CaB_6和SrB_6晶体的生长与物理性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱土金属的六硼化物是一类很重要的物质,它们具有高熔点、高强度和化学稳定性高的特点,其中许多还具有特殊的功能性,如:低的电子功函数、比电阻恒定、在一定温度范围内热膨胀值为零、不同类型的磁序以及高的中子吸收系数等。这些优越性能决定其在现代科学技术中有着广泛的应用。
     在我们的研究工作中,采用固相烧结法制备得到了CaB_6和SrB_6多晶样品。电阻率的测量表明CaB_6多晶体具有半金属的导电性质,霍尔系数的测量给出了CaB_6多晶体在室温下的载流子密度为6.82×10~(18)electron cm-3。利用德拜和爱因斯坦组合的模型模拟了CaB_6的热容,与实验结果吻合得很好。
     采用高温高压法制备了CaB_6和SrB_6单晶,利用X射线衍射表征了样品的结构,表明晶体的空间群为Pm-3m,晶格常数分别为a=4.159(CaB_6)和4.1975(SrB_6)。利用扫描电子显微镜观察了晶体的形貌,合成的晶体主要有三种形状:棒状,片状和块状。基于实验结果分析了CaB_6单晶的生长机理。通过电阻率的测量表明CaB_6和SrB_6单晶具有半金属的导电性质。通过第一性原理计算,证实了CaB_6和SrB_6单晶具有半金属的导电性质并分析了其导电机理。霍尔系数的测量给出了CaB_6和SrB_6单晶在室温下的载流子密度为6.32×10~(18)electron cm-3和7×10~(18)electroncm-3。通过磁性测量表明CaB_6具有顺磁性,SrB_6具有抗磁性。利用德拜和爱因斯坦组合的模型模拟了CaB_6和SrB_6的热容,与实验结果吻合得很好。
     采用高温高压法制备了Mn掺杂CaB_6单晶。利用X射线衍射表征了样品的结构,与未掺杂的样品比较,发现随着Mn掺杂量的增加,晶格常数逐渐变小。通过磁电阻率的测量发现随着掺杂量的增加,导电性质由半金属转变为半导体。采用了四引线法测量了Mn掺杂CaB_6单晶的霍尔电阻率,并根据霍尔电阻率计算得到了Mn掺杂CaB_6单晶的霍尔系数。在2~300K的温度区间内,Mn掺杂CaB_6单晶的霍尔系数RH随着温度的降低而单调增大。负的霍尔系数表明Mn掺杂CaB_6单晶全部是N型半导体。通过磁性测量表明:同未掺杂的样品比较,掺杂之后的样品产生了弱铁磁性,随着Mn掺杂量的增加,样品的矫顽力和饱和磁矩逐渐变大。Mn掺杂CaB_6单晶的热容小于CaB_6,且随着温度的上升而单调增大;利用德拜和爱因斯坦组合的模型模拟了Mn掺杂CaB_6单晶的热容与温度的关系,与实验结果吻合得很好,拟合结果表明:随着Mn含量的增加,晶体的电子热容系数(γ)逐渐增大,德拜温度(TD)增加逐渐降低,爱因斯坦温度(T_E)几乎不变。
     采用高温高压法成功制备了Mg掺杂CaB_6单晶,样品的X射线衍射分析结果发现:随着Mg掺杂量的增加,晶体的晶格常数逐渐变小。电阻率测量表明:Mg掺杂CaB_6单晶在温度区间2~27K内具有半导体的导电性质,而在温度区间27~300K表现为半金属的导电性质,且随着Mg掺杂量的增加,电阻率逐渐增大。采用了四引线法测量了Ca_0.94Mg_0.06B_6单晶的霍尔电阻率,Ca_0.94Mg_0.06B_6单晶的霍尔电阻率随着温度的升高而增大,霍尔测量结果表明Ca_0.94Mg_0.06B_6内的多数载流子是电子。Mg掺杂CaB_6单晶的热容随着温度的上升而增大,但小于纯CaB_6晶体的热容。德拜和爱因斯坦组合模型计算的Mg掺杂CaB_6单晶热容随温度的变化规律与实验结果吻合,且随着Mg含量的增加,其电子热容系数(γ)和德拜温度(TD)逐渐增大,爱因斯坦温度(T_E)略有增加。
Alkaline-earth metal hexaborides are a class of important materials. They are wellknown for high melting temperature, high hardness, and low coefficient of thermalconductivity. These excellent properties make them widely used in various fields.
     In our work, we adopt solid-state reaction method to prepare the CaB_6and SrB_6polycrystals. Resistivity measurements showed that the CaB_6polycrystals obtained have atypical semi-metal electron conductive behavior. The Hall-coefficient measurementsshowed that the majority carriers in the obtained CaB_6polycrystals are electrons withcarrier density of6.82×10~(18)electron cm-3at room temperature. The Heat Capacity of CaB_6polycrystals is well described by Debye and Einstein combined Model.
     High quality CaB_6and SrB_6single crystals were successfully synthesized under highpressure and temperature. They possesses cubic structure with a=4.159and4.1975,which has been characterized by XRD. The morphology of single crystals was observedby FESEM. Three kinds of shapes were observed: rods, plate-like rectangular blocks, andcubes. Based on the results of the studies, we analyse the mechanism of crystal growth.Resistivity measurements show that the CaB_6and SrB_6single crystals have a typical semi-metal electron conductive behavior. The first principles calculations confirm theexperimentally observed conducting behavior of the CaB_6and SrB_6single crystals. TheHall measurements showed that the majority carriers in the obtained CaB_6and SrB_6singlecrystals are electrons. The carrier densities are6.32×10~(18)electron cm-3and7×10~(18)electron cm-3at room temperature, respectively. The magnetization measurement showsthat CaB_6is paramagnetic and SrB_6is diamagnetic. The Heat Capacities of CaB_6and SrB_6are well described by Debye and Einstein combined Model.
     Mn-doped CaB_6single crystals were successfully obtained by means of high pressureand temperature technique. The crystal structure has been characterized by XRD.Compared with the undoped sample, the structure parameters of Mn-doped CaB_6singlecrystals decrease with the increase of the doping concentration. Magnetoresistivitymeasurements show that the samples transform from semi-metal into semiconductor withthe increase of the doping concentration. We measured the sample Hall coefficient using a four-wire method. The results show that the Mn-doped CaB_6single crystals are N-typesemiconductor. The magnetization measurement shows that the Mn-doped CaB_6sampleshave a weak ferromagnetic. The coercivity and saturation magnetic moment increase withthe increases of the doping concentration. The Heat Capacity of Mn-doped CaB_6is welldescribed by Debye and Einstein combined Model. The coefficient of electronic heatcapacity for normal state increases gradually with increases of the doping concentration,and the Debye temperature decreases gradually. The Einstein temperature is nearlyunchanged with the change of the doping concentration
     Mg-doped CaB_6single crystals were successfully prepared under high pressure andtemperature. The crystal structure parameters decrease with the increase of the Mg dopingconcentration. Resistivity measurements show that the Mg-doped samples aresemiconductor in the2~27K temperature range and have typical semi-metal electronconductive behavior in the27~300K temperature range. The resistivity increases graduallywith the increases of the Mg doping concentration. The Hall coefficient measurementsshow that the majority carriers in the Ca0.93Mg0.07B_6single crystals obtained is electrons.By means of Debye and Einstein combined Model, we well described the Heat Capacitiesof Mg-doped CaB_6. The results show that the coefficient of electronic heat capacity andthe Debye temperature increases gradually with increases of the Mg doping concentration,and the Einstein temperature are nearly unchanged.
引文
1T. TAKAHO, B. EISUKE, K. SHICHIO. Preparation of EuB6single crystal. J. Cryst. Growth,1977,40(1):125-128
    2K. TAKAHASHI, S. KUNII. Single crystal growth and properties of incongruently melting TbB6,DyB6, HoB6, YB6. J. Solid State Chem.,1997,133(1):198-200
    3I. BAT’KO, M. BAT’KOV, K. FLACHBART et al. Electrical rsistivity and superconductivity ofLaB6and LuB12. J. Alloys Compound,1995,217(2): L1-L3
    4T. Tadensz et al.Test on Oxidation-inhibiting Effect of CaB6in Refractory MgO-C Materials. SteelResearch.1994,6(6):234-237
    5S. Matsushita et al. Oxidation of Calcium Boride at High Temperature. J. Mster Syn. Proc.,1998,6(6):407-410
    6V. B. Paderno et al. Effect of Production Procedure on Structure Formation and Fracture of CaB6-TiB2Pseudo-alloy. Poroshk Metall.,1992,10,52-55
    7D. P. Young, D. Hall, M. E. Torelli, Z. Fisk, J. L. Sarrao, J. D. Thompson, H. R. Ott, S. B. Oseroff,R. G. Goodrich and R. Zysler, High-temperature weak ferromagnetism in a low-density free-electron gas. Nature,1999,397(6718):412-41
    8H. R. Ott, J. L. Gavilano, B. Ambrosini, P. Vonlathen, E. Felder, L. Digiorgi, D. P. Young, Z. Fisk,R. Zysler. Unusual magnetism of hexaborides. Physica B: Condensed Matter,2000,281-282(1):423-427
    9L. S. Dorneles, M. Venkatesan, M. Moliner, J. G. Lunney, J. M. D. Coey, Magnetism in thin filmsof CaB6and SrB6. Appl. Phys. Lett.,2010,85,(26):6377-6379
    10M. Li, H. Wang, K. Snoussi, L. Li, W. Yang, C. Gao, Pressure and temperature dependences ofelectronic transport properties in CaB6. J. Appl. Phys.,2010,108(10):103710
    11张青莲,顾学民.无机化学丛书.科学出版社,1990:35-47
    12柯清水, The new century dictionary of chemical engineering and chemistry.正文书局.2000:355-360
    13陈昌明,张立同,硼化物陶瓷及其应用.兵器材料科学与工程,1997,20(002):68-71
    14刘然,薛向欣,姜涛,张淑会,段培宁,杨合,黄大威,硼及其硼化物的应用现状与研究进展.材料导报,2006,20(006):1-4
    15李华,胡国程,超导材料.湖南冶金,2000,(005):44-47
    16张士勇,超导研究与未来超导技术.陕西师范大学学报:自然科学版,2003,31(002):120-122
    17冯勇,闫果,张平祥,周廉,实用化MgB2超导材料研究进展.低温物理学报,2005,27(A02):819-823
    18龚伦军,傅正义,张金咏,苗明清, TiB2基复合材料的研究进展.材料导报,2004,18(F04):293-295
    19章桥新, TiB2的价电子结构及其性能研究.陶瓷学报,2000,21(003):159-161
    20向新,秦岩, TiB2及其复合材料的研究进展.陶瓷学报,1999,20(002):112-117
    21J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu. Superconductivity at39Kin Magnesium Diboride. Nature,2001,410:63-64
    22Z. Fisk, P. H. Schmidt, and L. D. Longinotti. Growth of YB6single crystals. Mater. Res. Bull.1976,
    11(8):1019-1022
    23林志贤,郭太良,场致发射材料的特性.福州大学学报:自然科学版,2000,28(004):22-25
    24蒋学华,场致发射的研究进展.南阳师范学院学报,2003,2(009):33-36
    25李俊涛,雷威,场致发射显示技术研究进展.电子器件,2002,25(004):332-339
    26朱长纯,史永胜,场致发射显示器的现状与发展.真空电子技术,2002,5:15217-15217
    27王本莲,林祖伦,王小菊,曹伟. LaB6场发射阴极阵列的制备工艺研究,电子器件,2009,32(2):277-280
    28周身林,张久兴,刘丹敏.放电等离子固相烧结制备高密度LaB6阴极性能.强激光与粒子束,2010,1:171-175
    29姚剑峰,李季,单晶和多晶LaB6阴极发射性能的实验研究.真空电子技术,2002,(001):1-4
    30王小菊,林祖伦,祁康成,王本莲,蒋亚东,单晶LaB6场发射阵列的电化学腐蚀工艺.强激光与粒子束,2008,20(007):1195-1198
    31朱炳金,陈泽祥,张强,六硼化镧薄膜的制备及发射特性的研究.真空电子技术,2007,5:44-47
    32刘丹敏,周身林,张久兴. LaB6热阴极陶瓷材料的研究进展金帅.功能材料,2007,38(A02):480-483
    33卢庆亮,闵光辉,于化顺. LaB6单晶体制备方法的特点和进展.材料导报,2005,19(9):5-7
    34王汉斌,许州,卢和平,邓仁培,杨肖,甘孔银,金晓,黎明,刘锡三.单晶LaB6热阴极直流发射特性实验研究.强激光与粒子束,2005,17(6):930-934
    35R. Schmitt, B. Blaschkowski, K. Eichele and H. J. Meyer, Calcium Tetraboride-Does It Exist?Synthesis and Properties of a Carbon-Doped Calcium Tetraboride That Is Isotypic with the KnownRare Earth Tetraborides. Inorganic Chemistry,2006,45(7):3067-3073
    36M. B. Yahia, O. Reckeweg, R. g. Gautier, J. Bauer, T. Schleid, J.-F. o. Halet and J.-Y. Saillard, CanUndoped Calcium Tetraborides Exist? An Answer from the Comparison of Its Density FunctionalTheory Electronic Structure with that of Rare-Earth Metal Tetraboride. Inorganic Chemistry,2008,
    47(14):6137-6143
    37孙雅馨, Ca掺杂MgB2和CaB4的高温高压合成及性能研究.秦皇岛燕山大学工学博士论文,2007:54-57
    38A. F. Wells. Structural Inorganic Chemistry. Oxford: Clarendon Press.1984:1055–1056.
    39J. Kang, C. H. Park. First-Principles Study of Defects in CaB6. Journal of the Korean PhysicalSociety,2006,49: S490-S494
    40Z. Lin, M. E. Smith, Probing the local structural environment of calcium by natural-abundancesolid-state43Ca NMR. Phys. Rev. B,2004,69(22):224107
    41S. Yahia, S. Turrell, G. Turrell, J. P. Mercurio. Infrared and Raman spectra of hexaborides: force-field calculations, and isotopic effects. J. Mol. Struct.,1990,224(1-2):303–312.
    42Calcium boride–Dictionary of Inorganic Compounds. Cambridge.1992:173
    43W. S. John. Borides: Solid State Chemistry. Encyclopedia of Inorganic Chemistry. West Sussex,England,1994:205
    44R. M. Adams, Boron, Metallo-Boron, Compounds and Boranes. Interscience Publishers: New York,1964:233.
    45杨丽霞,闵光辉,于化顺,韩建德,王维倜. CaB6陶瓷研究的进展.硅酸盐学报,2003,31(7):687-691
    46R. W. Johnson, A. H. Danne. Electron Requirements of Bonds in Metal Borides, J. Chem. Phys.,1963,38:425-432
    47M. Takeda, T. Fukuda, F. Domingo, T. Miura. Thermoelectric Properties of Some Metal Borides. J.Solid State Chem.,2004,177(2):471-475
    48M. Takeda, M. Terui, N. Takahashi, N. Ueda. Improvement of Thermoelectric Properties ofAlkaline-Earth Hexaborides. J. Solid State Chem.,2006,179(9):2823-2826
    49S. Zheng, G. Min, Z. Zou, H. Yu, J. Han. Synthesis of Calcium Hexaboride Powder via theReaction of Calcium Carbonate with Boron Carbide and Carbon. J. Am. Ceram. Soc.,2001,84:2725-2727
    50S. Otani. Preparation of CaB6Crystals by the Floating Zone Method. J. Cryst. Growth,1998,192(1-2):346-349
    51豆志河,张廷安,侯闯,徐淑香,杨欢,李皇.自蔓延高温合成CaB6的基础研究.中国有色金属学报,2004,14(2):322-326
    52A. K. Uchid, Electrodeposition of CaB6. Surf Technol,1978,7(1):39-44
    53L. Shi, Y. Gu, L. Chen, Z. Yang, J. Ma, Y. Qian. Low Temperature Synthesis and Characterizationof Cubic CaB6Ultrafine Powders. Chem. Lett.,2003,32:958-959
    54S. K. DUTTA. Hot pressing and mechanical properties of calcium hexaboride. USA: ArmyMaterials and Mechanical Research Center,1973,13:7719214
    55V. N. PADERNO et al. Effect of high pressure on the microstructure of sintered polycrystallinecalcium hexaboride cakes. Sov Powder Metall Met Ceram,1985,24(7):543-546
    56S. K. DUTTA. Hot pressing of reaction sintered CaB6. U S Patent4017577,1974-02-15
    57T. T. Xu, J. Zheng, A. W. Nicholls, S. Stankovich, R. D. Piner, R. S. Ruoff. Single-Crystal CalciumHexaboride Nanowires:Synthesis and Characterization. Nano Lett.,2004,4:2051-2055
    58P. Jash, A. W. Nicholls, R. S. Ruoff, and Trenary, Synthesis and Characterizationg of Single-CrystalStrontium Hexaboride Nanowires. Nano Lett.,2008,8:3794-3798
    59J. Xu, Y. Zhao, C. Zou, Q. Ding. Self-catalyst growth of single-crystalline CaB6nanostructures. J.Solid State Chem.,2007,180(9):2577-2580
    60Y. Kato et al. Fabrication of semiconducting SrB6-δthin film on ultraamooth sapphire substrates bylaser molecular beam epitaxy. J. Cryst. Growth,2010,312(3):378-381
    61O. Shigeki. Preparation of CaB6crystals by the floating zone method. J. Cryst. Growth,1998,192:346-349
    62S. Muranaka, S. Kawai. Crystal Growth of Alkaline Earth Hexaborides. J. Cryst. Growth,1974,26(1):165-168
    63H. C. Longuet-Higgins, M. de V. Roberts. The Electronic Structure of the Borides MB6. Proc. R.Soc.,1954,224:336-347
    64S. Floadmark, Ark. Fys.,1955,9:357-376
    65A. Hasegawa and A. Yanase. Electronic Structure of CaB6. J. Phys. C: Solid state Phys.,1979,12:5431-5440
    66S. Massidda, A. Continenza, T. M. de Pascale, R. Monnier. Electronic Structure of DivalentHexaborides. Z. Phys. B,1997,102:83-89
    67H. J. Tromp, P. Van Gelderen, P. J. Kelly, G. Brocks, and P. A. Bobbert. CaB6: A NewSemiconducting Material for Spin Electronics. Phys. Rev. Lett.,2001,87(1):016401
    68Z. Wu, D. J. Singh, and R. E. Cohen. Electronic Structure of Calcium Hexaboride Within theWeighted Density Approximation. Phys. Rev. B,2004,69(19):193105
    69B. Lee, and L.-W. Wang. Electronic Structure of Calcium Hexaborides. Appl. Phys. Lett.,2005,87(26):262509
    70T. Terashima, C. Terakura, Y. Umeda, N. Kimura, H. Aoki, and S. Kunii. Ferromagnetism vsParamagnetism and False Quantum Oscillations in Lanthanum-Doped CaB6. J. Phys. Soc. Jpn.,2000,69:2423-2426
    71T. Morikawa, T. Nishioka, and N. K. Sato. Ferromagnetism Induced by Ca Vacancy in CaB6. J.Phys. Soc. Jpn.2001,70:341-344
    72D. Hall, H. P. Young, Z. Fisk, T. P. Murphy, E. C. Palm, A. Teklu, and R. G. Goodrich. Fermi-Surface Measurements on the Low-Carrier Density Ferromagnet Ca1-xLaxB6and SrB6. Phys. Rev.B,2001,64(23):233105
    73H. R. Ott et al. Structure and Low Temperature Properties of SrB6. Z. Phys. B,1997,102:337-345
    74P. Vonlanthen, E. Felder, L. Degiorgi, H. R. Ott, D. P. Young, A. D. Bianchi, and Z. Fisk. ElectronicTransport and Thermal and Optical Properties of Ca1-xLaxB6. Phys. Rev. B,2000,62(15):10076-10082
    75K. Taniguchi, T. Katsufuji, F. Sakai, H. Ueda, K. Kitazawa, and H. Takagi. Charge Dynamics andPossibility of Ferromagnetism in A1-xLaxB6(A=Ca and Sr). Phys. Rev. B,2002,66(6):064407
    76J. L. Gavilano, S. Mushkolaj, D. Rau, H. R. Ott, A. Bianchi, D. P. Young, and Z. Fisk. AnomalousNMR Spin-Lattice Relaxation in SrB6and Ca1-xLaxB6. Phys. Rev. B,2001,63(14):140410(R)
    77J. D. Denlinger, J. A. Clack, J. W. Allen, G.-H. Gweon, D. M. Poirier, C. G. Olson, J. L. Sarrao, A.D. Bianchi, and Z. Fisk. Bulk Band Gaps in Divalent Hexaborides. Phys. Rev. Lett.,2002,89(15):157601
    78K. Gianno, A. V. Sologubenko, H. R. Ott, A. D. Bianchi, and Z. Fisk. Low-TemperatureThermoelectric Power of CaB6. J. Phys. Condens. Matter,2002,14(5):1035-1043
    79H. R. Ott, M. Chernikov, E. Felder, L. Degiorgi, E. G. Moshopoulou, J. L. Sarrao, Z. Fisk. Structureand low temperature properties of SrB6. Z. Phys. B,1997,102:337
    80J. S. Rhyee, B. K. Cho. The effect of boron purity on electric and magnetic properties of CaB6. J.Appl. Phys.,2004,95(11):6675
    81K. Yagasaki, S. Notsu, Y. Shimoji, T. Nakama, R. Kaji, T. Yokoo, J. Akimitsu, M. Hedo, Y.Uwatoko. Resistivity and thermopower of CaB6single crystal. Physica B: Condensed Matter,2003,329-333:1259-1260
    82M. Cao, J. Jiang, H. Liu, J. Yuan. The Nature of Fe Impurity Phase in Ferromagnetic CaB6. PhysicaB: Condensed Matter,2005,364(1-4):150-156
    83K. Taniguchi, T. Katsufuji, F. Sakai, H. Ueda, K. Kitazawa, H. Takagi, Charge Dynamics andpossibility of Ferromagnetism in A1-xLaxB6(A=Ca and Sr). Phys. Rev. B,2002,66(6):064407
    84S. E. Lofland, B. Seaman, and K. V. Ramanujachary. Defect Driven Magnetism in CalciumHexaboride. Phys. Rev. B,2003,67(2):020410(R)
    85T. Jorlborg. Ferromagnetism below the stoner limit in La-doped SrB6. Phys. Rev. Lett.2000,85(1):186-189.
    86T. Taichi, C.Terakura, Y. Umeda, N. Kimura, H. Aoki, K. Satoru. Ferromagnetism vsParamagnetism and False Quantum Oscillations in Lanthanum-Doped CaB6. J. Phys. Soc. Jpn.,2000,69:2423
    87K. Matsubayashi, M. Maki, T. Moriwaka, T. Tsuzuki, T. Nishioka, C. H. Lee, A. Yamamoto, T.Ohta and N. K. SatoExtrinsic Origin of High-Temperature Ferromagnetism in CaB6. J. Phys. Soc.Jpn.,2003,72:2097-2102
    88T. Moriwaka, T. Nishioka, and N. K. Sato. Ferromagnetism Induced by Ca Vacancy in CaB6. J.Phys. Soc. Jpn.2001,70:341-344
    89Kalobaran Maiti. Role of vacancies and impurities in the ferromagnetism of semiconducting CaB6.Europhys. Lett.,2008,82(6):67006
    90C. Meegoda, M. Trenary, T. Mori, S. Otani, Depth profile of iron in a CaB6crystal, Phys. Rev. B,2003,67(17):172410-172412
    91S. Murakami, R. Shindou, N. Nagaosa, A. S. Mishchenko. Theory of Ferromagnetism in Ca1-xLaxB6. Phys. Rev. Lett.,2002,88(12):126404
    92C. Hotta, H. Fukuyama, and M. Ogata. Possible Ferromagnetism in Divalent Borides Systems.Phys. Rev. B,2002,65(18):184421
    93M. E. Zhitomirsky, T. M. Rice, and V. I. Anisimov. Magnetic Properties Ferromagnetism in theHexaborides. Nature,1999,402:251-253
    94L. Balents, C. M. Varma. Ferromagnetism in Doped Excitonic Insulators. Phys. Rev. Lett.,2000,
    84(6):1264-1267
    95V. Barzykin, L. P. Gorkov. Ferromagnetism and Superstructure in Ca1-xLaxB6. Phys. Rev. Lett.,2000,84(10):2207-2210
    96D. Ceperley. Condensed-Matter Physics Return of the Itinerant Electron. Nature(London),1999,397:386-387
    97G. Ortiz, M. Harris, and P. Ballone. Zero Temperature Phases of the Electron Gas. Phys. Rev. Lett.,1999,82(26):5317-5320
    98S. Souma, H. Komatsu, T. Takahashi, R. Kaji, T. Sasaki, Y. Yokoo, and J. Akimitsu. ElectronicBand Structure and Fermi Surface of CaB6Studied by Angle-Resolved PhotoemissionSpectroscopy. Phys. Rev. Lett.,2003,90(2):027202
    99李克强,赵忠贤,靳常青.高压在高温超导研究中的应用.物理,1998,27(5):269-272
    100熊家炯.材料设计.天津大学出版社,2000:12-16
    101廖沐真,吴国是,刘洪霖.量子化学从头计算方法.北京,清华大学出版社,1984:18-22
    102徐光宪,黎乐民,王德民.第二版.量子化学:基本原理和从头计算法.科学出版社,1989:14-17
    103朱文涛.物理化学.清华大学出版社,1995:16-20
    104R. C. David, H. Juske, B. P. Veniamin, W. V. John, J. S. Michael, W. C. Dorothy. An experimentaland theoretical determination of oxygen isotope fractionation in the system magnetite-H2O from
    300to800°C. Geochimica et Cosmochimica Acta,2004,68:3569-3585
    105S. Jolanta, E. Marco, and F. Zachary. Specific heat of Nd1-xCaxB6single crystals. Phys. Rev. B,2011,83(11):113108
    106B. Wiendlocha, J. Tobola, S. Kaprzyk, and A. Kolodziejczyk. Electronic structure, magnetism, andspin fluctuations in the superconducting weak ferromagnet Y4Co3. Phys. Rev. B,2011,83(9):094408
    107H. Kim, M. A. Tanatar, Yoo Jang Song, Yong Seung Kwon, and R. Prozorov. Nodeless two-gapsuperconducting state in single crystals of the stoichiometric iron pnictide LiFeAs. Phys. Rev. B,2011,83(10):100502(R)
    108S. Soichiro, T. Ichiro, N. Eiji, S. Hiroshi, L. Jenni, Y. Hisao, K. Maarit, Magnetic and transportproperties of the spin-state disordered oxide La0.8Sr0.2Co1-xRhxO3-δ. Phys. Rev. B,2011,83(9):094405
    109J. Huang, L. N. Pfeiffer, and K. W. West. Conductivity kinks in the transport of ultradilute two-dimensional GaAs hole systems in zero field. Phys. Rev. B,2011,83(8):081310(R)
    110A. Aftab, K. C. Rajiv, M. Abhijit. Phonon modes and vibrational entropy of disordered alloys withshort-range order: A first-principles calculation. Phys. Rev. B,2011,83(5):054201
    111H. Wang, A. Charoenphakdee, K. Kurosaki, S. Yamanaka, G. J. Snyder. Reduction of thermalconductivity in PbTe:Tl by alloying with TlSbTe2. Phys. Rev. B,2011,83(2):024303
    112V. G. Karpov, M. I. Klinger and F. N. Ignat’ev, Theory of the low-temperature anomalies in thethermal properties of amorphous structures. Sov. Phys. JETP,1983,57:439-439
    113L. Gil, M. A. Ramos, A. Bringer and U. Buchenau, Low-temperature specific heat and thermalconductivity of glasses. Phys. Rev. Lett.,1993,70(2):182
    114V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A.Gajewski, E. J. Freeman and S. Bennington, Localized vibrational modes in metallic solids. Nature,1998,395(6705):876-878
    115B. B. Laird and H. R. Schober, Localized low-frequency vibrational modes in a simple model glass.Phys. Rev. Lett.,1991,66(5):636-636
    116H. R. Schober and B. B. Laird, Localized low-frequency vibrational modes in glasses. Phys. Rev. B,1991,44(13):6746-6746
    117H. Y. Bai, J. L. Luo, D. Jin and J. R. Sun, Particle size and interfacial effect on the specific heat ofnanocrystalline Fe. J. Appl. Phys.,1996,79(1):361-364
    118W. Gey, W. Eschner and Y. M. Galperin, Low-temperature specific heat of Zr-Rh-Pd metallicglasses. Phys. Rev. B,1993,48(21):15666
    119U. Buchenau, Y. M. Galperin, V. L. Gurevich, D. A. Parshin, M. A. Ramos and H. R. Schober,Interaction of soft modes and sound waves in glasses. Phys. Rev. B,1992,46(5):2798
    120U. Buchenau, M. Prager, N. Nucker, A. J. Dianoux, N. Ahmad and W. A. Phillips, Low-frequencymodes in vitreous silica. Phys. Rev. B,1986,34(8):5665
    121R. C. Zeller and R. O. Pohl, Thermal Conductivity and Specific Heat of Noncrystalline Solids.Phys. Rev. B,1971,4(6):2029
    122U. Mizutani, K. T. Hartwig, T. B. Massalski and R. W. Hopper, Low-Temperature Specific Heats ofGlassy Pd1-x-ySixCuyAlloys. Phys. Rev. Lett.,1978,41(9):661
    123M. B. Tang, H. Y. Bai and W. H. Wang, Tunneling states and localized mode in binary bulkmetallic glass. Phys. Rev. B,2005,72(1):012202
    124O. N. Senkov, D. B. Miracle, V. Keppens and P. K. Liaw, Development and Characterization ofLow-Density Ca-Based Bulk Metallic Glasses: An Overview. Metallurgical and MaterialsTransactions A,2008,39(8):1888-1900
    125M. B. Tang, H. Y. Bai, M. X. Pan, D. Q. Zhao and W. H. Wang. Einstein oscillator in highly-random-packed bulk metallic glass. Appl. Phys. Lett.,2005,86(2):021910-021913
    126T. S. Grigera, V. Martin-Mayor, G. Parisi and P. Verrocchio. Phonon interpretation of the`bosonpeak' in supercooled liquids. Nature,2003,422(6929):289-292
    127F. Sette, M. H. Krisch, C. Masciovecchio, G. Ruocco and G. Monaco. Dynamics of Glasses andGlass-Forming Liquids Studied by Inelastic X-ray Scattering. Science,1998,280(5369):1550-1555
    128B. Frick and D. Richter, The Microscopic Basis of the Glass Transition in Polymers from NeutronScattering Studies. Science,1995,267(5206):1939-1945
    129R. Lortz, Y. Wang, S. Abe, C. Meingast, Y. B. Paderno, V. Filippov and A. Junod, Specific heat,magnetic susceptibility, resistivity and thermal expansion of the superconductor Zr B12. Phys. Rev.B,2005,72(2):024547
    130J. Chatterjee, U. Yu and B. I. Min. Spin-polaron model: Transport properties of EuB6. Phys. Rev. B,2004,69(13):134423
    131R. Lortz, Y. Wang, U. Tutsch, S. Abe, C. Meingast, P. Popovich, W. Knafo, N. Shitsevalova, Y. B.Paderno and A. Junod. Superconductivity mediated by a soft phonon mode: Specific heat,resistivity, thermal expansion, and magnetization of YB6. Phys. Rev. B,(Condensed Matter andMaterials Physics),2006,73(2):024512-024513
    132T. Masatoshi, T. Manabu, T. Norihito, U. Noriyoshi. Improvement of thermoelectric properties ofalkaline-earth hexaborides. J. Solid State Chem.,2006,179(9):2823–2826
    133Z.Y. Liu, X.Y. Han, D.L. Yu, Y.X. Sun, B. Xu, X.F. Zhou, J.L. He, H.T. Wang, Y.J. Tian. Formation,structure, and electric property of CaB4single crystal synthesized under high pressure, Appl. Phys.Lett.,2010,96(3):031903.
    134B. K. Cho, J. S. Rhyee, B. H. Oh, M. H. Jung, H. C. Kim, Y. K. Yoon, J. H. Kim, T. Ekino.Formation of midgap states and ferromagnetism in semiconducting CaB6. Phys. Rev. B,2004,69(11):113202
    135T. Terashima, C. Terakura, Y. Umeda, N. Kimura, H. Aoki, S. Kunii. Ferromagnetism vsParamagnetism and False Quantum Oscillations in Lanthanum-Doped CaB6, J. Phys. Soc. Jpn.2000,69:2423-2426.
    136S. P. Gao, J. Jiang, M. Cao, J. Zhu, and J. Yuan. Unoccupied electronic states in CaB6studied bydensity functional theory and EELS measurements. Phys. Rev. B,2004,69(21):214419
    137N. Ogita, S. Nagai, N. Okamoto, M. Udagawa, F. Iga,M. Sera, J. Akimitsu and S. Kunii. Ramanscattering investigation of RB6(R=Ca, La, Ce, Pr, Sm, Gd, Dy, and Yb). Phys. Rev. B,2003,68(22):224305
    138N. Ogita, S. Nagai, N. Okamoto, F. Iga, S. Kunii, T. Akamtsu, J. Akimitsu, M. Udagawa. Ramanscattering study of CaB6and YbB6. J. Solid State Chem.,2004,177(2):461-465
    139H. R. Ott, M. Chernikov, E. Felder, L. Degiorgi, E. G. Moshopoulou, J. L. Sarrao, Z. Fisk, Z. Phys.B,1997,102:337-345
    140J. S. Rhyee, B. K. Cho. The effect of boron purity on electric and magnetic properties of CaB6. J.Appl. Phys.,2004,95(11):6675-6677
    141S. Massidda, A. Continenza, T.M.D. Pascale, R. Monnier. Electronic structure of divalenthexaborides. Z. Phys. B,1997,102:83-89
    142J. Etourneau, J. P. Mercurio, R. Naslain, P. Hagenmuller. Structure electronique de quelqueshexaborures de type CaB. J. Solid State Chem.1970,2(3):332-342.
    143K. Taniguchi, T. Katsufuji, F. Sakai, H. Ueda, K. Kitazawa, H. Takagi. Charge dynamics andpossibility of ferromagnetism in A1-xLaxB6(A=Ca and Sr). Phys. Rev. B,2002,66(6):064407
    144J. Y. Kim, N. H. Sung, et al. Weak ferromagnetism in single crystalline YbB6. J. Appl. Phys.,2007,
    10(9):09D512
    145M. Futamoto, T. Aita, U. Kawabe. Microhardness of hexaboride single crystals. Mater. Res. Bull.,1979,14(10):1329-1334
    146R. Lortz, Y. Wang, U. Tutsch, S. Abe, C. Meingast, P. Popovich, W. Knafo, N. Shitsevalova, Yu. B.Paderno, and A. Junod. Superconductivity mediated by a soft phonon mode: Specific heat,resistivity, thermal expansion, and magnetization of YB6. Phys. Rev. B,2006,73(2):024512
    147D. Mandrus, B. C. Sales, and R. Jin. Localized vibrational mode analysis of the resistivity andspecific heat of LaB6. Phys. Rev. B,2001,64(1):012302
    148戴永年,二元合金相图集.科学出版社,2009:23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700