhomme, S. Brosillon, D. Wolbert. Photocatalytic degradation of pesticides in pure water and a commercial agricultural solution on TiO2 coated media. Chemosphere,2008,70(3):381-386.
    [129]G. Waldner, M. Pourmodjib, R. Bauer, et al. Photoelectrocatalytic degradation of 4-chlorophenol and oxalic acid on titanium dioxide electrodes. Chemosphere, 2003,50(8):989-998.
    [130]Wendong Wang, Philippe Serp, Philippe Kalck, et al. Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications. Materials Research Bulletin,2008, 43(4):958-967.
    [131]Jae-Kyu Yang, Seung-Mok Lee. Removal of Cr(VI) and humic acid by using TiO2 photocatalysis. Chemosphere,2006,63(10):1677-1684.
    [132]M.A. Barakat, Y.T. Chen, C.P. Huang. Removal of toxic cyanide and Cu(II) Ions from water by illuminated TiO2 catalyst. Applied Catalysis B:Environmental, 2004,53(1):13-20.
    [133]E. Evgenidou, K. Fytianos, I. Poulios. Semiconductor-sensitized photodegradation of dichlorvos inwater using TiO2 and ZnO as catalysts. Applied Catalysis B:Environmental,2005,59(1-2):81-89.
    [134]M. Kositzi, I. Poulios, S. Malato, et al. Solar photocatalytic treatment of synthetic municipal wastewater. Water Research,2004,38(5):1147-1154.
    [135]M.V. Phanikrishna Sharma, V. Durga Kumari, M. Subrahmanyam.TiO2 supported over SBA-15:An efficient photocatalyst for the pesticide degradation using solar light. Chemosphere,2008,73(9):1562-1569.
    [136]J. Rajesh Banu, S. Anandan, S. Kaliappan, et al. Treatment of dairy wastewater using anaerobic and solar photocatalytic methods. Solar Energy,2008,82(9): 812-819.
    [137]Pantelis A. Pekakis, Nikolaos P. Xekoukoulotakis, Dionissios Mantzavinos. Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Research,2006,40(6):1276-1286.
    [138]颜秀茹,李晓红,霍明亮,等.纳米SnO2@TiO2的制备及其光催化性能.物理化学学报,2001,17(1):23-28.
    [139]张翼,于婷,张玉洁,等.铈掺杂Ti/TiO2电极的制备及催化降解油田废水性能.催化学报,2009,30(2):154-158.
    [140]孙梦君,柳丽芬,杨凤林.β-坏糊精/Ce/TiO2光催化氧化气相甲苯.中国环境科学,2008,28(7):593-598.
    [141]C.H. Ao, S.C. Lee. Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level. Journal of Photochemistry and Photobiology A:Chemistry,2004,161(2-3):131-140.
    [142]C.H.Ao, S.C. Lee. Indoor air purification by photocatalyst TiO2 immobilizedon an activated carbon filter installedin an air cleaner. Chemical Engineering Science,2005,60(1):103-109.
    [143]Vit Kalousek, Jessica Tschirch, Detlef Bahnemann, et al. Mesoporous layers of TiO2 as highly efficient photocatalysts for the purification of air. Superlattices and Microstructures,2008,44(4-5):506-513.
    [144]C.H. Ao, S.C. Lee, Jimmy C. Yu. Photocatalyst TiO2 supported on glass fiber for indoor air purification:effect of NO on the photodegradation of CO and NO. Journal of Photochemistry and Photobiology A:Chemistry,2003,156(1-3): 171-177.
    [145]张建臣, 郭坤敏, 马兰, 等.TiO2/AC光催化剂上气体污染物降解的反应动力学模型.催化学报,2006,27(10):849-852.
    [146]侯一宁,王安,王燕.二氧化钛-活性炭纤维混合材料净化室内甲醛污染.四川大学学报(工程科学版),2004,36(4):41-44.
    [147]C.H. Ao, S.C. Lee, C.L. Mak, et al. Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO2:promotion versus inhibition effect of NO. Applied Catalysis B:Environmental,2003,42(2): 119-129.
    [148]柳丽芬,赵世博,杨凤林.聚苯胺/TiO2-SiO2复合催化剂去除空气中甲醛的研究.中国环境科学,2009,29(4):362-367.
    [149]董永春,白志鹏,张利文,等.纳米TiO2负载织物对室内空气中氨的净化.中国环境科学,2005,25(Suppl.):26-29.
    [150]何锡阳,钟俊波,冯发美,等.超声波制备Ti02光催化降解气相苯的研究.四川理工学院学报(自然科学版),2010,23(3):306-308.
    [151]丁震,冯小刚,陈晓东,等.金属泡沫镍负载纳米TiO2光催化降解甲醛和VOCs.环境科学,2006,27(9):1814-1819.
    [152]S.S. Madaeni, N. Ghaemi. Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation. Journal of Membrane Science, 2007,303(1-2):221-233.
    [153]H. Yamashita, H. Nakao, M. Takeuchi, et al. Coating of TiO2 photocatalysts on super-hydrophobic porous teflon membrane by an ion assisted deposition method and their self-cleaning performance. Nuclear Instruments and Methods in Physics Research B,2003,206:898-901.
    [154]M.J. Uddin, F. Cesano, D. Scarano, et al. Cotton textile fibres coated by Au/TiO2 films:Synthesis, characterization and self cleaning properties. Journal of Photochemistry and Photobiology A:Chemistry,2008,199(1):64-72.
    [155]Karuppiah Murugan, Tata N. Rao, Ashutosh S. Gandhi, et al. Effect of aggregation of methylene blue dye on TiO2 surface in self-cleaning studies. Catalysis Communications,2010,11(6):518-521.
    [156]J.O. Carneiro, V. Teixeira, A. Portinha, et al. Iron-doped photocatalytic TiO2 sputtered coatings on plastics for self-cleaning applications. Materials Science and Engineering B,2007,138 (2):144-150.
    [157]Kaishu Guan. Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surface & Coatings Technology,2005, 191(2-3):155-160.
    [158]宋晨路,刘军波,翁伟浩,等.常压化学气相沉积法制备氟掺杂TiO2自清洁薄膜.硅酸盐学报,2010,38(1):58-63.
    [159]魏建红,赵修建,余家国,等.光催化自洁净玻璃的研制.硅酸盐学报,2001, 29(1):93-96.
    [160]武光明,杨兰,邢光建,等.TiO2薄膜的火焰喷雾热分解法制备与自清洁研究.石油化工高等学校学报.2010,23(2):5-8.
    [161]朱江,武光明,卢凯,等.Ni掺杂TiO2薄膜的甩胶喷雾热分解法制备和自清洁性能的研究.纳米科技,2009,6(3):19-24.
    [162]Kristof Demeestere, Jo Dewulf, Bavo De Witte, et al. Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2. Building and Environment,2008,43(4):406-414.
    [163]L. Bamoulid, M.-T. Maurette, D. De Caro, et al. An efficient protection of stainless steel against corrosion:Combination of a conversion layer and titanium dioxide deposit. Surface & Coatings Technology,2008,202(20):5020-5026.
    [164]周勤,袁笑 .分子印迹技术及其在环境领域的应用.科技通报,2005,21(1):110-114.
    [165]金红华,王娟,张兰,等.分子印迹技术在环境科学领域中的应用.化工环保,2006,26(4):295-298.
    [166]肖华花,刘国光.分子印迹技术在环境领域中的应用研究进展.化学通报,2009,(8):701-706.
    [167]Pauling L. A theory of the structure and process of formation of antibodies. J.Am.Chem.Soc.,1940,62:2643-2657.
    [168]Wulff G, Sarhan A. The use of polymers with enzymeanalogues structures for the resolution of racemates. Angew.Chem.Int.Ed.Engl.,1972,11:341-344.
    [169]Vlatakis G, Andersson L I, Muller R, et al. Drug assay using antibody mimics made by molecular imprinting. Nature,1993,361:645-647.
    [170]Cameron Alexander, Louise Davidson, Wayne Hayes. Imprinted polymers: artificial molecular recognition materials with applications in synthesis and catalysis. Tetrahedron,2003,59(12):2025-2057.
    [171]史瑞雪,郭成海,邹小红,等.分子印迹技术研究进展.化学进展,2002,14(3):182-191
    [172]Takashi Ikegami, Takashi Mukawa, Hiroyuki Nariai, et al. Bisphenol A-recognition polymers prepared by covalent molecular imprinting. Analytica Chimica Acta.,2004,504(1):131-135.
    [173]Beach J. V., Shea K. J.. Designed Catalysts. A Synthetic Network Polymer That Catalyzes the Dehydrofluorination of 4-Fluoro-4-(pnitrophenyl) butan-2-one. J. Am. Chem. Soc.,1994,116(1):379-380.
    [174]Michael J. Whitcombe, M. Esther Rodriguez, Pablo Villar, et al. A New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting:Synthesis and Characterization of Polymeric Receptors for Cholesterol. J. Am. Chem. Soc.,1995,117(27):7105-7111.
    [175]Mizuki Tada, Yasuhiro Iwasawa. Design of molecular-imprinting metal-complex catalysts. Journal of Molecular Catalysis A:Chemical,2003, 199(1-2):115-137.
    [176]姜忠义,吴洪.分子印迹技术[M].化学工业出版社.2003
    [177]S.A. Piletsky. T.L. Panasyuk, E.V. Piletskaya I.A. Nicholls, et al. Receptor and transport properties of imprinted polymer membranes_a review. Journal of Membrane Science,1999,157(2):263-278.
    [178]Ebru Birlik. Adil Denizli. Ridvan Say. Cr(Ⅲ)-imprinted polymeric beads: Sorption and preconcentration studies. Journal of Hazardous Materials,2007. 140(1-2):110-116.
    [179]Koide Y., Senba H., Shosenji H., et al. Selective adsorption of metal ions to surface-templated resins prepared by emulsion polymerization using 10-(p-vinylphenyl)decanoic acid. Bull. Chem. Soc. Jpn,1996,69(1):125-130.
    [180]Xiaoman Jiang, Wei Tian, Chuande Zhao, et al. A novel sol-gel-material prepared by a surface imprinting technique for the selective solid-phase extraction of bisphenol A. Talanta,2007,72(1):119-125.
    [181]Toyoki Kunitake, Seung-Woo Lee. Molecular imprinting in ultrathin titania gel films via surface sol-gel process. Analytica Chimica Acta,2004,504(1):1-6.
    [182]Gong J L, Gong F C, Kuang Y, et al. Capacitive chemical sensor for fenvalerate assay based on electropolymerized molecularly imprinted polymer as the sensitive layer. Anal Bioanal Chem.2004,410(2):302-307.
    [183]Zhao Li, Jianfu Ding, Michael Day, et al. Molecularly Imprinted Polymeric Nanospheres by Diblock Copolymer Self-Assembly. Macromolecules,2006. 39(7):2629-2636
    [184]Mark E. Davis, Alexander Katz, Wayez R. Ahmad. Rational Catalyst Design via Imprinted Nanostructured Materials. Chem. Mater.,1996,8(8):1820-1839.
    [185]Baojiao Gao. Jian Wang, Fuqiang An, et al. Molecular imprinted material prepared by novel surface imprinting technique for selective adsorption of pirimicarb. Polymer,2008,49(5):1230-1238.
    [186]林福华,黄晓佳,袁东星,等.分子印迹聚合物为涂层的吸附萃取搅拌棒在环境水样双酚A含量测定中的应用.色谱,2010,28(5):507-512.
    [187]杨本晓,唐瑾,鲜鸣,等.双酚A分子印迹聚合物的制备及其在环境监测中的应用初探.河南科学,2007,25(6):1047-1051.
    [188]蒋复阳,李建平.利用分子印迹传感器选择性测定绿麦隆.分析测试学报.2010,29(5):469-472.
    [189]刘晓芳,姚冰,刘国艳,等.检测猪肉中地西泮的分子印迹仿生传感器的研制.分析化学,2010,38(5):683-687.
    [190]王颜红,霍佳平,张红,等.阿特拉津分子印迹固相萃取柱的制备及应用.分析化学,2010,38(5):678-682.
    [191]马永飞,曲祥金,艾仕云,等.分子印迹膜电化学传感器检测土壤中莠去津.化学研究与应用,2009,21(5):624-629.
    [192]T. A. Sergeyeva, S. A. Piletsky, A. A. Brovko, et al. Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection. Analytica Chimica Acta,1999, 392(2-3):105-111.
    [193]李峰,王莉,刘国艳,等.基于分子印迹膜的电导型传感器检测牛乳中琥珀酸氯霉素残留.上海交通大学学报(农业科学版),2009,28(6):566-571.
    [194]Rongning Liang, Ruiming Zhang,Wei Qin. Potentiometric sensor based on molecularly imprinted polymer for determination of melamine in milk. Sensors and Actuators B,2009,141(2):544-550.
    [195]Fuqiang An, Baojiao Gao. Adsorption characteristics of Cr(Ⅲ) ionic imprinting polyamine on silica gel surface. Desalination,2009,249(3):1390-1396.
    [196]孙军德,于艳敏,梁启明.稻根霉菌丝体表面印迹吸附剂对Cr6+的吸附特性研究.沈阳农业大学学报,2009,40(1):92-94.
    [197]朱建华,李欣,强亮生.铜(Ⅱ)离子印迹聚合物的制备及性能.高等学校化学学报,2006,27(10):1853-1855.
    [198]赖晓绮,杨远奇,薛珺.钇(Ⅲ)离子印迹聚合物的制备及性能研究.化学学报,2009,67(8):863-868.
    [199]Qiang Li, Haijia Su, Jia Li, et al. Studies of adsorption for heavy metal ions and degradation of methyl orange based on the surface of ion-imprinted adsorbent. Process Biochemistry,2007,42(3):379-383.
    [200]Qiang Li, Haijia Su, Tianwei Tan. Synthesis of ion-imprinted chitosan-TiO2 adsorbent and its multi-functional performances. Biochemical Engineering Journal,2008,38(2):212-218.
    [201]Guorun Qu, Sulian Zheng, Yumin Liu,et al. Metal ion mediated synthesis of molecularly imprinted polymers targeting tetracyclines in aqueous samples. Journal of Chromatography B,2009,877(27):3187-3193.
    [202]Feng Li, Ping Du, Wei Chen, et al. Preparation of silica-supported porous sorbent for heavy metal ions removal in wastewater treatment by organic-inorganic hybridization combined with sucrose and polyethylene glycol imprinting. Analytica Chimica Acta,2007,585(2):211-218.
    [203]Wenhui Zhao, Na Sheng, Rong Zhu. et al. Preparation of dummy template imprinted polymers at surface of silica microparticles for the selective extraction of trace bisphenol A from water samples. Journal of Hazardous Materials,2010, 179(1-3):223-229.
    [204]Ying Li, Xin Li, Yuqi Li, et al. Selective removal of 2,4-dichlorophenol from contaminated water using non-covalent imprinted microspheres. Environmental Pollution,2009,157(6):1879-1885.
    [205]Deman Han, Wenping Jia, Huading Liang. Selective removal of 2,4-dichlorophenoxyacetic acid from water by molecularly-imprinted amino-functionalized silica gel sorbent. Journal of Environmental Sciences,2010, 22(2):237-241.
    [206]Ying Li, Xin Li, Jia Chu, et al. Synthesis of core-shell magnetic molecular imprinted polymer by the surface RAFT polymerization for the fast and selective removal of endocrine disrupting chemicals from aqueous solutions. Environmental Pollution,2010,158(6):2317-2323.
    [207]Xiantao Shen, Lihua Zhu, Guoxia Liu, et al. Enhanced Photocatalytic Degradation and Selective Removal of Nitrophenols by Using Surface Molecular Imprinted Titania. Environ. Sci. Technol.,2008,42(5):1687-1692.
    [208]Xiantao Shen, Lihua Zhu, Jing Li et al. Synthesis of molecular imprinted polymer coated photocatalysts with high selectivity. Chem. Commun.,2007, (11):1163-1165.
    [209]Na Lu. Shuo Chen, Hongtao Wang, et al. Synthesis of molecular imprinted polymer modified TiO2 nanotube array electrode and their photoelectrocatalytic activity. Journal of Solid State Chemistry,2008,181(10):2852-2858.
    [210]Dovrat Sharabi, Yaron Paz. Preferential photodegradation of contaminants by molecular imprinting on titanium dioxide. Applied Catalysis B:Environmental, 2010,95(1-2):169-178.
    [211]Gustavo E.I, Horacio A.I, Orlando M.A, et al. Scaling-up from first principles of a photocatalytic reactor for air pollution remediation. Chem. Eng. Sci.,2007, 62(3):793-804.
    [212]Silvia G., Luis A.G., Karina R, et al. Practical demonstration of water disinfection using TiO2 films and sunlight. Water Res.,2006,40(17):3274-3280.
    [213]Ringo C.W.L, Michael K.H.L, Dennis Y.C.L, et al. Visible-light-assisted photocatalytic degradation of gaseous formaldehyde by parallel-plate reactor coated with Cr ion-implanted TiO2 thin film. Solar Energy Materials and Solar Cells,2007,91(1):54-61.
    [214]Macedo L.C, Zaia D.o A.M, Moore G.J. et al. Degradation of leather dye on TiO2:A study of applied experimental parametersn photoelectrocatalysis. J. Photochem. and Photobio. A:Chem,2007,185(1):86-93.
    [215]Fujishima, R Aotn, T Rykd A. Titanium dioxide photocatalysis. J Photochem PhotobiolC:Photochem Rev,2000,1(1):1-21.
    [216]Xu Zhao, Zongwei Li, Yi Chen, et al. Enhancement of photocatalytic degradation of polyethylene plastic with CuPc modified TiO2 photocatalyst under solar light irradiation. Applied Surface Science,2008,254(6):1825-1829.
    [217]Eloise Marais, Rosalyn Klein, Edith Antunes, et al. Photocatalysis of 4-nitrophenol using zinc phthalocyanine complexes. Journal of Molecular Catalysis A:Chemical,2007,261(1):36-42.
    [218]S. Shukla, S. Seal, Z. Rahaman, et al. Electroless copper coating of cenospheres using silver nitrate activator. Materials Letters,2002,57(1):151-156.
    [219]Zeng Aixiang, Xiong Weihaoa, Xu Jian. Electroless Ni-P coating of cenospheres using silver nitrate activator. Surface & Coatings Technology,2005,197(2-3): 142-147.
    [220]S. Shukla, S. Seal, J. Akesson, R. Oder, et al. Study of mechanism of electroless copper coating of fly-ash cenosphere particles. Applied surface science,2001, 181(1-2):35-50.
    [221]Hurum D C, Agrios AG, Gray KA, et al. Probing reaction mechanisms in mixed phase TiO2 by EPR.J Phys Chem B,2003,107(4):4545-4549.
    [222]ZHONG Chao-yang, PAN Hai-bo, GUO Long-fa, et al. Tetrasulfophthalocyaninatozinc-Sensitized Titania Synthesized by a Novel In-situand Self-Assembly Process and Photocatalytic Activity under Visible-Light Irradiation. Spectroscopy and Spectral Analysis,2007,27(11):2329-2332.
    [223]Huihua Deng, Haifang Mao, Zuhong Lu, et al. Influence of molecular aggregation and orientation on the photoelectric properties of tetrasulfonated gallium phthalocyanine self-assembled on a microporous TiO2 electrode. Thin Solid Films,1998,315(1-2):244-250.
    [224]SHEN Qian-Hong, YANG Hui. GAO Ji-Wei. Ambient-temperature Preparation of TiO2 Films with Stable Visible-light Photocatalytic Activity. Chinese Journal of Inorganic Chemistry,2007,23(10):1758-1762.
    [225]A. Mills, S. L. Hunte. An overview of semiconductor photocatalysis, J. Photochem. and Photobiol. A-Chem.,1997,108 (1):1-35.
    [226]C. X. Li, P. W. Huo, Y. S. Yan, et al, Preparation of TiO2/Fly-ash cenospheres photocatalyst and its application of methylene blue degradation combing with the ultrasonic treatment, Int. J. of Mater. Structural Integrity,2008,2(4):375-382.
    [227]S. F. Chen, L. Chen, S. Gao, et al. The preparation of coupled W03/TiO2 photocatalyst by ball milling. Powder Technol.,2005,160(3):198-202.
    [228]J.Y. WANG, Z.H. LIU, R.X. CAI. A New Role for Fe3+in TiO2 Hydrosol: Accelerated Photodegradation of Dyes under Visible Light. Environ. Sci. Technol.,2008.42(15):5759-5764.
    [229]S. Kaur, V. Singh. Visible light induced sonophotocatalytic degradation of Reactive Red dye 198 using dye sensitized TiO2. Ultrason. Sonochem.,2007, 14(5):531-537.
    [230]T. Matsunaga, H. Yamaoka, S. Ohtani, et al. High photocatalytic activity of palladium-deposited mesoporous TiO2/SiO2 fibers. Appl. Catal. A-Gen.,2008, 351(2):231-238.
    [231]C. Hu, Y.Q. Lan, J.H. Qu, et al. Ag/AgBr/TiO2 Visible Light Photocatalyst for Destruction of Azodyes and Bacteria. J. Phys. Chem. B,2006,110(9): 4066-4072.
    [232]M. Andersson, H. Birkedal, N. R. Franklin, et al. Ag/AgCl-Loaded Ordered Mesoporous Anatase for Photocatalysis. Chem. Mater.,2005,17(6):1409-1415.
    [233]Y. Z. Li, H. Zhang,Z. M. Guo, et al. Highly Efficient Visible-Light-Induced Photocatalytic Activity of Nanostructured AgI/TiO2 Photocatalyst. Langmuir, 2008,24(15):8351-8357.
    [234]Li Chunxiang, Huo Pengwei, Li Songtian, et al. Enhancement of photocatalytic degradation of methylene blue in surfactant/ceriurm(Ⅲ)-titanium dioxide/float pearls aqueous dispersions. International Journal of Materials and Product Technology,2010,39(3-4):330-338,
    [235]P. W. Huo, Y. S. Yan, S. T. et al. Preparation and characterization of Cobalt Sulfophthalocyanine/TiO2/fly-ash cenospheres photocatalyst and study on degradation activity under visible light. Appl. Surf. Sci.,2009,255(15): 6914-6917.
    [236]S. B. WANG. Application of Solid Ash Based Catalysts in Heterogeneous Catalysis. Environ. Sci. Technol.,2008,42(19):7055-7063.
    [237]M. Nair, Z. H. Luo, A. Heller. Rates of Photocatalytic Oxidation of Crude Oil on Salt Water on Buoyant, Cenosphere-Attached Titanium Dioxide. Ind. Eng. Chem. Res.,1993,32(10):2318-2323.
    [238]M. Koopman, K. K. Chawla,W. Ricci, et al. Titania-coated glass microballoons and cenospheres for environmental applications. J. Mater. Sci.,2009,44(6): 1435-1441.
    [239]H. Xu, H. M. Li, C. D. Wu, et al. Preparation, characterization and photocatalytic activity of transition metal-loaded BiVO4. Mater. Sci. Eng. B, 2008,147(1):52-56.
    [240]H.X. LI, X.Y. ZHUANG, Y.Y. HUO, et al. Supercritical Preparation of a Highly Active S-Doped TiO2 Photocatalyst for Methylene Blue Mineralization. Environ. Sci. Technol.,2007,41 (12):4410-4414.
    [241]T. Watanabe, T. Takirawa, K. Honda. Photocatalysis through Excitation of Adsorbates.1. Highly Efficient N-Deethylation of Rhodamine B Adsorbed to CdS. J. Phys. Chem.,1977,81(19):1845-1851.
    [242]J. Yang, H.Z. Bai, Q. Jiang, et al. Visible-light photocatalysis in nitrogen-carbon-doped TiO2 films obtained by heating TiO2 gel-film in an ionized N2 gas. Thin Solid Films,2008,516(8):1736-1742.
    [243]M. Wark, J. Tschirch, O. Bartels, et al. Photocatalytic activity of hydrophobized mesoporous thin films of TiO2. Micropo. Mesopo. Mater.,2005,84(1-3): 247-253.
    [244]Y.H. Ao, J.J. Xu, D.G. Fu, et al. A simple method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light. J. Hazard. Mater.,2009,167(1-3):413-417.
    [245]X.F. Li, K. Lv, K.J. Deng, et al. Synthesis and characterization of ZnO and TiO2 hollow spheres with enhanced photoreactivity. Mater. Sci. Eng. B,2009, 158(1-3):40-47.
    [246]N. Arconada, A. Duran, S. Suarez, et al. Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol-gel. Appl. Catal. B-Environ.,2009,86(1-2):1-7.
    [247]X.Z. Li, C.C. Chen, J.C. Zhao. Mechanism of Photodecomposition of H2O2 on TiO2 Surfaces under Visible Light Irradiation, Langmuir,2001,17(13): 4118-4122.
    [248]A. M.T. Silva, E. Nouli, N. P. Xekoukoulotakis, et al. Effect of key operating parameters on phenols degradation during H2O2-assisted TiO2 photocatalytic treatment of simulated and actual olive mill wastewaters. Appl. Catal. B-Environ.. 2007.73(1-2):11-22.
    [249]E. S. Elmolla. M. Chaudhuri. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/T1O2 photocatalysis. Desalination,2010,252(1-3):46-52.
    [250]N. Quici, M. E. Morgada, R. T. Gettar, et al. Photocatalytic degradation of citric acid under different conditions:TiO2 heterogeneous photocatalysis against homogeneous photolytic processes promoted by Fe(Ⅲ) and H2O2. Appl. Catal. B-Environ.,2007,71(3-4):117-124.
    [251]J. Zou, J.C. Gao, Y. Wang. Synthesis of highly active H2O2-sensitized sulfated titania nanoparticles with a response to visible light. J. Photochem. Photobiol. A: Chem.,2009,202(2-3):128-135.
    [252]G.L. Yan, J. Chen, Z.Z. Hua. Roles of H2O2 and OH·radical in bactericidal action of immobilized TiO2 thin-film reactor:An ESR study. J. Photochem. Photobio. A-Chem..2009,207(2-3):153-159.
    [253]J.M. Xie, X.M. Lv, M. Chen, et al. The synthesis, characterization and photocatalytic activity of V(Ⅴ), Pb(Ⅱ), Ag(Ⅰ) and Co(Ⅱ)-doped Bi2O3. Dye Pigment,2008.77(1):43-47.
    [254]H. Yamashita, Y. Ichihashi, S.G. Zhang, et al. Photocatalytic decomposition of NO at 275 K on titanium oxide catalysts anchored within zeolite cavities and framework. Appl. Surf. Sci.,1997.121/122:305-309.
    [255]X. Z. Li, F. B. Li. Study of Au/Au3+-TiO2 Photocatalysts toward Visible Photooxidation for Water and Wastewater Treatment. Environ. Sci. Technol., 2001,35(11):2381-2387.
    [256]J.G. Yu, H.G. Yu, B. Cheng, et al. The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition. J. Phys. Chem. B,2003,107(50):13871-13879.
    [257]F.B. Li, X.Z. Li. Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment, Appl. Catal. A-Gen.,2002,228(1-2):15-27.
    [258]N. Masahashi, M. Oku. Superhydrophilicity and XPS study of boron-doped TiO2. Appl. Surf. Sci.,2008,254(21):7056-7060.
    [259]D. Zhao, C.C. Chen, C.L. Yu, et al. Photoinduced Electron Storage in WO3/TiO2 Nanohybrid Material in the Presence of Oxygen and Postirradiated Reduction of Heavy Metal Ions. J. Phys. Chem. C,2009,113(30):13160-13165.
    [260]Y. Wang, Y. Wang, Y.L. Meng, et al. A Highly Efficient Visible-Light-Activated Photocatalyst Based on Bismuth-and Sulfur-Codoped TiO2. J. Phys. Chem. C, 2008,112(17):6620-6626.
    [261]F. Baquero, J. L. Martinez, R. Canton. Antibiotics and antibiotic resistance in water environments. Curr. Opin. in Biotechnol.,2008,19(3):260-265.
    [262]S. J. Jiao, S. R. Zheng, D. Q. Yin, et al. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria. Chemosphere,2008, 73(3):377-382.
    [263]A. J. Watkinson, E. J. Murby, S. D. Costanzo. Removal of antibiotics in conventional and advanced wastewater treatment:Implications for environmental discharge and wastewater recycling. Water Res.,2007,41(18):4164-4176.
    [264]R. Hirsch, T. A. Ternes, K. Haberer, et al. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ.,1999,225(1-2):109-118.
    [265]C. Carlesi Jara, D. Fino, V. Specchia, et al. Electrochemical removal of antibiotics from wastewaters. Appl. Catal. B:Environ.,2007,70(1-4):479-487.
    [266]A. Wolters, M. Steddens. Photodegradation of Antibiotics on Soil Surfaces: Laboratory Studies on Sulfadiazine in an Ozone-Controlled Environment. Environ. Sci. Technol.,2005,39(16):6071-6078.
    [267]S. Thiele-Bruhn. Pharmaceutical antibiotic compounds in soils a review. J. Plant Nutr. Soil Sci.,2003,166(2):145-167.
    [268]S. Thiele-Bruhn, M. O. Aust. Effects of pig slurry on the sorption of sulfonamide antibiotics in soil. Arch. Environ. Contam. Toxicol.,2004,47(1): 31-39.
    [269]J. Tolls. Sorption of veterinary Pharmaceuticals in soils:a review. Environ. Sci. Technol.,2001,35(17):3397-3406.
    [270]A. B. A. Boxall, P. Blackwell, R. Cavallo, et al. The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol. Lett.,2002,131(1-2):19-28.
    [271]M. N. Abellan, B. Bayarri, J. Gimenez, et al. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl. Catal. B:Environ.,2007, 74(3-4):233-241.
    [272]G. Yu, J. Gao, J. C. Hummelen, et al. Polymer photovoltaic cells:Enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Sci.,1995, 270(5243):1789-1791.
    [273]H. C. Liang, X. Z. Li. Visible-induced photocatalytic reactivity of polymer-sensitized titania nanotube films. Appl. Catal. B:Environ.,2009,86 (1-2):8-17.
    [274]A. Pron, P. Rannou. Processible conjugated polymers:from organic semiconductors to organic metals and superconductors. Prog. Polym. Sci.,2002, 27(1):135-190.
    [275]H. Zhang, R. L. Zong, J. C. Zhao, et al. Dramatic Visible Photocatalytic Degradation Performances Due to Synergetic Effect of TiO2 with PANI. Environ. Sci. Technol.,2008,42(10):3803-3807.
    [276]P. K. Rohatgi, J. K. Kim, N. Gupta, et al. Compressive characteristics of A356/fly ash cenosphere composites synthesized by pressure infiltration technique, Compos. Part A:Appl. Sci. Manuf.,2006,37(3):430-437.
    [277]L.Wu, J. Luo, Z. Lin. Spectroelectrochemical studies of poly-o-phenylenediamine, part 1, in situ resonance raman spectroscopy. J. Electroanal. Chem.,1996,417(1-2):53-58.
    [278]L.Wu. J. Luo, Z. Lin. Spectroelectrochemical studies of poly-o-phenylenediamine, part 2, in situ UV-vis subtractive reflectance spectroscopy. J. Electroanal. Chem.,1997,440(1-2):173-182.
    [279]Wenbo Yue, Xiaoxiang Xu. John T. S. Irvine, et al. Mesoporous Monocrystalline TiO2 and Its Solid-State Electrochemical Properties. Chem. Mater.,2009,21(12):2540-2546.
    [280]Thammanoon Sreethawong. SusumuYoshikawa. Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous TiO2 prepared by single-step sol-gel processwith surfactant template. Int. J. Hydrogen Energ., 2006,31(6):786-796.
    [281]Trong On D, Desplantier-Giscard D, Danumah C, et al. Perspectives in catalytic applications of mesostructured materials. Appl. Catal. A:Gen,2001, 222(1):299-357.
    [282]Wee Yong Gan, Huijun Zhao, Rose Amal. Photoelectrocatalytic activity of mesoporous TiO2 thin film electrodes. Appl. Catal. A:Gen,2009,354(1-2):8-16.
    [283]M.A. Zanjanchi, H. Golmojdeh, M. Arvand. Enhanced adsorptive and photocatalytic achievements in removal of methylene blue by incorporating tungstophosphoric acid-TiO2 into MCM-41. J. Hazard. Mater.,2009,169 (1-3): 233-239.
    [284]Yong Zhao, Xintong Zhang, Jin Zhai, et al. Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films. Appl. Catal. B:Environ.,2008,83 (1-2):24-29.
    [285]Xu Zhao, Manhong Liu, Yongfa Zhu. Fabrication of porous TiO2 film via hydrothermal method and its photocatalytic performances. Thin Solid Films, 2007,515(18)7127-7134.
    [286]Yongjun Chen, Dionysios D. Dionysiou. A comparative study on physicochemical properties and photocatalytic behavior of macroporous TiO2-P25 composite films and macroporous TiO2 films coated on stainless steel substrate. Appl. Catal. A:Gen,2007,317(1):129-137.
    [287]Alysson A.C. Magalhaes, Diego LuizNunes, Patricia A. Robles-Dutenhefner, et al. Catalytic activity of porous TiO2 obtained by sol-gel process in the degradation of phenol. J. Non-Cryst. Solids,2004,348:185-189.
    [288]Xingtao Jia, Wen He, Wei Yang, et al. Nanomorphological anatase TiO2:From spongy network to porous nanoparticles. Mater. Lett.,2008,62(12-13):1896-1898.
    [289]Qianhong Shen, Hui Yang, Jiwei Gao, et al. Low-temperature fabrication of porous anatase TiO2 film with tiny slots and its photocatalytic activity. Mater. Lett.,2007,61(19-20):4160-4162.
    [290]Chih-Chieh Chan, Chung-Chieh Chang,Wen-Chia Hsu, et al. Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films. Chem. Eng. J.2009,152 (2-3):492-497.
    [291]G. Yu, J. Gao, J.C. Hummelen, et al. Polymer Photovoltaic Cells:Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science, 1995,270(5243):1789-1791.
    [292]Pengwei Huo, Yongsheng Yan, Songtian Li, et al. Preparation of poly-o-phenylenediamine/TiO2/fly-ash cenospheres and its photo-degradation property on antibiotics. Appl. Surf. Sci.,2010,256(11):3380-3385.
    [293]X.Y. Li, D.S.Wang, G.X. Cheng, et al. Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Appl. Catal. B:Environ.,2008,81(3-4):267-273.
    [294]Paulina Gorska, Adriana Zaleska, Ewa Kowalska, et al. TiO2 photoactivity in vis and UV light:The influence of calcination temperature and surface properties. Applied Catalysis B:Environmental,2008,84(3-4):440-447.
    [295]D. Z. Li, Z. X. Chen, Y. L. Chen, et al. A New Route for Degradation of Volatile Organic Compounds under Visible Light:Using the Bifunctional Photocatalyst Pt/TiO2-xNx in H2-O2 Atmosphere. Environ. Sci. Technol.,2008,42(6): 2130-2135.
    [296]M. Tsuchiya, S. K.R.S. Sankaranarayanan, S. Ramanathan. Photon-assisted oxidation and oxide thin film synthesis:A review. Prog. Mater. Sci.,2009,54(7): 981-1057.
    [297]D. Zhao, C. C. Chen, Y. F. Wang, et al. Surface Modification of TiO2 by Phosphate:Effect on Photocatalytic Activity and Mechanism Implication. J. Phys. Chem. C,2008,112(15):5993-6001.
    [298]T. Mahmood, C. C. Chen, L. L. Liu, et al. Effect of dye-metal complexation on photocatalytic decomposition of the dyes on TiO2 under visible irradiation. J. Environ. Sci.,2009,21(2):263-267.
    [299]Y. Yao, G. H. Li, S. Ciston, et al. Photoreactive TiO2/Carbon Nanotube Composites:Synthesis and Reactivity. Environ. Sci. Technol.,2008,42(13): 4952-4957.
    [300]C. Y. Sun, D. Zhao, C. C. Chen, et al. TiO2-Mediated Photocatalytic Debromination of Decabromodiphenyl Ether:Kinetics and Intermediates. Environ. Sci. Technol.,2009,43(1):157-162.
    [301]C. D. Valentin, E. Finazzi, G. Pacchioni, et al. N-doped TiO2:Theory and experiment. Chem. Phys.,2007.339(1-3):44-56.
    [302]M. Iwasaki, M. Hara, H. Kawada, et al. Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light. J. Coll. Interf. Sci.,2000.224(1):202-204.
    [303]T. Han, T. X. Fan, S. K. Chow, et al. Biogenic N-P-codoped TiO2:Synthesis, characterization and photocatalytic properties. Bioresource Technol.,2010, 101(17):6829-6835.
    [304]Y. Huang, W. K. Ho, Z. H. Ai, et al. Aerosol-assisted flow synthesis of B-doped, Ni-doped and B-Ni-codoped TiO2 solid and hollow microspheres for photocatalytic removal of NO. Appl. Catal. B-Environ.,2009,89(3-4):398-405.
    [305]D. B. Hamal, K. J. Klabunde. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. J. Coll. Interf. Sci.,2007,311(2):514-522.
    [306]F. Dong, H. Q. Wang, Z. B. Wu, et al. Marked enhancement of photocatalytic activity and photochemical stability of N-doped TiO2 nanocrystals by Fe3+/Fe2+ surface modification. J. Coll. Interf. Sci.,2010,343(1):200-208.
    [307]Y. F. Wang, W. H. Ma, C. C. Chen, et al. Fe3+/Fe2+cycling promoted by Ta3N5 under visible irradiation in Fenton degradation of organic pollutants. Appl. Catal. B-Environ.,2007,75(3-4):256-263.
    [308]Y. Sasaki, A. Iwase, H. Kato, et al. The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+electron mediator on overall water splitting under visible light irradiation. J. Catal.,2008,259(1):133-137.
    [309]G. Cirillo, F. Puoci, M. Curcio, et al. Molecular imprinting polymerization by Fenton reaction. Colloid Polym. Sci.,2010,288(6):689-693.
    [310]C. L. Choi, M. Park, D. H. Lee, et al. Salt-Thermal Zeolitization of Fly Ash. Environ. Sci. Technol.,2001,35(13):2812-2816.
    [311]R. E. Bickelhaupt. Volume Resistivity-Fly Ash Composition Relationship. Environ. Sci. Technol.,1975,9(4):336-342.
    [312]M. Ahmamzzaman. A review on the utilization of fly ash. Prog. Energ. Combust.,2010,36(3):327-363.
    [313]M. Nair, Z. H. Luo, A. Heller. Rates of Photocatalytic Oxidation of Crude Oil on Salt Water on Buoyant, Cenosphere-Attached Titanium Dioxide. Ind. Eng. Chem. Res.,1993,32(10):2318-2323.
    [314]K. Kummerer. Antibiotics in the aquatic environment-A review-Part I. Chemosphere,2009,75(4):417-434.
    [315]B. D. Witte, H. V. Langenhove, K. Demeestere, et al. Ciprofloxacin ozonation in hospital wastewater treatment plant effluent:Effect of pH and H2O2. Chemosphere,2010,78(9):1142-1147.
    [316]M. Skoumal, P. L. Cabot, F. Centellas, et al. Mineralization of paracetamol by ozonation catalyzed with Fe2+, Cu2+and UVA light. Appl. Catal. B-Environ., 2006,66(3-4):228-240.
    [317]I. R. Bautitz, R. F. P. Nogueira. Photodegradation of lincomycin and diazepam in sewage treatment plant effluent by photo-Fenton process. Catal. Today,2010, 151(1-2):94-99.
    [318]D. Klauson, J. Babkina, K. Stepanova, et al. Aqueous photocatalytic oxidation of amoxicillin. Catal Today,2010,151(1-2):39-45.
    [319]P. W. Huo, Y. S. Yan, S. T. Li, et al. Preparation of poly-o-phenylenediamine/TiO2/fly-ash cenospheres and its photo-degradation property on antibiotics. Appl. Surf. Sci.,2010,256(11):3380-3385.
    [320]D. Zhao, C. C. Chen, C. L. Yu, et al. Photoinduced Electron Storage in WO3/TiO2 Nanohybrid Material in the Presence of Oxygen and Postirradiated Reduction of Heavy Metal Ions. J.Phys. Chem. C,2009,113(30):13160-13165.
    [321]Gobel A., Thomsen A., McArdell C.S., et al. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environmental Science & Technology,2005,39(11):3981-3989.
    [322]Tibirica G. Vasconcelos, Danielle M. Henriques, Armin Konig, et al. Photo-degradation of the antimicrobial ciprofloxacin at high pH:Identification and biodegradability assessment of the primary by-products. Chemosphere,2009, 76(4):487-493.
    [323]L. Elsellami, V. Chartron, F. Vocanson, et al. Coupling process between solid-liquid extraction of amino acids by calixarenes and photocatalytic degradation. Journal of Hazardous Materials,2009,166(2-3):1195-1200.
    [324]R. Palominos, J. Freer, M.A. Mondaca, et al. Evidence for hole participation during the photocatalytic oxidation of the antibiotic flumequine. Journal of photochemistry and photobiology A:Chemistry,2008,193(2-3):139-145.
    [325]J. Arana, J. A. Herrera Melian, J. M. Dona Rodriguez, et al. TiO2-photocatalysis as a tertiary treatment of naturally treated wastewater. Catalysis Today,2002,76 (2):279-289.
    [326]Sudeshna Ghosh-Mukerji. Hossam Haick, Yaron Paz. Controlled mass transport as a means for obtaining selective photocatalysis. Journal of Photochemistry and Photobiology A:Chemistry,2003,160(1-2):77-85.
    [327]Baojiao Gao, Jinhua Lu, Zhiping Chen, et al. Preparation and recognition performance of cholic acid-imprinted material prepared with novel surface-imprinting technique. Polymer,2009,50(14):3275-3284.
    [328]Xiantao Shen, Lihua Zhu, Guoxia Liu, et al. Enhanced Photocatalytic Degradation and Selective Remova of Nitrophenols by Using Surface Molecular Imprinted Titania. Environ. Sci. Technol.,2008,42(5):1687-1692.
    [329]Xiantao Shen,Lihua Zhu,Hongwei Yu,et al. Selective photocatalysis on molecular imprinted TiO2 thin films prepared via an improved liquid phase deposition method. New J. Chem.,2009,33:1673-1679.
    [330]Xiantao Shen,Lihua Zhu,Hongwei Yu, et al. Photocatalytic removal of pentachlorophenol by means of an enzyme-like molecular imprinted photocatalyst and inhibition of the generation of highly toxic intermediates. New J. Chem.,2009,33(11):2278-2285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700