基于常压等离子体预处理技术的棉纱生态浆纱技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禁用聚乙烯醇(PVA)等环境污染性浆料,利用淀粉类绿色浆料对棉纱进行上浆是生态浆纱技术的重要研究方向。但是淀粉类浆料单独使用时往往会带来浆膜脆硬、纱线不耐磨、织造时容易断头等问题,极大地影响了织造效率。而棉纤维由于其表面有一层拒水表皮层,使得棉纱不易润湿,浆液向纱线内部渗透困难。并且,随着现代高速浆纱技术的发展,纱线在浆槽内浸浆时间大大缩短,也对浆料的渗透和被覆效果提出了挑战。
     为了克服上述浆料、棉纤维和高速浆纱技术自身特性对棉纱浆纱带来的不利影响,实现利用淀粉类绿色浆料对棉纱(尤其是高支棉纱)进行生态浆纱的目标,本课题重点研究了利用氦气/氧气(He/02)常压等离子体(APP)对棉纱进行预处理,以提高棉纤维表面润湿性和对浆料的粘结性,然后使用含有磷酸酯淀粉和甘油组分的绿色浆料对APP预处理过的纱线进行上浆的生态浆纱技术(Eco-friendly Sizing Technology, EFST)。课题的主要研究内容包括:APP预处理改善原棉纤维表面润湿性和对浆液粘结性的基础理论、棉纤维回潮率(含水率)对APP处理棉纱效果的影响规律、基于APP预处理和绿色浆料使用的EFST生态浆纱技术以及APP浆前预处理对织物前处理及染色性能的影响等。
     首先,本课题研究了APP预处理工艺条件对棉纤维润湿性能的影响。APP不但可以轰击棉纤维表面产生物理溅射和化学刻蚀作用从而破坏纤维的疏水表皮层,而且同时在纤维表面生成自由基,引发等离子体植入官能团反应,在纤维表面植入羟基(C-OH)、羧基(COOH)和羰基(C=O)等极性基团,显著地提高其表面能,增强其润湿性,使其润湿时间从几个小时减小到0.8秒甚至更小,表面接触角从140°左右降低到0°。棉纤维表面粗糙程度和润湿性随着APP处理条件的改变而变化。当其它条件不变,等离子体喷头到纤维之间的距离(Jet to the Substrate Distance, JTSD)从2毫米减小到0.5毫米时,纤维表面粗糙程度逐渐变大;棉纤维润湿时间随着APP处理时间和O2流量的增加而减小,随着JTSD的增大而提高。APP处理后棉织物的润湿性在24小时内没有显著的变化,这主要因为原棉纤维的拒水表皮层已经受到等离子体的刻蚀、氧化而被破坏,表面被植入大量的亲水性基团所造成的。
     其次,本课题研究了APP预处理条件对棉纱与磷酸酯淀粉浆料之间的浆液粘附力及浆纱断裂伸长率的影响。研究结果表明,棉纱浆液粘附力和浆纱断裂伸长率的大小受棉纤维表面粗糙度和润湿性能的重要影响,棉纤维表面越粗糙,润湿性能越好,浆液粘附力和浆纱断裂伸长率越大。这是因为APP对纤维表面的粗糙化改性不但能赋予其“机械锁合效应”,增强浆料对纤维的抱合力,而且还能够增加浆料和纤维表面的有效接触面积,在它们之间产生更多的范德华力;纤维表面引入的极性基团如羟基、羧基和羰基,不但使浆料更容易渗入到纱线内层,增加浆料和纤维之间的接触面积,而且可与浆料大分子形成氢键结合,进一步提高它们之间的结合力,进而提高浆液粘附力和上浆率。棉纤维表面粗糙度随着APP处理时间以及O2流量的增大先增大而后略有降低,随着JTSD的减小而增大;其润湿能力随着APP处理时间的延长而逐渐提高。在上述规律的综合影响下,棉粗纱的浆液粘附力和浆纱断裂伸长率随着APP处理时间和O2流量的增加呈现先升后降的趋势,随着JTSD减小呈现变大的趋势。在优化的APP处理条件下,棉粗纱的浆液粘附力和断裂伸长率可分别提高59%和36%。APP预处理能有效糙化棉纤维表面,提高棉纱的润湿能力、浆液渗透能力、浆液粘附力以及浆纱断裂伸长率。
     本课题还重点研究了不同回潮率(含水率)对棉纤维受APP处理后其润湿性和浆液粘结性能的影响。结果显示,当棉纤维回潮率较小(0.5%)时,其等离子体表面刻蚀效果较好,在纤维表面出现了大量的近似圆形的、粒径大约为0.5微米左右的微粒;XPS分析证实更多的极性基团如羟基、羧基和羰基被引入到纤维表面,从而使棉纱具有更好的润湿性能、浆液渗透性和更高的浆液粘附力,浆液沿其横截面圆周向纱线内部渗透更均匀。当回潮率(含水率)较大(9.3%、26.4%)时,由于棉纤维拒水表皮层的存在,其表面存在的大量水分消耗了等离子体粒子的能量,从而使得APP处理效果变差,导致棉纤维的刻蚀程度、棉纱的润湿性能、浆液渗透性和浆液粘附力变小,浆液在棉纱受APP处理的一侧渗透较深,沿圆周向里渗透不均匀。
     在以上理论研究的基础上,本课题设计了一种生态浆纱工艺,即先利用APP预处理技术提高棉纤维的润湿性和其与浆液的粘附力,然后利用含有磷酸酯淀粉和甘油组分的绿色浆料对棉纱上浆。研究结果表明,与常规的使用PVA1799和磷酸酯淀粉上浆的传统浆纱技术(Traditional Sizing Technology,TST)相比,EFST生态浆纱技术能够赋予高支棉纱更好的浆纱质量,如显著提高的上浆率、浆纱断裂强度、浆纱断裂伸长率、耐磨次数以及更为有效的浆纱毛羽抑制率。与典型的使用30%PVA1799和70%磷酸酯淀粉的配方浆料上浆的TST传统浆纱技术相比,EFST生态浆纱技术可以使浆纱上浆率、浆纱断裂强度、浆纱断裂伸长率、耐磨次数分别提高19.4%、5.3%、3.4%和169.2%,使1毫米毛羽指数值降低59.3%。APP预处理可以使各浆纱质量指标得到明显改善,绿色浆料配方中的甘油组分能够有效贴服毛羽,提高浆纱耐磨次数和上浆率。NaOH退浆实验表明,EFST生态浆纱技术对退浆效果没有不利影响,反而会提高浆纱织物的润湿性和渗透性。
     最后,本课题利用两种前处理工艺,即使用淀粉酶INVAZYME(?) ADC退浆、精练酶KDN301精练、H202漂白的绿色前处理工艺和使用NaOH退浆、精练剂204精练、H202漂白的传统前处理工艺,来研究浆前APP预处理的生态浆纱技术对织物的前处理效果和染色性能的影响。实验结果表明,浆前APP预处理试样与非预处理试样相比,具有更好的前处理效果和染色性能,其浆料、果胶、蜡质及其它杂质去除更为有效、彻底;同样处理条件下得到的棉织物具有较高的失重率、润湿能力、白度值、上染速率、最终上染率以及较高的表观颜色深度K/S值;各试样匀染性指数RUI介于0.2和0.49之间,表明都具有较好的匀染性;干、湿耐摩擦色牢度分别为3~4级、2~3级,未发现APP预处理对匀染性和摩擦色牢度的明显影响。
     研究还发现,浆前APP预处理的试样使用常规前处理工艺处理时,即使省去精练过程,其前处理效果和染色性能、染色质量能达到未APP预处理试样经过NaOH退浆、精练剂精练、H202漂白全部过程后的水平;当使用绿色前处理工艺处理时,其前处理效果和染色性能、染色质量等也能达到未预处理试样经过退浆、精练、漂白传统工艺前处理后的水平。这充分说明,使用绿色和传统两种前处理工艺都能得到较好的前处理效果;APP浆前预处理能明显提高织物的前处理效果和染色性能;在工艺条件合理的情况下,能省却精练工序而不影响整体的前处理效果和染色性能、染色质量。
A lot of polyvinyl alcohol (PVA) has been discharged to the natural environment due to the high cost of recycling, which has caused great pollution because of its poor biodegradability in natural conditions. The biodegradability of polyacrylic acid sizes depends on their macromolecule structures and varies a lot. Although the BOD5/CODcr values of most polyacrylic acid sizes are less than0.25which is lower than that of PVA, polyacrylic acid sizes are difficult to degrade in natural environment. So, PVA and other sizes which could lead to environment contamination have been facing prohibition in recent years. The annual symposium for size and sizing technology in China has advocated usage of green sizes, energy saving and application of eco-friendly sizing technology for five years in a row.
     Starch size and its modifications are one of the most promising green sizes and they are biodegradable and abundantly available. They are often used in combination with PVA because of their poor fluidity and unstable viscosity. Some problems, such as brittleness and stiffness of size films and poor sizing properties will be encountered if starch size and its modifications are used alone, which severely affected the subsequent weaving process. Raw cotton fiber is hydrophobic due to the existence of its surface cuticle layer mainly composed of pectin and waxes, which brings a lot of difficulties for the wetting process of cotton yarn and the permeability of size to the yarn. Furthermore, the sizing time in the size box is greatly reduced to1-2sec with the development of high-speed sizing technology, which challenges the permeability and coverage effect of the size to the yarn.
     He/O2atmospheric pressure plasma (APP) assisted eco-friendly sizing technology (EFST) of cotton yarn has been developed in this study to consume the disadvantages of starch sizes, raw cotton fiber and the high-speed sizing technology aiming to size raw cotton yarn, especially high count yarn, with starch sizes. The EFST employs APP pretreatment of the yarn in combination with green size recipes including components of glycerol and phosphate modified starch (PM-Starch) during sizing. The yarn's wettability, the sizing adhesion strength of cotton yarn (SAS) as well as the influence of moisture regain (MR) on them under APP treatment has been studied in this paper. The EFST and its effect on desizing, scouring, bleaching and dyeing properties of knitted cotton fabric were studied as well.
     Firstly, how He/O2APP pretreatment influences the wettability of raw cotton fiber was studied. He/O2APP pretreatment can dramatically improve the hydrophilicity of cotton fiber by physical bombardment and chemical etching of its hydrophobic surface. And therefore, chemical reactions triggered by radicals introduce large quantities of functional groups including C-OH, COOH and C=O to the fiber surface, which makes the surface free energy fundamentally promoted leading to a drop of Water Contact Angle (WCA) from140°to0°and Water Adsorption Time (WAT) from a few hours to only0.8sec or much less. The surface roughness and wettability of the fiber vary with APP treatment conditions including treatment duration, the O2flux and Jet to the Substrate Distance (JTSD). The surface roughness grows increasingly with the decrease of JTSD from2to0.5mm. WAT of the fiber goes down with the rise of treatment duration and O2flux, while it goes up with the increase of JTSD. There is no apparent aging effect for the wettability of cotton fiber after APP treatment because the cuticle layer of the fiber has been severely spoiled due to plasma etching, oxidation and introduction of functional groups.
     Secondly, the influence of He/O2APP pretreatment on SAS between cotton yarn and PM-Starch and the breaking strength of the sized yarn was investigated in this study. Results show that the surface roughness and wettability play important roles on SAS and breaking strength of sized cotton yarn, namely, they rise with the raising of surface roughness and wettability. One of the probable reasons is the "mechanical interlocking effect" induced by roughness modification which increases the cohesion force of size to fiber and van der waals' force between them. The other is that the introduction of functional groups such as C-OH、C=O and O-C=O to the fiber surface not only facilitate the permeating of the size into the yarn but also form some intermolecular hydrogen bonds between the fiber and the size. Both of them contribute to the improvement of SAS between the fiber and the size due to increased contact area and hydrogen bond forces between the fiber and the size. The surface roughness increases first and then decreases with the prolongation of treatment duration and rise of O2flux, while improves as JTSD goes down. The wettability of the fiber rises increasingly with the rise of treatment time. SAS and breaking strength of the sized yarn increase first and then decrease with the prolongation of treatment duration and rise of O2flux, and improve with the decrease of JTSD showing the same regularity with the change of surface roughness. With the optimized APP treatment conditions, SAS and breaking strength of the sized yarn could be greatly improved by59%and36%, respectively. In conclusion, He/O2APP pretreatment of the yarn can effectively roughen fiber surface and improve the wettability, size permeability, SAS and breaking strength of the sized yarn.
     Emphasis has also been laid on the influence of MR of cotton fiber on its wettability and sizing adhesion in this paper. Results demonstrated that the etching effect of APP on fiber surface is better when MR is lower, such as0.5%, and a large number of nearly round-shaped particles with diameters of around0.5to1μm appeared on the fiber surface after the plasma treatment. A moderate etching effect was found on the fiber surface of Sample with a higher MR of9.3%. It can be concluded that cotton fibers with lower MRs can be more efficiently etched than those with higher MRs. X-ray photoelectron spectroscopy (XPS) result showed that more functional groups including C-OH、O-C-O/C=O and O-C=O have been introduced to the fiber surface resulting in better wettability, size permeability and SAS of the yarn, and a more uniform size permeation into the yarn from yam surface was obtained at the same time. When MR is higher, such as9.3%and26.4%, a lot of water will exist on the fiber surface and consume large quantities of plasma energy, which weakens the APP treatment effect leading to poor wettability, size permeability and SAS of the yarn. Besides, the size permeation prefers to the APP treated side of the yarn showing a poor uniformity.
     On the basis of above research, the EFST has been proposed and put into practice. APP pretreatment of the yarn was conducted first and then the green size with PM-Starch and glycerol ingredients was used to size the yam. Results show that EFST can impart the yarn better sizing properties, such as improved size-pick-up, breaking strength, breaking elongation, abrasion resistance time and more effective reduction of yarn hairs, compared with TST. In comparison with typical TST using the sizing recipe with30%PVA1799and70%PM-Starch, the optimized EFST can impart the yarn an increase of19.4%,5.3%,3.4%and169.2%for the size-pick-up, breaking strength, breaking elongation and the abrasion resistance time, respectively, and a reduction of59.3%for the yarn hairiness index value at level1. The sizing properties can be obviously improved by the atmospheric pressure plasma treatment which can roughen the fiber surface, etch away the hydrophobic cuticle layer and introduce polar groups. The glycerol in the green sizing recipes can effectively reduce the yarn hairiness and increase size-pick-up and abrasion resistance. The eco-friendly sizing technology has no observable negative influence on desizing of cotton fabrics. Furthermore, a better water diffusion in the fabric can be achieved because of the improved hydrophilicity by the plasma treatment.
     In the end, the influence of APP treatment before sizing on pretreatment and dyeing properties of knitted cotton fabric has been ascertained through green and traditional pretreatment technologies. INVAZYME(?) ADC enzyme desizing, KDN301enzyme scouring and H2O2bleaching were employed in the green pretreatment technology, while NaOH desizing, scouring agent204for scouring, H2O2bleaching were adopted in the traditional pretreatment technology. Results illustrate that Size, pectins, cotton waxes and other natural contaminations can be more efficiently removed from APP pretreated fabrics than not APP treated ones, and consequently higher weight loss, wettability, whiteness, dying rate, final dye up-take and K/S value will be obtained. APP pretreated fabrics have better desizing, scouring, bleaching and dyeing performances than not APP treated ones, and dyeing properties such as color levelness and dry rubbing fastness of dyed fabric are not apparently affected by APP. The color difference shows almost the same regularity with the changing of K/S values and relative unlevelness index (RUI) values are between0.2and0.49showing good levelling property, which means APP treatment has no apparent effect on dyeing properties. The possible reasons for APP pretreated fabrics getting better pretreatment and dyeing performances are as follows:one is the removal of hydrophobic cuticle layer, the other is the increase of functional groups by APP oxidation. Both contribute to the improvement of hydrophilicity of sized fabric leading to quick removal of size, residual cotton waxes and pectins under the action of pretreatment reagents, which improves desizing, scouring and bleaching effect.
     APP pretreated fabrics can obtain almost the same pretreatment and dyeing performances by using the traditional technology with scouring process excluded. When the green pretreatment technology with the use of INVAZYME(?) ADC starch enzyme and scouring enzyme is applied to the APP pretreated fabrics, almost the same pretreatment and dyeing performances with that of the traditional technology can be attained. It can be concluded that both green and traditional pretreatment technology can provide the sized fabric with a good pretreatment effect and APP pretreatment can substantially improve pretreatment effects, dyeing performances and dyeing properties. With the application of APP treatment and optimized pretreatment technology, the scouring process can be omitted to save energy and reagents, not affecting the pretreatment effects, dyeing performances and dyeing properties.
引文
[1]Zhu Zhifeng. Starch mono-phosphorylation for enhancing the stability of starch/ PVA blend pastes for warp sizing. Carbohydrate Polymers:2003.54(1):115-118.
    [2]Olsen, Herbert C. partial replacement for PVA in warp sizing. Textile Industries: 1975.139 (3):79-87.
    [3]Chen, Y. Kampen, W.H. Negulescu, I. Despa, S.Collier, B.J. Textile Chemist and Colorist:1999.31(1):25-28.
    [4]Zhu Zhifeng, Yu Jie, Yu Cuiyun. Journal of Donghua University (English Edition): 2005.22(2):13-18.
    [5]杜凡.变性淀粉与PVA在棉纱经轴上浆中的应用[J].装饰织物:1995.(1):19-20.
    [6]祝志峰,周永元,张文赓.接枝淀粉/PVA混合浆上浆性能的评估[J].纺织学报:1998.(6):31-34.
    [7]张江燕,憨文轩.纯棉高支高密贡缎织物浆纱工艺的探讨[J].上海纺织科技:2005.(6):42.
    [8]徐卫红,薛蓉.PTT纤维与棉混纺纱的上浆工艺初探[J].江苏纺织:2007.(6):51-52.
    [9]孙玉虎,邹绍敏.涤棉织物应用PVA/DS-HP混合浆合理配比的探讨[J].天津工业大学学报:1987.(3):52-55.
    [10]张斌,周永元.浆纱污染与环境保护[J].棉纺织技术:2003.(7):17-20.
    [11]Kim Kyoungrean, Fujita Masafumi, Daimon Hiroyuki, Fujie Koichi. Biodegrada-bility improvement and structural conversion of polyvinyl alcohol (PVA) by sub-and supercritical water reaction. Journal of Chemical Engineering of Japan:2004. 37(6):744-750.
    [12]Hao Jihua. Development of membrane technology for wastewater treatment in the textile industry in China. Desalination:1994.98(1-3):353-360.
    [13]曹旭勇,范雪荣,荣瑞萍,丁奎刚.聚丙烯酸类浆料的质量现状与分析[J].棉纺织技术:2002.8):22-25
    [14]纺织浆料及浆纱技术的热点问题和发展趋势:http://wenku. Baidu.com/view/ 80e288ded15 abe23482f4d6d. html.
    [15]韩世洪,张飞.涤/棉上浆用聚丙烯酸酯浆料的性能与研究[J].纺织科学研究:2007.(4):35-38,52.
    [16]Luo Xuegang, Li Jiwei, Lin Xiaoyan. Effect of gelatinization and additives on morphology and thermal behavior of corn starch/PVA blend films. Carbohydrate Polymers:2012.90(4):1595-1600.
    [17]Chen Jianwei, Wang Rongmin. A sizing process of warp yarn using water soluble PVA filaments(Ⅱ)-Influence of PVA filament fineness and sizing speed. Journal of Qingdao University:1997.12(4):34-37.
    [18]Ramaszeder K. Influence of the preparation of sizes comprising polyvinyl alcohol (PVA) and starch derivates in the sizing of polyester/cotton warp yarns. Melliand Textilberichte-International Textile Reports:1991,72(8):592.
    [19]荣瑞萍,杨莹.增塑剂与淀粉浆膜性能的关系[J].棉纺织技术:2009.37(02):84-86.
    [20]冯孝中,孙光辉,李广军.复合增塑剂增塑淀粉研究[J].北京工商大学学报(自然科学版):2007.(03):5-8.
    [21]荣瑞萍,彭文琴.柔软剂在上浆中的利与弊探讨[J].棉纺织技术:2004.32(2):24-26.
    [22]李新奇,秦国伟.预湿上浆技术的研究与应用[J].国际纺织导报:2012.(8):42-43.
    [23]Benninger:SaveSize pre-wet warp sizing. Textile World:2000.150(4):42.
    [24]Sejri, Nejib. Influence of pre-wetting on the characteristics of a sized yarn. Textile Research Journal:2008.78(4):326-335.
    [25]Hari, P.K. High pressure squeezing in sizing. Performance of cotton yarn. Textile Research Journal:1989.59(10):597-600.
    [26]刘登科,夏放军,卫润虎.高压上浆工艺的应用[J].上海纺织科技:2005.(10):45-46.
    [27]佟昀.上浆要素内在关系及其对高压上浆工艺的影响[J].纺织学报:2008.(12):30.
    [28]N.Abidi, E.Hequet. Cotton Fabric Graft Copolymerizatiion Using Microwave Plasma. I. University Attenuated Total Reflectance-FTIR Study. J.Appl. Polym. Sci:2004.93:145-154.
    [29]张广知,黄小华,迟二燕.低温等离子体改性蚕丝织物涂料染色[J].纺织学报:2012.(4):82-85.
    [30]李健,杨建忠.等离子体喷枪辐照羊毛织物后表面接枝改性的初步研究[J].毛纺科技:2013.(1):27-30.
    [31]田利强,娄少峰,史溢君,聂华丽,朱利民.棉织物的常压等离子体预处理/果胶酶精练[J].印染:2012.(16):1-5.
    [32]洪剑寒,王鸿博,潘志娟.氧气APP处理对PTT织物润湿性能的影响[J].上海纺织科技:2012.(3):31-33.
    [33]冯仑仑,王雪燕.超声波技术在等离子体预处理织物退浆中的应用研究[J].印染助剂:2012.(10):30-32.
    [34]刘艳艳,姜凤琴.等离子体预处理对大麻纤维柔软性的影响[J].毛纺科技:2012.(3):50-53.
    [35]李倩,杨建忠,杨振中,李发洲,王勇.低温等离子体对山羊绒表面改性的研究[J].毛纺科技:2012.(1):36-38.
    [36]刘陶,张晓丽,许云辉,武保举.氧气低温APP处理棉织物的性能研究[J].上海纺织科技:2012.(6):28-31.
    [37]武晖.低温APP处理对PET膜性能的影响[J].纺织高校基础科学学报:2012.(2):200-203.
    [38]李旭明,曹婵珍,陈桂云,陈丽孝.APP处理对原棉织物亲水性的影响[J].纺织学报:2011.(12):24-27.
    [39]Wang Chunxia, Du Mei; Qiu Yiping. Uniformity and penetration of surface modification effects of atmospheric pressure plasma jet into textile materials. Advanced Materials Research:2011.331:356-359.
    [40]Luciu I, Mitu B, Satulu V, Matei A, Dinescu G. Low and atmospheric pressure plasma treatment of natural textile fibers. Proceedings-International Symposium on Discharges and Electrical Insulation in Vacuum:2008.2:499-502.
    [41]Samanta, Kartick K. Jassal, Manjeet; Agrawal, Ashwini K. Atmospheric pressure plasma polymerization of 1,3-butadiene for hydrophobic finishing of textile substrates. Journal of Physics, Conference Series:2010.208.
    [42]Kan CW, Yuen CWM. Effect of atmospheric pressure plasma treatment on wettability and dryability of synthetic textile fibres. Surface and Coatings Technology:2011. Article in Press.
    [43]Tsoi Wing-Yu Iris, Kan Chi-Wai, Yuen Chun-Wah Marcus. Using ageing effect for hydrophobic modification of cotton fabric with atmospheric pressure plasma. Bioresources:2011.6(3):3424-3439.
    [44]Gotoh, Keiko, Yasukawa, Akemi. Atmospheric pressure plasma modification of polyester fabric for improvement of textile-specific properties. Textile Research Journal:2011.81(4):368-378.
    [45]Wang Ying.The uniform Si-O coating on cotton fibers by an atmospheric pressure plasma treatment. Journal of Macromolecular Science, Part B:Physics: 2011.50(9):1739-1746.
    [46]王利娟.等离子体概念、分类及基本特性[J].宜宾学院学报:2009.(6):41.
    [47]胡又平,罗志娟.不同电极结构介质阻挡放电的放电特性研究[J].武汉科技大学学报:2008,.(4):421-423.
    [48]低温等离子体:http://www.coronalab.net/coldplasm/coldplasm.htm.
    [49]Li XM, Qiu YP. Influence of atmospheric pressure plasma pre-treatment on so-dium bicarbonate desizing of polyacrylate on PET fabrics. Advanced Materials Research:2011.331:718-721.
    [50]Ceria A, Rovero G., Sicardi S. Ferrero F. Atmospheric continuous cold plasma treatment:Thermal and hydrodynamical diagnostics of a plasma jet pilot unit. Chemical Engineering and Processing:2010.49(1):65-69.
    [51]Zhou Zhou, Liu Xingchen, Hu Benting, Wang Jilong, Xin Danwei, Wang Zhengjia, Qiu Yiping. Hydrophobic surface modification of ramie fibers with ethanol pretreatment and atmospheric pressure plasma treatment. Surface and Coatings Technology:201.205(17-18):4205-4210.
    [52]Haertel B. and F. Volkmann, et al. Differential sensitivity of lymphocyte subpopulations to non-thermal atmospheric-pressure plasma. Immunobiology: 2012.217(6):628-633.
    [53]Daeschlein, G. and S. Scholz, et al. Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. Journal of Hospital Infection:2012.81(3):177-183.
    [54]Wang CX. and Qiu YP. Two sided modification of wool fabrics by atmospheric pressure plasma jet:Influence of processing parameters on plasma penetration. Surface and Coatings Technology:2007.201(14):6273-6277.
    [55]苏建波.APP处理对织物染色性能的影响[J].济南纺织化纤科技:2002.(4):37-39.
    [56]Inagaki N. Plasma Surface Modification and Plasma Polymerization. Lancaster: Technomic Publishing,1996.
    [57]Briggs D., Rance D.G., Kendall C.R., Blythe A.R. Surface modification of PET by electrical discharge treatment. Polymer:1980.21:895-900.
    [58]Liashun Shi, Investigation of Surface Modification and Reaction Kinetics of PET In RF CF4-CH4. J. Polym. Eng.:1999.19:445-455.
    [59]Bugaev S, Korotaev A, Oskomov K, Sochugov N. A-C:H Films deposited in the plasma of barrier and surface discharges at atmospheric Pressure. Surf. Coat. Technol:1997.96:12-128.
    [60]Grill. A. Cold plasma fabrication:from fundamentals to applications. New York: Wiley-IEEE Press,2001.
    [61]Charlesby A. Atmotic Radiation and polymers. New York:Pergamon Press, 1960.
    [62]Piao D, Uyama Y, IkadaY. Aging of Plasma treated Polymers. Kobunshi Ronbunshu (Japan):1991.48:529-534.
    [63]Ren Y, Wang CX, Qiu YP. Influence of aramid fiber moisture regain during atmospheric Plasma treatment on aging of treatment effects on suxfaee wetta-bility and bonding strength to ePoxy. Appl Surf Sci:2007.53:9283-9289.
    [64]Ren Y, Wang CX, QiuYP. Aging of surface Properties of ultra high modulus Polyethylene fibers treated with He/O2 atmospheric pressure plasma jet. Surf. Coat. Technol:2008.202:2670-2676.
    [65]Ren Y, Hong YY, Sun J, Qin YP.Influence of treatment duration on hydrophobic recovery of plasma-treated ultrahigh modulus polyethylene fiber surfaces. J. Appl. Polym. Sci:2008.110:995-1001.
    [66]GuPta B, Hilborn J, Hollenstein C.H, Plummer C.J.G, Houriet R, Xantho-Poulos N. Surface modification of polyester films by RF plasma. J. APP. Polym. Sci:2000.78:1083-1091.
    [67]Yasuda H, Sharma A.K, Yasuda T. Effect of orientation and mobility of polymer molecules on contact angle. J. Polym. Sci:Polym. Phys:1981.19:1285-1291.
    [68]Foerch R, Kill G, Walzak M. Plasma surface modification of polypropylene: short-term vs. long term plasma treatment. J. Adhes. Sci. Technol:1993.7: 1077-1089.
    [69]Brennan W, Feast W, Munro H, Walker S. Investigatiion of the aging of plama oxidized peek. Polymer:1991.32:1527-1530.
    [70]P.H. Bae, Y.J. Hwang, H.J. Jo, H.J. Kim, Y. Lee, Y.K. Park, J.G. Kim, J. Jung, Size removal on polyester fabrics by plasma source ion implantation device. Chemosphere:2006.63(6):1041-1047.
    [71]R. Morent, N. De Geyter, J. Verschuren, K. De Clerck, P. Kiekens, C. Leys, None-thermal plasma treatment of textiles, Surface and Coatings Technology: 2008.202(14):3427-3449.
    [72]E. Nithya, R. Radhai, R. Rajendran, S. Shalini, V. Rajendran, S. Jayakumar. Synergetic effect of DC air plasma and cellulase enzyme treatment on the hydrophilicity of cotton fabric. Carbohydrate Polymers:2011.83 (4):1652-1658.
    [73]Navaneetha Pandiyaraj K, Selvarajan V. Non-thermal plasma treatment for hy-drophilicity improvement of grey cotton fabrics. Journal of Materials Processing Technology:2008.199(1-3):130-139.
    [74]Shen Li, Dai Jinjin. Improvement of hydrophobic properties of silk and cotton by hexafluoropropene plasma treatment. Applied Surface Science:2007.253(11): 5051-5055.
    [75]P. Chaivan, N. Pasaja, D. Boonyawan, P. Suanpoot, T. Vilaithong. Low tempera-ture plasma treatment for hydrophobicity improvement of silk. Surface and Coa-tings Technology:1993. (1-3):356-360.
    [76]Y oungsoo Kim, Kang-Jin Kim, Yeonhee Lee. Surface analysis of fluorine-con-taining thin films fabricated by various plasma polymerization methods. Surface and Coatings Technology:2009.203(20-21):3129-3135.
    [77]A. Serrano Aroca, M. Monleon Pradas, J.L. Gomez Ribelles. Plasma-induced polymerization of hydrophilic coatings onto macroporous hydrophobic scaffolds. Polymer:2007.48(7):2071-2078.
    [78]F. Liao, S. Park, J.M. Larson, M.R. Zachariah, S.L. Girshick.High-rate chemical vapor deposition of nanocrystalline silicon carbide films by radio frequency thermal plasma. Materials Letters:2003.57(13-14):1982-1986.
    [79]Toshiya Fujiki, Kazunari Katayama, Sansiro Kasahara, Satoshi Fukada, Masabumi Nishikawa. Effect of oxygen on hydrogen retention in W deposition layers formed by hydrogen RF plasma. Fusion Engineering and Design:2010. 85(7-9):1094-1097.
    [80]F. Martina, J. Mehnen, S.W. Williams, P. Colegrove, F. Wang. Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V. Journal of Materials Processing Technology:2012.212(6):1377-1386.
    [81]R. Knizikevicius.Simulation of anisotropic etching of silicon in SF6+O2 plasma. Sensors and Actuators A:Physical:2006.132(2):726-729.
    [82]K. Kolari. Deep plasma etching of glass with a silicon shadow mask. Sensors and Actuators A:Physical:2008.141(2):677-684.
    [83]Alberto Ceria, Fabio Rombaldoni, Giorgio Rovero, Giorgio Mazzuchetti, Silvio Sicardi. The effect of an innovative atmospheric plasma jet treatment on physical and mechanical properties of wool fabrics. Journal of Materials Processing Technology:2010.210(5):720-726.
    [84]R. Molina, J.P. Espinos, F. Yubero, P. Erra, A.R. Gonzalez-Elipe. XPS analysis of down stream plasma treated wool:Influence of the nature of the gas on the surface modification of wool. Applied Surface Science:2005.252(5):1417-1429.
    [85]Mahmood Ghoranneviss, Sheila Shahidi, Abbas Anvari, Zahra Motaghi, Jakub Wiener, Irena Slamborova. Influence of plasma sputtering treatment on natural dyeing and antibacterial activity of wool fabrics. Progress in Organic Coatings: 2011.70(4):388-393.
    [86]C.W. Kan, C.W.M. Yuen. Surface characterisation of low temperature plasma-treated wool fibre.Journal of Materials Processing Technology:2006. 178(1-3):52-60.
    [87]C.X. Wang, Y.P. Qiu. Two sided modification of wool fabrics by atmospheric pressure plasma jet:Influence of processing parameters on plasma penetration. Surface and Coatings Technology:2007.201(14):6273-6277.
    [88]Laura Meda, Maria Rosaria Massafra, Bruno Marcandalli. Cold plasma-induced modification of the dyeing properties of poly(ethylene terephthalate) fibers. Applied Surface Science:2006.252(5):2265-2275.
    [89]Mahmood Ghoranneviss, Sheila Shahidi, Abbas Anvari, Zahra Motaghi, Jakub Wiener, Irena Slamborova. Influence of plasma sputtering treatment on natural dyeing and antibacterial activity of wool fabrics. Progress in Organic Coatings: 2011.70(4):388-393.
    [90]Darinka Fakin, Alenka Ojstrsek, Sonja Celan Benkovic. The impact of corona modified fibres' chemical changes on wool dyeing. Journal of Materials Processing Technology:2009.209(1):584-589.
    [91]Alberto Ceria, Fabio Rombaldoni, Giorgio Rovero, Giorgio Mazzuchetti, Silvio Sicardi. The effect of an innovative atmospheric plasma jet treatment on physical and mechanical properties of wool fabrics. Journal of Materials Processing Technology:2010.210 (5):720-726.
    [92]Alberto Ceria, Peter J. Hauser. Atmospheric plasma treatment to improve durability of a water and oil repellent finishing for acrylic fabrics. Surface and Coatings Technology:2010.204 (9-10):1535-1541.
    [93]N.A. Ibrahim, B.M. Eid, M.A. Youssef, S.A. El-Sayed, A.M. Salah. Functionalization of cellulose-containing fabrics by plasma and subsequent metal salt treatments.Carbohydrate Polymers:2012 90(2):908-914.
    [94]Brigita Tomsic, Barbara Simoncic, Boris Orel, Metka Zerjav, Hans Schroers, Andrej Simoncic, Zoran Samardzija. Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Carbohydrate Polymers:2009.75(4):618-626.
    [95]Xiaoyan Wang, Minghua Zhou, Xinglong Jin. Application of glow discharge plasma for wastewater treatment. Electrochimica Acta:2012.83:501-512.
    [96]Nigel B. Goodman, Russell J. Taylor, Zongli Xie, Yesim Gozukara, Allan Clements. A feasibility study of municipal wastewater desalination using electrodialysis reversal to provide recycled water for horticultural irrigation. Desalination:2013.317:77-83.
    [97]Ghezzar M.R., Abdelmalek F., Belhadj M., Benderdouche N., Addou A. Enhancement of the bleaching and degradation of textile wastewaters by Gliding arc discharge plasma in the presence of TiO2 catalyst. Journal of Hazardous Materials:2009.164(2-3):1266-1274.
    [98]周永元.纺织浆料的现状与发展[J].棉纺织技术:2000.(7):5-9.
    [99]周永元.纺织浆料学[M].北京:中国纺织出版社,2004.115-252.
    [100]韩世洪.纺织浆料的现状与发展趋势[J].纺织导报:2008.(2):38,40-44.
    [101]范雪荣,王强,顾蓉英.国外纺织浆料的研究与进展[J].印染助剂:2003.(3):5-8.
    [102]荣瑞萍.纺织浆料和浆纱技术现状及发展趋势.http://www.doc88.com/ p-890907463415.html.
    [103]张晓东,黄洪颐,丁奎刚.新型丙烯酸浆料的制备与性能[J].纺织学报:1996.(4):32-34.
    [104]何京.上浆经纱润湿性能提高的解决新方法[J].天津纺织科技:2005.(3):40-42.
    [105]Rozelle, W. N. Pre-wet sizing system bases on water atomization. Textile World:2001.151(3):28-30.
    [106]魏焕卿,俞震东.推广“两高一低”上浆工艺提高浆纱技术水平—全国浆料上浆性能和浆纱上浆工艺'99年会会议纪要[J].棉纺织技术:2000.(4):5-7.
    [107]周永元.纺织经纱上浆的进展和建议[J].纺织导报:2001.(5):110-116.
    [108]林兰天.提高浆液对涤纶股线的黏附性的方法探讨[J].上海纺织科技:2005,(12):8-10.
    [109]马丕波,徐卫林,黄丽,等.电晕处理对涤纶纱线上浆性能的影响[J].纺织学报:2009.30(4):74-79.
    [110]马丕波,徐卫林,葛朝阳,等.电晕处理对棉织物表面性能的影响[J].天津工业大学学报:2009.28(1):53-56.
    [111]Wu Y, Wang SG. The research about the time-effect of the wettability on the wool surface treated by the Ar plasma jet in the atmospheric pressureOriginal Research Article. Nuclear Instruments and Methods in Physics Research Sec-tion B:Beam Interactions with Materials and Atoms:2009.267(18):3137-3139.
    [112]Cui YH, W Lu and Y Diao, et al. Study on atmospheric pressure plasma treat-ment to improve sizing performance of pure polyester and polyester/cotton yarns. Journal of Donghua University (Eng. Ed.):2011.28:409-412.
    [113]李健,杨建忠,段莉,王秋实.Ar等离子体技术在棉纱上浆中的应用[J].纺织科技进展:2012.(1):32-34.
    [1]Topalovic. T, Nierstrasz. V.A, Bautista. L, Jocic. D, Navarro. A, Warmoeskerken. M.M.C.G. XPS and contact angle study of cotton surface oxidation by catalytic bleaching. Colloid Surf. A:2007.296:76-85.
    [2]Mitchell. R, Carr. C, Parfitt. M, Vickerman. J, Jones. C. Surface chemical analysis of raw cotton fibres and associated materials. Cellulose:2005.12:629-639.
    [3]Rjiba. N, Nardin. M, Drean J, Frydrych. R. A study of the surface properties of cotton fibers by inverse gas chromatography. J. Colloid Interface Sci:2007.314: 373-380.
    [4]Burdell E.F. West point foundry machine co.:uni-squeeze high-pressure sizing. Text. World:1984.134:83.
    [5]Rozelle W.N, Pre-wet sizing system bases on water atomization. Text. World: 2001.151:28-30.
    [6]Sejri N, et al. Influence of pre-wetting on the characteristics of a sized yarn. Text. Res. J:2008.78:326-335.
    [7]Navinsek B, Panjan P, Milosev I. PVD coatings as an environmentally clean alternative to electroplating and electroless processes. Surf. Coat. Technol:1999. 116-119:476-487.
    [8]Sorrentino L, Carrino L, Mater J.2024 aluminium alloy wettability and superficial cleaning improvement by air cold plasma treatment. Process. Technol:2009.209: 1400-1409.
    [9]Munson C.P, Faehl R.J, Henins I, Nastasi M, Reass W.A, Rej D.J, Scheuer J.T, Walter K.C, Wood B.P. Recent advances in plasma source ion implantation at Los Alamos National Laboratory. Surf. Coat. Technol:1996.84:528-536.
    [10]Morent R, Geyter N, Verschuren J, Clerck K, Kiekens P, Leys C. Non-thermal plasma treatment of textiles. Surf. Coat.Technol:2008.202:3427-3449.
    [11]Vohrer U, Muller M, Oehr C. Glow-discharge treatment for the modification of textiles. Surface and Coatings Technology:1998.98(1-3):1128-1131.
    [12]Temmerman E, Leys C. Surface modification of cotton yarn with a DC glow discharge in ambient air. Surf. Coat. Technol:2005.200:686-689.
    [13]Pandiyara K.N.J, Selvarajan V. Non-thermal plasma treatment for hydrophilicity improvement of grey cotton fabrics. J. Mater. Process Technol:2008.199:130-139.
    [14]Wu Y, et al., Proceedings of the International Conference on Advanced Textile Materials & Manufacturing Technology, Zhejiang University, Hangzhou,2008: 67-69.
    [15]Zhao G, Wen G, Wu K. Influence of processing parameters and heat treatment on phase composition and microstructure of plasma sprayed hydroxyapatite coatings. Trans. Nonferr. Metal Soc:2009.19:463-469.
    [16]Quek C.H, Khor K.A, Cheang P. Influence of processing parameters in the Plas-ma spraying of hydroxyapatite/Ti-6Al-4V composite coatings. J. Mater. Process Technol:1999.89-90:550-555.
    [17]Yang LJ.. Plasma surface hardening of ASSAB 760 steel specimens with Taguchi optimisation of the processing parameters. J. Mater. Process. Technol: 2001.113:521-526.
    [18]Gorokhovsky V.I, Bhattacharya R, Bhat D.G. Characterization of large area filtered arc deposition technology:part I-plasma processing parameters. Surf. Coat. Technol:2001.140:82-92.
    [19]Cabouro G, Chevalier S, Gaffet E, Grin Y, Bernard F. Reactive sintering of molybdenum disilicide by spark plasma sintering from mechanically activated powder mixtures:Processing parameters and properties. J. Alloys Compd: 2008.465:344-355.
    [20]Zhang Ruiyun, Pan Xianlin, Jiang Muwen, Peng Shujing, Qiu Yiping. Influence of atmospheric pressure plasma treatment on surface properties of PBO fiber. Applied Surface Science:2012.261:147-154.
    [21]Wang C.X, Qiu Y.P. Two sided modification of wool fabrics by atmospheric pressure plasma jet:Influence of processing parameters on plasma penetration. Surf. Coat. Technol:2007.201:6273-6277.
    [22]Ren Y, Wang C, Qiu Y. Influence of aramid fiber moisture regain during atmos-pheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy. Appl. Surf. Sci:2007.253:9283-9289.
    [23]Allen J.S. An analytical solution for determination of small contact angles from sessile drops of arbitrary size. J. Colloid Interface Sci:2003.261:481-489.
    [24]Zhang N, Chao D.F. Contact Angle of Drops Measured on Nontransparent Surfaces and Capillary Flow Visualized. Opt. Laser Technol:2002.34:243-248.
    [25]Bachmann J, Ellies A, Hartge K.H. Development and application of a new sessile drop contact angle method to assess soil water repellency. J. Hydrol:2000. 231-232:66-75.
    [26]Gao Zhiqiang. Influence of jet-to-substrate distance on plasma etching of poly-amide 6 films with atmospheric pressure plasma Original Research Article. Applied Surface Science:2011.257(7):2531-2535.
    [27]Tian Liqiang, Nie Huali, Chatterton Nicholas P, Branford-White Christopher J, Qiu Yiping, Zhu Limin. Helium/oxygen atmospheric pressure plasma jet treatment for hydrophilicity improvement of grey cotton knitted fabric Original Research Article. Appl. Surf. Sci:2011.257 (16):7113-7118.
    [28]Peng S.J, Gao Z.Q, Sun J, Yao L, Qiu Y.P. Influence of argon/oxygen atmospheric dielectric barrier discharge treatment on desizing and scouring of poly (vinyl alcohol) on cotton fabrics. Appl. Surf. Sci; 2009.255:9458-9462.
    [29]Boenig H.V. Fundamentals of Plasma Chemistry and Technology,1988, Tech- nomic Publishing, Lancaster.
    [30]Moss S.J, Jjolly A.M, Tighe B.J. Plasma Oxidation of Polymers. Plasma Chem.plasma P:1986.6:401-416.
    [31]Gao Z.Q, Peng S.J, Sun J, Yao L, Qiu Y.P. Influence of processing parameters on atmospheric pressure plasma etching of polyamide 6 films. Appl. Surf. Sci:2009. 255:7683-7688.
    [32]Narjes Rjiba, Michel Nardin, Jean-Yves Drean, Richard Frydrych. A study of the surface properties of cotton fibers by inverse gas chromatography. Journal of Colloid and Interface Science:2007.314(2):373-380.
    [33]Soliman G, Carr C.M, Jones C.C, Rigout M. Surface chemical analysis of the effect of extended laundering on C. I. sulphur black 1 dyed cotton fabric. Dyes and Pigments:2013.96(1):25-30.
    [34]Vladimir Totolin, Majid Sarmadi, Sorin O. Manolache, Ferencz S. Denes. Atmospheric pressure plasma enhanced synthesis of flame retardant cellulosic materials. Applied Polymer Science:2010.117(1):281-289.
    [35]Tourrette A, et al. Incorporation of poly(N-isopropylacrylamide)/chitosan micro-gel onto plasma functionalized cotton fibre surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects:2009.352(1-3):126-135.
    [36]Kanchit Kamlangkla, Satreerat K. Hodak, Joelle Levalois-Grutzmacher. Multi-functional silk fabrics by means of the plasma induced graft polymerization (PIGP) process.Surface and Coatings Technology:2011.205(13-14):3755-3762.
    [37]Tatjana Topalovic, et al. XPS and contact angle study of cotton surface oxidation by catalytic bleaching. Colloids and Surfaces A:Physicochemical and Enginee-ring Aspects:2007.296(1-3):76-85.
    [38]McCord MG, Hwang YJ, Qiu Y. Surface analysis of cotton fabrics fluorinated in radio-frequency plasma. Journal of Applied Polymer Science:2003.88(8):2038-2047.
    [39]Bae G.Y, Min B.G, Jeong Y.G, Lee S.C, Jang J.H, Koo G.H. Superhydropho- bicity of cotton fabrics treated with silica nanoparticles and water-repellent agent. J. Colloid Interface Sci:2009.337:170-175.
    [40]Samanta K.K, Jassal M, Agrawal A.K. Improvement in water and oil absorbency of textile substrate by atmospheric pressure cold plasma treatment. Surf. Coat. Technol:2009.203:1336-1342.
    [41]W. Rakowski. The Impact of Nitrogen Plasma Treatment upon the Physical-Chemical and Dyeing Properties of Wool Fabric. J. Soc. Dyers Colour:1997. 113:250-255.
    [42]Asad S.S, Tendero C, Dublanche-Tixier C, Tristant P, Boisse-Laporte C, Leroy, Leprince P. Effect of atmospheric microwave plasma treatment on organic lubricant on a metallic surface. Surf. Coat. Technol:2009.203:1790-1796.
    [1]Zhu ZF. Starch Mono-phosphorylation for Enhancing the Stability of Starch/PVA Blend Pastes for Warp Sizing. Carbohydr. Polym:2003.54:115-118.
    [2]Jayasekara R, Harding I, Bowater I, et al. Preparation, Surface Modification and Characterisation of Solution Cast Starch PVA Blended Films. Polym. Test:2004. 23:17-27.
    [3]Lawton JW and Fanta GF. Glycerol-plasticized Films Prepared from Starch Poly(vinyl alcohol) Mixtures:Effect of Poly(ethylene-eo-acrylic acid). Carbohydr. Polym:1994.23:275-280.
    [4]荣瑞萍,杨莹.增塑剂与淀粉浆膜性能的关系[J].棉纺织技术:2009.(2):84-86.
    [5]李新顺,丰亦军.预湿上浆工艺的应用[J].纺织导报:2011.(6):74-77.
    [6]刘登科,夏放军,卫润虎.高压上浆工艺的应用[J].上海纺织科技:2005.(10):45-46.
    [7]Cai ZS and Qiu YP, et al. Effect of Atmospheric Plasma Treatment on Desizing of PVA on Cotton. Textile Res. J:2003. (73):670-674.
    [8]Cheng SY, Yuen CWM and Kan CW, et al. Influence of Atmospheric Pressure Plasma Treatment on Various Fibrous Materials:Performance Properties and Surface Adhesion Analysis. Vacuum:2010. (84):1466-1470.
    [9]Song B, Meng LH, Huang YD. Surface modification of PBO fiber through oxygen plasma induced vapor phase grafting of acrylic acid. Materials letters:2012.83: 118-120.
    [10]Wang G.J, Liu Y.W, Guo Y.J, Zhang Z.X, Xu M.X, Yang Z.X. Surface modifi-cation and characterizations of basalt fibers with non-thermal plasma. Surface and Coatings Technology:2007.201(15):6565-6568.
    [11]B. Song, L.H. Meng, Y.D. Huang. Influence of plasma treatment time on plasma induced vapor phase grafting modification of PBO fiber surface. Applied Surface Science:2012.258(14):5505-5510.
    [12]Li Mei-Sheng, Zhao Zhi-Ping, Li Ning, Zhang Yue. Controllable modification of polymer membranes by long-distance and dynamic low-temperature plasma flow:Treatment of PE hollow fibermembranes in a module scale. Journal of Membrane Science:2013.427:431-442.
    [13]Zanini S, Riccardi C, CanevalC. i, Orlandi M, Zoia L, Tolppa E.L. Modifications of lignocellulosic fibers by Ar plasma treatments in comparison with biological treatments. Surface and Coatings Technology:2005.200(1-4):556-560.
    [14]Zhu Z, Zhou Y, Zhang W. Synthesis and sizing properties of graft starches as warp sizing materials for polyester/cotton blend spun yarn. J. Donghua Univ: 1994. (11):22-30.
    [15]Rausch J, Zhuang R.C, Mader E, Mater. Surfactant assisted dispersion of func-tionalized multi-walled carbon nanotubes in aqueous media.Technol:2009.24: 29-35.
    [16]陈丽华,吴少英,黄柏龄.浆液粘附性的研究[J].青岛大学学报(工程技术版):2000.(3):60-64.
    [17]石婷婷,王晓广,丁钟敏,陈波志.淀粉浆液表面能对浆纱粘附力的影响[J].棉纺织技术:2008.(9):13-15.
    [18]范雪荣,高卫东,王鸿博,赵凌云.经纱上浆浆液的粘附作用[J].棉纺织技术:1998.(1-12):14-14.
    [19]Tian Liqiang, Nie Huali, Chatterton Nicholas P, Branford-White Christopher J, Qiu Yiping, Zhu Limin. Helium/oxygen atmospheric pressure plasma jet treat-ment for hydrophilicity improvement of grey cotton knitted fabric. Applied Surface Science:2011.257(16):113-7118.
    [20]Navaneetha Pandiyaraj K, Selvarajan V. Non-thermal plasma treatment for hydrophilicity improvement of grey cotton fabrics. Journal of Materials Processing Technology:2008.199(1-3):130-139.
    [21]Sun D, Stylios G.K. Fabric surface properties affected by low temperature plas-ma treatment. Journal of Materials Processing Technology:2006.173(2):172-177.
    [22]Vohrer U, Muller M, Oehr C. Glow-discharge treatment for the modification of textiles. Surface and Coatings Technology:1998.98(1-3):1128-1131.
    [23]Nithya E, Radhai R, Rajendran R, Shalini S, Rajendran V, Jayakumar S. Syner-getic effect of DC air plasma and cellulase enzyme treatment on the hydrophili-city of cotton fabric. Carbohydrate Polymers:2011.83(4):1652-1658.
    [24]Lam YL, Kan CW, Yuen CWM. Physical and chemical analysis of plasma-treated cotton fabric subjected to wrinkle-resistant finishing. Cellulose:2011.18 (2):493-503.
    [25]Robert C. Wetherhold, Mathieu Corjon, Pradipta Kumar Das. Multiscale consi-derations for interface engineering to improve fracture toughness of ductile fiber/ thermoset matrix composites. Composites Science and Technology:2007.67 (11-12):2428-2437.
    [26]Savas Erdem, Andrew Robert Dawson, Nicholas Howard Thom. Microstructure-linked strength properties and impact response of conventional and recycled concrete reinforced with steel and synthetic macrofibres.Construction and Building Materials:2011.25(10):4025-4036.
    [27]Sung In-Ha, Lee Hyung-Suk, Kim Dae-Eun. Effect of surface topography on the frictional behavior at the micro/nano-scale. Wear:2003.254(10):1019-1031.
    [28]Ross J.D.J, Pollock H.M, Guo Q. Fine-scale adhesive and frictional interactions between ceramics. Powder Technology:1991.65(1-3):21-35.
    [29]Frank H. Chung. Unified Theory and Guidelines on Adhesion. J. Appl. Polym. Sci:1991.(42):1319-1331.
    [1]Topalovic T, Nierstrasz V.A, Bautista L, Jocic D, Navarro A, Warmoeskerken M.M.C.G. XPS and contact angle study of cotton surface oxidation by catalytic bleaching. Colloid Surf. A:2007.296:76.
    [2]Mitchell R, Carr C, Parfitt M, Vickerman J, Jones C. Surface chemical analysis of raw cotton fibres and associated materials. Cellulose:2005.12:629.
    [3]Rjiba N, Nardin M, Drean J, Frydrych R. A study of the surface properties of cotton fibers by inverse gas chromatography. J. Colloid Interface Sci:2007.314: 373.
    [4]Wunderlich W, Stegmaier T, Hager T, Planck H. Influence of prewetting of compact yarns on weaving behavior. Melliand Textilberichte:2005.86:813.
    [5]Sejri N, Harzallah O, Viallier P, Amar S.B, Nasrallah S.B. Influence of Pre-wetting on the Characteristics of a Sized Yarn. Text. Res. J:2008.78:326.
    [6]Ok H, Carr W.W, Park H. Single-end sizing of yarn using a slot applicator. Text. Res. J:2007.77:686.
    [7]Cheng J.C, Lai W.T, Chou C.Y, Lin H.H. Determination of sizing conditions for E class glass fibre yarn using Taguchi parameter design. Mater. Sci. Technol:2007. 23:683.
    [8]Stegmaier T, Wunderlich W. Influence of moisture on wettability and sizing properties of raw cotton yarns treated with He/O2 atmospheric pressure plasma jet. Int. Text. Bull:2003.49:38.
    [9]Rozelle W.N. Pre-wet sizing system bases on water atomization. Text World: 2001.151:28.
    [10]Benninger. Benninger:SaveSize pre-wet warp sizing. Text World:2000.150:42.
    [11]Burdell E.F. West point foundry machine co.:uni-squeeze high-pressure sizing. Text World:1984.134:83.
    [12]Li S, Jinjin D. Improvement of hydrophobic properties of silk and cotton by hexafluoropropene plasma treatment. Appl. Surf. Sci:2007.253:5051.
    [13]Morent R, De Geyter N, Verschuren J, De Clerck K, Kiekens P, Leys C. Non-thermal plasma treatment of textiles. Surf. Coat. Technol:2008.202:3427.
    [14]Mejia M.I, Marin J.M, Restrepo G. Self-cleaning modified TiO2 cotton pretreated by UVC-light (185nm) and RF-plasma in vacuum and also under atmospheric pressure. Appl. Catal. B:Environ:2009.91:481.
    [15]Xi M, Li Y.L, Shang S.Y, Li D.H, Yin Y.X, Dai X.Y. Surface modification of aramid fiber by air DBD plasma at atmospheric pressure with continuous on-line processing. Surf. Coat. Technol:2008.202:6029.
    [16]Ren Y, Wang C, Qiu Y. Aging of surface properties of ultra high modulus polyethylene fibers treated with He/O2 atmospheric pressure plasma jet. Surf. Coat. Technol:2008.202:2670.
    [17]Baltazar-y-Jimenez A, Bistritz M, Schulz E, Bismarck A. Review:current international research into cellulose nanofibres and nanocomposites. Compos. Sci. Technol:2008.68:215.
    [18]Cheng C, Zhang L, Zhan R. Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet. Surf. Coat. Technol:2006,200:6659.
    [19]Bozzi A, Yuranova T, Kiwi J. Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient tempe-rature. J. Photochem. Photobio. A Chem:2005.172:27.
    [20]Vohrer U, Muller M, Oehr C. Plasma modification of carbon nanotubes and bucky papers. Surf. Coat. Technol:1998.98:1128.
    [21]Lawton E.L, Ageing and degradation of poly (ethylene terephthalate) in an oxy-gen plasma. J. Appl. Polym. Sci:1974.18:1557.
    [22]Lawton E. L. Plasma treatment of cord:US,3,853,657.1974.
    [23]Wu Y, Wang S. Influence of moisture on wettability and sizing properties of raw cotton yarns treated with He/O2 atmospheric pressure plasma jet. Nucl. Instrum. Methods Phys. Res., Sect. B:2009.267:3137.
    [24]Bae P.H, Hwang Y.J, Jo H.J, Kim H.J, Lee Y, Park Y.K, Kim J.G, Jung J. Size removal on polyester fabrics by plasma source ion implantation device. Chemos- Phere:2006.63:1041.
    [25]Peng S, Gao Z, Sun J, Yao L, Qiu Y. Influence of argon/oxygen atmospheric dielectric barrier discharge treatment on desizing and scouring of poly (vinyl alcohol) on cotton fabrics. Appl. Surf. Sci:2009.255:9458.
    [26]Peng S, Gao Z, Sun J, Yao L, Wang C, Qiu Y. Influence of absorbed moisture on solubility of poly (vinyl alcohol) film during atmospheric pressure plasma jet treatment. Surf. Coat. Technol:2010.204:1222.
    [27]Peng S, Liu X, Sun J, Gao Z, Yao L, Qiu Y. Influence of absorbed moisture on desizing of poly (vinyl alcohol) on cotton fabrics during atmospheric pressure plasma jet treatment. Appl. Surf. Sci:2010.256:4103.
    [28]Sun S, Sun J, Yao L, Qiu Y. Wettability and sizing property improvement of raw cotton yarns treated with He/O2 atmospheric pressure plasma jet. Appl. Surf. Sci: 2011.257:2377.
    [29]Gao Z, Peng S, Sun J, Yao L, Qiu Y. The influence of moisture on atmospheric pressure plasma etching of PA6 films. Curr. Appl. Phys:2010.10(1):230-234.
    [30]Zhu L, Teng W, Xu H, Liu Y, Jiang Q, Wang C, Qiu Y. Effect of absorbed moisture on the atmospheric plasma etching of polyamide fibers. Surf. Coat. Technol:2008.202:1966.
    [31]Ren Y, Wang C, Qiu Y. Influence of aramid fiber moisture regain during atmos-pheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy. Appl. Surf. Sci:2007.253:9283.
    [32]Zhu L, Wang C, Qiu Y. Influence of the amount of absorbed moisture in nylon fibers on atmospheric pressure plasma processing. Surf. Coat. Technol:2007. 201:7453.
    [33]Wang C, Qiu Y. Two sided modification of wool fabrics by atmospheric pre-ssure plasma jet:Influence of processing parameters on plasma penetration. Surf. Coat. Technol:2007.201:6273.
    [34]Vasilev K, Mierczynska A, Hook A.L, Chan J, Voelcker N.H, Short R.D. Creating gradients of two proteins by differential passive adsorption onto a PEG-density gradient. Biomaterials:2010.31:392.
    [35]Barlak M, Piekoszewski J, Stanislawski J, Werner Z, Borkowska K, Chmielewski M, Sartowska B, Miskiewicz M, Starosta W, Walis L, Jagielski J. Wettability improvement of carbon ceramic materials by mono and multi energy plasma pulses. Fusion Eng. Des:2007.82:2524.
    [36]Asad S.S, Tendero C, Dublanche-Tixier C, Tristant P, Boisse-Laporte C, Leroy O, Leprince P. Effect of atmospheric microwave plasma treatment on organic lubricant on a metallic surface. Surf. Coat. Technol:2009.203:1790.
    [37]Chung F.H. Effect of surface properties on the adhesion between PVC and wood veneer laminates. J. Appl. Polym. Sci:1991.42:1319.
    [1].Bashar MM, Khan MA. An Overview on Surface Modification of Cotton Fiber for Apparel Use, J. Polym. Environ. Epub ahead of print 1 June 2012. DOI:10.1007/ s10924-012-0476-8.
    [2]. Nehrenberg DL. Polyvinyl alcohol (PVA) use in spun yarn sizing. In:Textile Slashing Short Course Proceedings, Auburn University, USA:1988:91.
    [3]. Xuegang L, Jiwei L and Xiaoyan L. Effect of Gelatinization and Additives on Morphology and Thermal Behavior of Corn Starch/PVA Blend Films. Carbohydr. Polym:2012.90:1595-1600.
    [4]. Sheng HL and Chi FP. Treatment of Textile Wastewater by Electrochemical Method. Water Res:1994.28:277-282.
    [5]. Jihua H and Qingshuang Z. The Development of Membrane Technology for Wastewater Treatment in the Textile Industry in China. Desalination:1994.98: 353-360.
    [6]. Rongrong L, Xujie L and Qing T, et al. The Performance Evaluation of Hybrid Anaerobic Baffled Reactor for Treatment of PVA-containing Desizing waste-water. Desalination:2011.271:287-294.
    [7]. Zhu ZF. Starch Mono-phosphorylation for Enhancing the Stability of Starch/PVA Blend Pastes for Warp Sizing. Carbohydr. Polym:2003.54:115-118.
    [8]. Jayasekara R and Harding I. et al. Preparation, Surface Modification and Characterisation of Solution Cast Starch PVA Blended Films. Polym. Test:2004. 23:17-27.
    [9]. Lawton JW and Fanta GF. Glycerol-plasticized Films Prepared from Starch Poly(vinyl alcohol) Mixtures:Effect of Poly(ethylene-eo-acrylic acid). Carbohydr. Polym:1994.23:275-280.
    [10]. Rong RP and YangY. Relationship between Plasticizer and Starch Size Film Property. Cotton Textile Technol (in Chinese):2009.37:84-86.
    [11]. Chinkap C, Myunghee L and Eun KC. Characterization of Cotton Fabric scou-ring by FT-IR ATR Spectroscopy. Carbohydr. Polym:2004.58:417-420.
    [12]. Li Y and Hardin IR. Treating Cotton with Cellulases and Pectinases:Effects of Cuticle and Fiber Properties. Textile Res. J:1998.69:671-679.
    [13]. Cai ZS and Qiu YP, et al. Effect of Atmospheric Plasma Treatment on Desizing of PVA on Cotton. Textile Res. J:2003.73:670-674.
    [14].Cheng SY, Yuen CWM and Kan CW, et al. Influence of Atmospheric Pressure Plasma Treatment on Various Fibrous Materials:Performance Properties and Surface Adhesion Analysis. Vacuum:2010.84:1466-1470.
    [15]. Borcia G Anderson CA and Brown NMD. Surface Treatment of Natural and Synthetic Textiles Using a Dielectric Barrier Discharge. Surf. Coat. Technol: 2006.201:3074-3081.
    [16]. Sorrentino L and Carrino L.2024 Aluminium Alloy Wettability and Superficial Cleaning Improvement by Air Cold Plasma Treatment. J. Mater. Process. Technol:2009.209:1400-1409.
    [17]. Navinsek B, Panjan P and Milosev I. PVD Coatings As an Environmentally Clean Alternative to Electroplating and Electroless Processes. Surf. Coat. Technol:1999.116-119:476-487.
    [18]. Brain E, Ahmed ES and Peter H, et al. Towards Flame Retardant Cotton Fabrics by Atmospheric Pressure Plasma-induced Graft Polymerization:Synthesis and Application of Novel Phosphoramidate Monomers. Surf. Coat. Technol:2012. 209:73-79.
    [19]. Wu Y and Wang SG. The Research about the Time-effect of the Wettability on the Wool Surface Treated by the Ar Plasma Jet in the Atmospheric Pressure. Nucl. Instrum. Methods Phys. Res., Sect. B:2009.267:3137-3139.
    [20]. Wu Y and Wang SG, et al. A Preliminary Study on the Wettability and Sizing Property of the Cotton Treated by Atmospheric Pressure Plasma Jet. In: Processing of the international conference on advanced textile materials & manufacturing technology, Hangzhou, China:2008.67-69.
    [21]. Cui YH, Lu W and Diao Y, et al. Study on Atmospheric Pressure Plasma Treatment to Improve Sizing Performance of Pure Polyester and Polyester /Cotton Yarns. Journal of Donghua University (Eng. Ed.):2011.28:409-412.
    [22]. Wang C and Qiu Y. Two Sided Modification of Wool Fabrics by Atmospheric Pressure Plasma Jet:Influence of Processing Parameters on Plasma Penetration. Surf. Coat. Technol:2007.201:6273-6277.
    [23]. Li X and Niu J. Main Affect Factors and Ensuring Measurement Analysis for Sizing Rate. Journal of Zhongyuan University of Technology (in Chinese) 2009; 21:73-75.
    [24]. Tian L and Nie H, et al. Helium/oxygen Atmospheric Pressure Plasma Jet Treatment for Hydrophilicity Improvement of Grey Cotton Knitted Fabric. Appl. Surf. Sci 2011; 257:7113-7118.
    [25]. Kartick Kumar Samanta, Manjeet Jassal and Ashwini K. A. Improvement in Water and Oil Absorbency of Textile Substrate by Atmospheric Pressure Cold Plasma Treatment. Surf. Coat. Technol:2009.203:1336-1342.
    [26]. Frank HC. Unified Theory and Guidelines on Adhesion. J. Appl. Polym. Sci: 1991.42:1319.
    [1]Padma S. Vankar, Rakhi Shanker. Ecofriendly ultrasonic natural dyeing of cotton fabric with enzyme pretreatments. Desalination:2008.230(1-3):62-69.
    [2]Tian Liqiang, Branford-White C., Wang Wen, Nie Huali, Zhu Limin. Laccase-mediated system pretreatment to enhance the effect of hydrogen peroxide bleaching of cotton fabric. International Journal of Biological Macromolecules: 2012.50(3):782-787.
    [3]Phattanarudee S, Chakvattanatham K, Kiatkamjornwong S. Pretreatment of silk fabric surface with amino compounds for ink jet printing. Progress in Organic Coatings:2009.64(4):405-418.
    [4]Saurabh Sudha Dhiman, Jitender Sharma, Bindu Battan.Pretreatment processing of fabrics by alkalothermophilic xylanase from Bacillus stearothermophilus SDX. Enzyme and Microbial Technology:2008.43(3):262-269.
    [5]Zhao Jie, Shi Qiang, Luan Shifang, Song Lingjie, Yang Huawei, Shi Hengchong, Jin Jing, Li Xinglin, Yin Jinghua, Stagnaro Paola. Improved biocompatibility and antifouling property of polypropylene non-woven fabric membrane by surface grafting zwitterionic polymer. Journal of Membrane Science:2011.369(1-2):5-12.
    [6]冯开隽,薛嘉栋.印染前处理[M].北京:中国纺织出版社,2006:145-196.
    [7]Padma S. Vankar, Rakhi Shanker. Ecofriendly ultrasonic natural dyeing of cotton fabric with enzyme pretreatments. Desalination:2008.230(1-3):62-69.
    [8]Padma S. Vankar, Rakhi Shanker, Avani Verma. Enzymatic natural dyeing of cotton and silk fabrics without metal mordants. Journal of Cleaner Production: 2007.15(15):1441-1450.
    [9]Ibrahim N.A, Fahmy H.M, Hassan T.M, Mohamed Z.E. Effect of cellulase treatment on the extent of post-finishing and dyeing of cotton fabrics. Journal of Materials Processing Technology:2005.160(1):99-106.
    [10]Wang Qiang, Fan Xue-Rong, Hua Zhao-Zhe, Chen Jian. Optimizing bioscouring condition of cotton knitted fabrics with an alkaline pectinase from Bacillus subtilis WSHB04-02 by using response surface methodology. Biochemical Engineering Journal:2007.34(2):107-113.
    [11]Emilia Csiszar, Anita Losonczi, George Szakacs, Istvan Rusznak, Laszl6 Bezur, Johanna Reicher. Enzymes and chelating agent in cotton pretreatment. Journal of Biotechnology:2001.89(2-3):271-279.
    [12]Amira El Shafie, Moustafa M.G. Fouda, Mohamed Hashem. One-step process for bio-scouring and peracetic acid bleaching of cotton fabric. Carbohydrate Polymers:2009.78(2):302-308.
    [13]Souza AA, Ferreira FCS and Souza SMA, et al. Influence of pretreatment of cotton yarns prior to biopolishing. Carbohydrate Polymers:2013.93(2):412-415.
    [14]宋心远,沈煜如.活性染料染色[M].北京:中国纺织出版社.2009:135-185.
    [15]Alenka Vesel, Miran Mozetic, Simona Strnad, Zdenka Persin, Karin Stana-Kleinschek, Nina Hauptman. Plasma modification of viscose textile, Vacuum: 2009.84(1):79-82.
    [16]H.U. Poll, U. Schladitz, S. Schreiter. Penetration of plasma effects into textile Structures. Surface and Coatings Technology:2001.142-144:489-493.
    [17]U. Vohrer, M. Muller, C. Oehr. Glow-discharge treatment for the modification of Textiles. Surface and Coatings Technology:1998.98 (1-3):1128-1131.
    [18]Frederic Leroux, Christine Campagne, Anne Perwuelz, Leon Gengembre. Atmospheric air plasma treatment of polyester textile materials. Textile structure influence on surface oxidation and silicon resin adhesion. Surface and Coatings Technology:2009.203(20-21):3178-3183.
    [19]Tsafack M.J, Levalois-Griitzmacher J. Towards multifunctional surfaces using the plasma-induced graft-polymerization (PIGP) process:Flame and waterproof cotton textiles. Surface and Coatings Technology:2007.201(12):5789-5795.
    [20]Kartick Kumar Samanta, Manjeet Jassal, Ashwini K. Agrawal. Improvement in water and oil absorbency of textile substrate by atmospheric pressure cold plas-ma treatment. Surface and Coatings Technology:2009.203(10-11):1336-1342.
    [21]Antonino Raffaele-Addamo, Elena Selli, Ruggero Barni, Claudia Riccardi, Francesco Orsini, Giulio Poletti, Laura Meda, Maria Rosaria Massafra, Bruno Marcandalli. Cold plasma-induced modification of the dyeing properties of poly(ethylene terephthalate) fibers. Applied Surface Science:2006.252(6): 2265-2275.
    [22]Mahmood Ghoranneviss, Sheila Shahidi, Abbas Anvari, Zahra Motaghi, Jakub Wiener, Irena Slamborova. Influence of plasma sputtering treatment on natural dyeing and antibacterial activity of wool fabrics. Progress in Organic Coatings: 201170(4):388-393.
    [23]N.A. Ibrahim, M. El-Hossamy, M.M. Hashem, R. Refai, B.M. Eid. Novel Pre- treatment processes to promote linen-containing fabrics properties. Carbohydrate Polymers:2008.74(4):880-891.
    [24]Sun Shiyuan, Qiu Yiping. Influence of moisture on wettability and sizing properties of raw cotton yarns treated with He/02 atmospheric pressure plasma jet. Surface and Coatings Technology:2012.206(8-9):2281-2286.
    [25]Tian Liqiang, Nie Huali, Chatterton Nicholas P, Branford-White Christopher J, Qiu Yiping, Zhu Limin. Helium/oxygen atmospheric pressure plasma jet treatment for hydrophilicity improvement of grey cotton knitted fabric. Applied Surface Science:2011.257(16):7113-7118.
    [26]Li Xuming, Qiu Yiping. The application of He/02 atmospheric pressure plasma jet and ultrasound in desizing of blended size on cotton fabrics. Applied Surface Science:2012.258(19):7787-7793.
    [27]Ryota Kakei, Akihisa Ogino, Futoshi Iwata, Masaaki Nagatsu. Production of ultrafine atmospheric pressure plasma jet with nano-capillary,Thin Solid Films: 2010.518(13):3457-3460.
    [28]Wang C.X, Liu Y, Xu H.L, Ren Y, Qiu Y.P. Influence of atmospheric pressure plasma treatment time on penetration depth of surface modification into fabric, Applied Surface Science:2008.54(8):2499-2505.
    [29]Chong C L, Li S Q, Yeung K W. An objective method for the assessment of levelness of dyed materials, J. S. D. C:1992.108:528.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700