Mn/TiO_2系列低温SCR脱硝催化剂制备及其反应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选择性催化还原(SCR)脱除烟气中NO_x是大气污染控制领域的一个重要课题。近年来,低温SCR由于具有明显的节能特点和潜在的工业应用价值,正成为研究热点。但就目前国内外的研究进展而言,低温范围内催化剂活性不高、活性物质分散性较差、反应机理不够明确等仍是低温SCR脱硝技术走向实际应用的主要障碍。本文针对以上主要问题,以Mn/TiO_2作为基础组分,进行了低温SCR脱硝技术研究。
     本文首先对制备方法进行了筛选。对溶胶—凝胶法、浸渍法和共沉淀法三种不同方法制备得到的催化剂活性比较结果表明,溶胶—凝胶法制备得到的催化剂纳米结构更为丰富,活性物质分散性更好,对NO的脱除率更高。可见,溶胶—凝胶法是一种较为理想的低温SCR催化剂制备方法。
     其次,针对上述溶胶—凝胶法制备的催化剂,系统研究了低温SCR的优化操作条件,主要包括催化剂Mn/Ti比、催化剂焙烧温度、反应空速、反应系统中O_2和NH_3的浓度,以及在瞬态反应中O_2和NH_3的作用。此外,分析了催化反应的动力学过程,确定了反应级数和反应速率常数,并由此得到了Mn(0.4)/TiO_2的表观反应活化能。
     为缓解催化剂制备过程中活性物质的烧结团聚,将过渡金属元素引入到催化剂体系中制备成三元催化剂,结果表明过渡金属元素的掺杂能够大幅度提高催化剂的活性。结合BET、XRD、XPS、TEM等表征手段,发现经过渡金属元素掺杂后催化剂的纳米结构和活性物质的分散性均得到有效改善,能更有效地脱除NO。
     基于以上研究结果,研究了催化反应过程及反应机理。发现由于过渡金属元素Fe的掺杂,增加了活性组分——配位态NH_3形成的可能性,并降低了催化剂表面硝酸盐的稳定性,使硝酸盐由活性位的侵占物质转化为反应的活性中间体,从而使反应从不同的途径发生,形成了双反应通道。
     最后,本文开展了催化剂抗硫性能的探索研究。制备了含Zr的低温SCR催化剂,并采用TG-DSC、XPS、DRIFT等表征手段,研究了催化剂表面S的存在形式以及对反应过程的影响,得出了SO_2造成催化剂失活的反应机理。同时发现Zr的掺杂可在一定程度上缓解催化剂的SO_2失活现象。
The selective catalytic reduction (SCR) is an important commercial process to control NO_x from stationary sources. Recently, low-temperature SCR has attracted interests for its energy efficiency and potential application. However, the activity of the catalysts is still not very high in low-temperature range, and the dispersion of active component is not good enough. Furthermore, the reaction mechanism is not very clear. These disadvantages limit the industrial application of low-temperature SCR. In order to solve these problems, the low-temperature SCR system was investigated by using the catalysts base on Mn/TiO_2.
     Firstly, to improve the dispersion of active component in the catalysts, sol-gel catatlyst preparing method was introduced. From the comparison of catalysts prepared by sol-gel, impregnation and coprecipitation methods, it was found that the nano-structure and the dispersion of active component of catalysts prepared by sol-gel method were both improved, leading to higher catalytic activity. Therefore, sol-gel method was a potential one to prepare low-temperature SCR catalyst.
     Secondly, base on the catalysts prepared by sol-gel method, the operating parameters were investigated, including the ratio of Mn/Ti, the calcination temperature, O_2 concentration, NH3 concentratoin, and the transient effect of the O_2 and NH_3. Furthermore, the kinetic study of the reaction was carried out. The reaction order and the rate constant were determined, and the apparent activation energy was also calculated.
     To retard the sintering of the active component, the transition metals were added to the catalysts. From the characterization of the catalysts by BET, XRD, XPS and TEM, it was found that the nano-structure of the catalysts and the dispersion of the active component were both improved, which contributed to higher NO removal.
     Furthermore, the reaction process and the mechanism were studied. With the addition of transition metal Fe, the coordinated NH3 was easier to be formed. The stability of the nitrate decreased, and nitrate was transformed to be an active intermediate in the reaction. Thus, the reaction could take place in another way.
     Finally, the resistance to SO_2 of the catalysts was also investigated. Zr was added to the catalyst. TG-DSC, XPS and DRIFT were used to investigate the state of S over the catalysts and its influence on the reaction. The mechanism of deactivation was studied. And it was found that the resistance to SO_2 of the Zr modified catalysts was enhanced.
引文
[1]K.C.Taylor,Nitric oxide catalysis in automotive exhaust systems.Catal.Rev.Sci.Eng.1993,35:457-481.
    [2]J.N.Armor,Environmental catalysis.Appl.Catal.B 1992,1:221-256.
    [3]郝吉明,马广大,大气污染控制工程,高等教育出版社,2002
    [4]M.Radojevic,Reduction of nitrogen oxide in flue gases.Environ.Pollut.1998,102:685-689.
    [5]J.N.Armor,Catalytic solutions to reduce pollutants.Catal.Today 1997,38:163-167.
    [6]H.H.Phil,M.P.Reddy,P.A.Kumar,L.K.Ju,J.S.Hyo,SO2 resistant antimony promoted V_2O_5/TiO_2 catalyst for NH_3-SCR of NO_x at low temperatures.Appl.Catal.B 2008,78:301-308.
    [7]郑小明,周仁贤,环境保护中的催化治理技术.化学工业出版社,2003
    [8]L.J.Alemany,F.Berti,G.Busca,Characterization and composition of commercial V_2O_5-WO_3-TiO_2 SCR catalysts.Appl.Catal.B 1996,10:299-311.
    [9]R.Khodayari,C.U.I.Odenbrand,Regeneration of commercial TiO_2-V_2O_5-WO_3 SCR catalysts used in bio fuel plants.Appl.Catal.B 2007,30:87-99.
    [10]M.Gerloch,E.C.Constable,Transition metal chemistry.VCH Publisher,New York,NY(USA),1994.
    [11]F.Kapteijn,L.Singoredjo,A.Andreini,Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia.Appl.Catal.B 1994,3:173-189.
    [12]T.Yamashita,A.Vannice,N_2O decomposition over manganese oxides.J.Catal.1996,161:254-262.
    [13]T.Yamashita,Albert Vannice,NO decomposition over Mn_2O_3 and Mn_3O_4.J..Catal.1996,163:158-168.
    [14]T.Ymashita,A.Vannice,Temperature-programmed desorption of NO adsorbed on Mn_2O_3 and Mn_3O_4.Appl.Catal.B 1997,17:141-155.
    [15]G.Carja,Y.Kameshima,K.Okada,C.D.Madhusoodana,Mn-Ce/ZSM as a new superior catalyst for NO reduction with NH_3.Appl.Catal.B 2007,73:60-64.
    [16]H.J.Chae,I.Nam,S.Ham,S.B.Hong,Characteristics of vanadia on the surface of V_2O_5/Ti-PILC catalyst for the reduction of NO_x by NH_3.Appl.Catal.B 2004,53:117-126.
    [17]吴忠标,蒋新,赵伟荣,环境催化原理及应用.化学工业出版社,2006.
    [18]吕宏俊,选择性催化还原脱硝工艺的布置方式及分析.中国环保产业.2007,5:41-45.
    [19]B.Wichterlava,P.Sazama,J.P.Breen,R.Burch,C.J.Hill,L.Capek,Z.Sobalik,An in sity UV-vis and FTIR spectroscopy study of the effect of H_2 and CO during the selective catalytic reduction of nitrogen oxides over a silver alumina catalyst.J.Catal.2005,235:195-200.
    [20]G.Busca,L.Lietti,G.Ramis,F.Berti,Chemical and mechanistic aspects of the selective catalytic reduction of NO_x by ammonia over oxide catalysts:A review.Appl.Catal.B 1998,18: 1-36.
    [21]C.Centi,S.Perathoner,Nature of active species in copper-based catalysts and their chemistry of transformation of nitrogen oxides.Appl.Catal.A 1995,132:179-259.
    [22]J.N.Armor,Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen:A review.Catal.Today 1995,26:147-158.
    [23]M.Shelef,Selective Catalytic Reduction of NOx with N-Free Reductants.Chem.Rev.1995,95:209-225.
    [24]Z.Li,M.Flytzani-Stephanopoulos,On the promotion of Ag-ZSM-5 by Cerium for the SCR of NO by methane,J.Catal.1999,182:313-327.
    [25]S.Sato,Y.Yu-u,H.Yahiro,N.Mizuno,M.Iwamoto,Cu-ZSM-5 zeolite as highly active catalyst for removal of nitrogen monoxide from emission of diesel engines.Appl.Catal.1991,70:L1-L5.
    [26]吴阿峰,李明伟,黄涛,谭灿燊,烟气脱硝技术及其技术经济分析.中国电力.2006,39:71-75.
    [27]S.M.Katzberger,D.G.Sloat,Options are increasing for reducing emissions of SO_2 and NO_x.Power Eng.1988,92:30-33.
    [28]V.R.Kotler,日本火电厂降低氮氧化物排放量的措施.国际电力.1999,3:57-61.
    [29]王海强,吴忠标,烟气氮氧化物脱除技术的特点分析.能源与环境.2004,3:27-30
    [30]余刚,余奇,翟晓东,顾璠,徐益谦,等离子体脱硝与等离子体催化联合脱硝的对比实验研究.动力工程.2005,2:284-288.
    [31]赵建荣,湿法吸收法处理氮氧化物废气.江苏环境科技.1999,12:9-11.
    [32]H.Nymoen,D.van Velzen,H.Langenkamp,Absorption of NO in aqueous solutions of Fe(Ⅱ)EDTA:determination of the equilibrium constant.Chem.Eng.Process.1993,32:9-12.
    [33]M.Teramoto,S.Hiramine,Y.Shimada,Y.Sugimoto and H.Teranishi,Absorption of dilute nitric monoxide in aqueous solutions of Fe″EDTA and Na_2SO_3,J.Chen.Eng.Jpn.1978,11:450-457.
    [34]W.Weiseiler,R.Blumhofer,T.Westermann,Absorption of nitrogen monoxide in aqueous solutions containing sulfite and transition-metal chelates such as Fe(Ⅱ)-EDTA,Fe(Ⅱ)-NTA,Co(Ⅱ)-Trien and Co(Ⅱ)-Tetren.Chem.Eng.Process.1986,20:155-166.
    [35]N.Lin,D.Littlejohn,S.G.Chang,Thermodynamics and kinetics of coordination of nitric oxide to iron(Ⅱ)NTA in aqueous solutions.Ind.Eng.Chem.,Process Des.Dev.1982,21:725-728.
    [36]K.J.Rudzinski,E.Sada,H.Kumazawa,Kinetics of iron(Ⅲ)EDTA reduction by sodium sulfite.Ind.Eng.Chem.Res.1987,26:2012-2015.
    [37]E.Sada,H.Kumazawa,H.Hikosaka,A kinetic study of absorption of nitrogen oxide(NO)into aqueous solutions of sodium sulfite with added iron(Ⅱ)-EDTA chelate.Ind.Eng.Chem.Fundam. 1986,25:386-390.
    [38]E.Sada,H.Kumazawa,H.Machida,Absorption of dilute nitric oxide into aqueous solutions of sodium sulfite with added iron(Ⅱ)NTA and reduction kinetics of iron(Ⅲ)NTA by sodium sulfite.Ind.Eng.Chem.Res.1987,26:2016-2019.
    [39]王仲霞,干法氮氧化物脱除技术的发展状况及其工业应用.河北化工.2005,5:28-30.
    [40]N.V.Economidis,D.A.Pena,P.G.Smirniotis.Comparison of TiO_2-based oxide catalysts for the selective catalytic reduction of NO:effect of aging the vanadium precursor solution.Appl.Catal.B.1999,23:123-134.
    [41]N.Y Tops(?)e,J.A.Dumesic,H.Tops(?)e,Vanadia-titania catalysts for selective catalytic reduction of nitric-oxide by ammonia:Ⅱ.Studies of active sites and formulation of catalytic cycles.J.Catal.1995,151:241-252.
    [42]N.U.Zhanpeisov,S.Higashimoto,M.Anpo,Selective catalytic reduction of nitric oxide with ammonia:a theoretical Ab initio Study.Int.J.Quantum.Chem.2001,84:677-685.
    [43]G.T.Went,L.J.Leu,S.J.Lombardo,A.T.Bell.Raman spectroscopy and thermal desorption of ammonia adsorbed on titania(anatase)-supported vanadia,J.Phys.Chem.1992,96:2235-2241.
    [44]L.Lietti,J.Svachula,P.Forzatti,G.Busca,G.Ramis,P.Bregani,Surface and catalytic properties of Vanadia-titania and tungsta-titania systems in the selective catalytic reduction of nitrogen oxides.Catal.Today 1993,17:131-139.
    [45]L.Casagrande,L.Lietti,I.Nova,P.Forzatti,A.Baiker.SCR of NO by NH_3 over TiO_2-supported V_2O_5-WO_3 catalysts:reactivity and redox behavior.Appl.Catal.B 1999,22:63-77.
    [46]L.Lietti,P.Forzatti,F.Bregani,Steady-state and transient reactivity study of TiO_2-supported V_2O_5-WO_3 De-NO_x catalysts:Relevance of the vanadium-tungsten interaction on the catalytic activity.Ind.Eng.Chem.Res.1996,35:3884-3892.
    [47]L.Lietti,I Nova,G.Ramis,L.Dall'Acqua,G.Busca,E.Giamello,P.Forzatti,F.Bregani,Characterization and reactivity of V_2O_5-MoO_3/TiO_2 de-NO_x SCR catalysts.J.Catal.1999,187:419-435.
    [48]R.Willi,B.Roduit,R.A.Koeppel,A.Wokaun,A.Baiker.Selective reduction of NO by NH_3over vanadia-based commercial catalyst:parametric sensitivity and kinetic modeling.Chem.Eng.Sci.1996,51:2897-2902.
    [49]T.Z.Srnak,J.A.Dumesic,B.S.Clausen,E.Tornqvist,Temperature-programmed desorption/reaction and in situ spectroscopic studies of vanadia/titania for catalytic reduction of nitric oxide.J.Catal.1992,135:246-262.
    [50]C.Cristiani,M.Bellotto,P.Forzatti,F.Bregani,On the morphological properties of tungsta-titania de-NO_xing catalysts.J.Mater Res.1993,8:2019-2025.
    [51] J.M.G. Amores, V.S. Escribano, G. Busca, Anatase crystal growth and phase transformation to rutile in high-area TiO_2, MoO_3-TiO_2 and other TiO_2-supported oxide catalytic systems. J. Mater.Chem. 1995, 5: 1245-1249.
    [52] C. Orsenigo, L. Lietti, E. Tronconi, P. Forzatti, F. Bregani, Dynamic investigation of the role of the surface sulfates in NO_x reduction and SO_2 oxidation over V_2O_5-WO_3/TiO_2 catalysts. Ind.Eng. Chem. Res. 1998, 37: 2350-2359.
    [53] P. Forzatti, Environmental catalysis for stationary applications. Catal. Today 2000, 62: 51 -65.
    [54] J.P. Chen, R.T. Yang, Selective catalytic reduction of NO with NH_3 on SO_4~(2-)/TiO_2 superacid catalyst. J. Catal. 1993, 139:277-288.
    [55] O. Saur, M. Bensitel, A.B. Mohammad Saad, J.C. Lavalley, C.P. Tripp, B.A. Morrow, The structure and stability of sulfated alumina and titania. J. Catal. 1986,99: 104-110.
    [56] T.S. Park, S.K. Jeong, S.H. Hong, S.C. Hong, Selective catalytic reduction of nirogen oxides with NH_3 over natural manganese ore at low temperature. Ind. Eng. Chem. Res. 2001, 40:4491-4495.
    [57] G Qi, R.T.Yang, Low-temperature selective catalytic reduction of NO with NH_3 over iron and manganese oxides supported on titania. Appl. Catal. B 2003, 44: 217-225.
    [58] B.L. Duffy, H.E. Curryhyde, N.W. Cant, P.F. Nelson, ~(15)N-labeling studies of the effect of water on the reduction of NO with NH_3 over chromia SCR catalysts in the absence and presence of O_2. J. Catal. 1995, 154: 107-114.
    [59] H.E. Curry-hyde, H. Musch, A. Baiker, Selective catalytic reduction of nitric oxide over amorphous and crystalline chromia: I. Comparative study of activities. Appl. Catal. 1990, 65: 211-223.
    [60] K. Kohler, J. Engweiler, H. Viebrock, A. Baiker, Chromium oxide supported on titania: preparation of highly dispersed Cr(Ⅲ) systems by grafting. Langmuir 1995, 11: 3423-3430.
    [61] R. Willi, M. Maciejewski, U. Gobel, R.A. Koppel, A.Bailer, Selective teduction of NO by NH_3 over chromia on titania catalyst: investigation and modeling of the kinetic behavior. J. Catal. 1997, 166:356-367.
    [62] G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur, R.J. Willey, Adsorption, activation, and oxidation of ammonia over SCR catalysts. J. Catal. 1995, 157: 523-535.
    [63] I. Giakoumelou, C. Fountzoula, C. Kordulis, S. Boghosian, Molecular structure and catalytic activity of V_2O_5/TiO_2 catalysts for the SCR of NO by NH_3: in situ Raman spectra in the presence of O_2, NH_3, NO, H_2, H_2O, and SO_2. J. Catal. 2006, 239: 1-12.
    [64] A. Kato, S. Matsuda, F. Nakajima, M. Imanari, Y. Watanabe, Reduction of nitric oxide with ammonia on iron oxide-titanium oxide catalyst. J. Phys. Chem. 1981, 85: 1710-1713.
    [65] M. Wallin, S. Forser, P. Thormahlen, M. Skoglundh, Screening of TiO_2-supported catalysts for selective NO_x reduction with ammonia. Ind. Eng. Chem. Res. 2004, 43: 7723-7731.
    [66] D.A. Pena, B.S. Uphade, P.G. Smirniotis, TiO_2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH_3:Ⅰ. evaluation and characterization of first row transition metals. J. Catal. 2004,221:421 -431.
    [67] G. Xie, Z. Liu, Z. Zhu, Q. Liu, J. Ge, Z, Huang, Simultaneous removal of SO_2 and NO_x from flue gas using a CuO/Al_2O_3 catalyst sorbent: Ⅰ. Deactivation of SCR activity by SO_2 at low temperatures. J. Catal. 2004, 224: 36-41.
    [68] J.P. Chen, R.T. Yang, M.A. Buzanowski, J.E. Cichanowicz, Cold selective catalytic reduction of nitric oxide for flue gas applications. Ind. Eng. Chem. Res. 1990, 29: 1431-1435.
    [69] L. Singoredjo, R. Korver, F. Kapteijn, J. Moulijn, Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia. Appl. Catal. B 1992, 1:297-316.
    [70] W.C. Wong, K. Nobe, Reduction of nitric oxide with ammonia on alumina- and titania-supported metal oxide catalysts. Ind. Eng. Chem. Prod. Res. Dev. 1986, 25: 179-186.
    [71] E.V. Kondratenko, V.A. Kondratenko, M. Richter, R. Fricke, Influence of O_2 and H_2 on NO reduction by NH_3 over Ag/Al_2O_3: a transient isotopic approach. J. Catal. 2006, 239: 23-33.
    [72] J. Muniz, G. Marban, A.B. Fuertes, Low temperature selective catalytic reduction of NO over modified activated carbon fibers. Appl. Catal. B 2000, 27: 27-36.
    [73] Y. Komatsubara, S. Ida, H. Fujitsu, I. mochida, Catalytic activity of PAN-based active carbon fibre (PAN-ACF) activated with sulphuric acid for reduction of nitric oxide with ammonia, Fuel 1984,63: 1738-1742.
    [74] S. Matzner, H.P. Boehm, Influence of nitrogen doping on the adsorption and reduction of nitric oxide by activated carbons. Carbon 1998, 36: 1697-1703.
    [75] G.S. Szymanski, T. Grzybek, H. Papp, Influence of nitrogen surface functionalities on the catalytic activity of activated carbon in low temperature SCR of NO_x with NH_3. Catal. Today 2004,90:51-59.
    [76] E. Garc(?)a-Bordej(?), J.L. Pinilla, M.J. L(?)zaro, R. Moliner, NH_3-SCR of NO at low temperatures over sulphated vanadia on carboncoated monoliths: effect of H_2O and SO_2 traces in the gas feed. Appl. Catal. B 2006, 66: 281-287.
    [77] Z. Zhu, Z. Liu, S. Liu, H. Niu, A novel carbon-supported vanadium oxide catalyst for NO reduction with NH_3 at low temperature, Appl. Catal. B 1999, 23: L229-L233.
    [78] Z. Zhu, H. Niu, Z. Liu, S. Liu, Decomposition and reactivity of NH_4HSO_4 on V_2O_5/AC catalysts used for NO reduction with ammonia. J. Catal. 2000, 195: 268-278.
    [79] R. Moreno-Tost, J. Santamar(?)a-Gonz(?)lez, P. Maireles-Torres, E. Rodr(?)guez-Castell(?)n, A. Jim(?)nez-L(?)pez, Cobalt supported on zirconium doped mesoporous silica: a selective catalyst for reduction of NO with ammonia at low temperatures. Appl. Catal. B 2002, 38: 51-60.
    [80] G. Qi, R.T. Yang, Low-temperature SCR of NO with NH_3 over noble metal promoted Fe-ZSM-5 catalysts. Catal.Lett. 2005,100:243-246.
    [81] M. Richter, A. Trunschke, Y. Bentrup, K.W. Brzezinka, E. Schreier, M. Schneider, M.M. Pohl, R. Fricke, Selective catalytic reduction of nitric oxide by ammonia over egg-shell MnO_x/NaY composite catalysts. J. Catal. 2002,206: 98-113.
    [82] G. Qi, R.T. Yang, R. Chang, Low-temperature SCR of NO with NH_3 over USY-supported manganese oxide-based catalysts. Catal. Lett. 2003, 87: 67-71.
    [83] W.S. Kijlstra, D.S. Brands, H.I. Smit, E.K. Poels, A. Bliek, Mechanism of the selective catalytic reduction of NO by NH_3 over MnO_x/Al_2O_3, J. Catal. 1997, 171:219-230.
    [84] W.S. Kijlstra, D.S. Brands, E.K. Poels, A. Bliek, Mechanism of the Selective catalytic reduction of NO by NH_3 over MnO_x/Al_2O_3. J. Catal. 1997, 171: 208-218.
    [85] G. Marb(?)n, T. Vald(?)s-Sol(?)s, A.B. Fuertes, Mechanism of low-temperature selective catalytic reduction of NO with NH_3 over carbon-surpported Mn_3O_4 role of surface NH_3 species: SCR mechanism. J. Catal. 2004,226: 138-155.
    [86] G. Qi, R.T. Yang, Performance and kinetics study for low-temperature SCR of NO with NH_3 over MnO_x-CeO_2 catalyst. J. Catal. 2003, 217: 434-441.
    [87] W.S. Kijlstra, E.K. Poels, A. Bliek, B.M. Weckhuysen, R.A. Schoonheydt, Characterization of Al_2O_3-supported manganese oxides by electron spin resonance and diffuse reflectance spectroscopy. J. Phys. Chem. B 1997, 101: 309-316.
    [88] G. Qi, R.T. Yang, R. Chang, MnO_x-CeO_2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH_3 at low temperatures. Appl. Catal. B 2004, 51: 93-106.
    [89] F. Kapteijn, L. Singoredjo, N.J. Dekker, J.A. Moulijn, Kinetics of the selective catalytic reduction of nitrogen oxide (NO) with ammonia over manganese oxide (Mn_2O_3)-tungsten oxide (WO_3)/gamma-alumina. Ind. Eng. Chem. Res. 1993, 32: 445-452.
    [90] K. Bourikas, C. Fountzoula, C. Kordulis, Monolayer transition metal supported on titania catalysts for the selective catalytic reduction of NO by NH_3. Appl. Catal. B 2004, 52: 145-153.
    [91] F. Delbecq, P. Sautet, Electronic and chemical properties of the Pt_(80)Fe_(20)( 111) alloy surface: a theoretical study of the adsorption of atomic H, CO, and unsaturated molecules. J. Catal. 1996, 164: 152-165.
    [92] M. Kang, E.D. Park, J.M. Kim, J.E. Yie, Cu-Mn mixed oxides for low temperature NO reduction with NH_3. Catal. Today 2006, 111: 236-241.
    [93] R.Q. Long, R.T. Yang, FTIR and kinetic studies of the mechanism of Fe~(3+)-exchanbed TiO_2-pillared clay catalyst for selective catalytic reduction of NO with ammonia. J. Catal. 2000, 190:22-31.
    [94] G. Qi, R.T. Yang, Characterization and FTIR studies of MnO_x-CeO_2 catalyst for low-temperature selective catalytic reduction of NO with NH_3. J. Phys. Chem. B 2004, 108: 15738-15747.
    [95] S. Imamura, M. Shono, N. Okamoto, A. Hamada, S. Ishida, Effect of cerium on the mobility of oxygen on manganese oxides. Appl. Catal. A 1996, 142: 279-288.
    [96] H.Y. Huang, R.T. Yang, Removal of NO by reversible adsorption on Fe-Mn based transition metal oxides. Langmuir 2001, 17: 4997-5003.
    [97] M. Machida, D.Kurogi, T. Kijima, NO_x storage and reduction characteristics of Pd/MnO_x-CeO_2 at low temperature. Catal. Today 2003, 84: 201-207.
    [98] M. Mihaylov, K. Chakarova, K. Hadjiivanov, Formation of carbonyl and nitrosyl complexes on titania- and zirconia-supported nickel: FTIR spectroscopy study. J. Catal. 2004, 228:273-281.
    [99] T. Venkov, M. Dimitrov, K. Hadjiivanov, FTIR spectroscopic study of the nature and reactivity of NO_x compounds formed on Cu/Al_2O_3 after coadsorption of NO and O_2. J. Mol. Catal. A 2006,243:8-16.
    [100] Y.H. Yeom, B. Wen, W.M.H. Sachtler, E. Weitz, NO_x reduction from diesel emissions over a nontransition metal zeolite catalyst: a mechanistic study using FTIR spectroscopy. J. Phys. Chem. B 2004, 108: 5386-5404.
    [101] H. Abdulhamid, J. Dawody, E. Fridell, M. Skoglundh, A combined transient in situ FTIR and flow reactor study of NO_x storage and reduction over M/BaCO_3/Al_2O_3 (M=Pt, Pd or Rh) catalysts. J. Catal. 2006,244:169-182.
    [102] A. Trovarelli, Catalytic properties of ceria and CeO_2-containing materials. Catal. Rev. Sci. Eng. 1996,38:439-520.
    [103] C. Su, F. Notoya, E. Sasaoka, Selecive catalytic reduction (SCR) NO with NH_3 at low temperature using halogen ions-modified Al_2O_3, ZrO_2 and TiO_2 as catalysts. Ind. Eng. Chem. Res. 2003, 42: 5770-5774.
    [104] M.A. Larrubia, G. Ramis, G. Busca, An FT-IR study of the adsorption of urea and ammonia over V_2O_5-MoO_3-TiO_2 SCR catalysts. Appl. Catal. 5 2000, 27: L145-L151.
    [105] G. Ramis, L. Yi, G. Busca, Ammonia activation over catalysts for the selective catalytic reduction of NO_x and the selective catalytic oxidation of NH_3. An FT-IR study. Catal. Today 1996,28:373-380.
    [106] S.D. Lin, A.C. Gluhoi, B.E. Nieuwenhuys, Ammonia oxidation over Au/MOx/γ-Al_2O_3-activity, selectivity and FTIR measurments. Catal. Today 2004, 90: 3-14.
    [107] J. Zawadzki and M. Wisniewski, Carbon films as a model material in catalytic NH_3/O_2 reaction-in situ FTIR study. Fuel Process. Technol. 2002, 77-78: 389-394.
    [108] M. A. Reiche, P. Hug, A. Baiker. Effect of grafting sequence on the behavior of titania-supported V_2O_5-WO_3 catalysts in the selective reduction of NO by NH_3. J. Catal. 2000, 192: 400-411.
    [109] L. Lietti, J. L. Alemany, P. Forzatti, G.Busca, G. Ramis, E. Giamello and F. Bregani, Reactivity of V_2O_5-WO_3/TiO_2 catalysts in the selective catalytic reduction of nitric oxide by ammonia. Catal. Today 1996, 29: 143-148.
    [110] N.Y. Tops(?)e, Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy. Science 1994, 265: 1217-1219.
    [111] R.A. Rajadhyaksha, H. Knozinger, Ammonia adsorption on vanadia supported on titania-silica catalyst: An infrared spectroscopic investigation. Appl. Catal. 1989, 51: 81-92.
    [112] T. Arakawa, M. Mizumoto, Y. Takita, N. Yamazoe, T. Seiyama, Mechanism of the reduction of nitric oxide with ammonia over Cu(Ⅱ) ion-exchanged zeolites. Bull. Chem. Soc. Jpn. 1977, 50: 1431-1436.
    [113] H. Schneider, U. Scharf, A. Wokaun, A. Baiker, Vanadia-titania aerogels: Ⅲ. Influence of niobia on structure and activity for the selective catalytic reduction of NO by NH_3. J. Catal. 1994, 150: 284-300.
    [114] G. Ramis, G. Busca, F. Bregani, P. Forzatti, Fourier transform-infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on vanadia-titania and mechanism of selective catalytic reduction. Appl. Catal. 1990, 64: 259-278.
    [115] M. Koebel, M. Elsener, G. Madia, Reaction pathways in the selective catalytic reduction process with NO and NO_2 at low temperatures. Ind. Eng. Chem. Res. 2004, 40: 52-59.
    [116] M. Koebel, G. Madia, F. Raimondi, A. Wokaun, Enhanced reoxidation of Vanadia by NO_2 in the fast SCR reaction. J. Catal. 2002, 209: 159-165.
    [117] J. Blanco, P. Avila, S. Su(?)rez, J.A. Martin, C. Knapp, Alumina- and titania- based monolithic catalysts for low temperature selective catalytic reduction of nitrogen oxides. Appl. Catal. B 2000, 28: 235-244.
    [118] R.Q. Long, R.T. Yang, Reaction mechanism of selective catalytic reduction of NO with NH_3 over Fe-ZSM-5 catalyst. J. Catal. 2002,207: 224-231.
    [119] D.A. Pena, B.S. Uphade, E.P. Reddy, P.G. Smirniotis, Identification of surface species on titania-supported manganese, chromium, and copper oxide low-temperature SCR catalysts. J. Phy. Chem B 2004, 108: 9927-9936.
    [120] K. Hadjiivanov, V. Bushev, M. Kantcheva, D. Klissurski, Infrared spectroscopy study of the species arising during NO_2 adsorption on TiO_2 (anatase). Langmuir 1994, 10:464-471.
    [121] G. Centi, S. Perathoner, Adsorption and reactivity of NO on copper-on-alumina catalysts : Ⅱ. adsorbed species and competitive pathways in the reaction of NO with NH_3 and O_2. J. Catal. 1995,152:93-102.
    [122] W.S. Kijlstra, D.S. Brands, E.K.. Poels, A. Bliek, Kinetics of the selective catalytic reduction of NO with NH_3 over MnO_x/Al_2O_3 catalysts at low temperature. Catal. Today 1999, 50: 133-140.
    [123] Q. Sun, Z.X. Gao, H.Y. Chen, W.M.H. Sachtler, Reduction of NO_x with ammonia over Fe/MFI: reaction mechanism based on isotopic labeling. J. Catal. 2001, 201: 88-99.
    [124] R.Q. Long, R.T. Yang, Temperature-programmed desorption/surface reaction (TPD/TPSR) study of Fe-exchanged ZSM-5 for selective catalytic reduction of nitric oxide by ammonia. J. Catal. 2001,198:20-28.
    [125]J.Eng,C.H.Bartholomew,Kinetic and mechanistic study of NO_x reduction by H-form zeolites.I.Kinetic and mechanistic insights into NO reduction over H-ZSM-5.J.Catal.1997,171:14-26.
    [126]J.Eng,C.H.Bartholomew,Kinetic and mechanistic study of NOx reduction by NH_3 over H-form zeolites.Ⅱ.Semi-steady-state and in situ FTIR studies.J.Catal.1997,171:27-44.
    [127]M.Inomata,A.Miyanoto,T.Ui,K.Kobayashi,Y.Murakami,Activities of vanadium pentoxide/titanium dioxide and vanadium pentoxide/aluminum oxide catalysts for the reaction of nitric oxide and ammonia in the presence of oxygen.Ind.Eng.Chem.Prod.Rd.1982,21:424-428.
    [128]J.H.Goo,M.F.Irfan,S.D.Kim,S.C.Hong,Effects of NO_2 and SO_2 on selective catalytic reduction of nitrogen oxides by ammonia.Chemosphere 2007,67:718-723.
    [129]G.Marban,T.Valdes-Solis,A.B.Fuertes,Mechanism of low temperature selective catalytic reduction of NO with NH_3 over carbon-supported Mn_3O_4.Phys.Chem.Chem.Phys.2004,6:453-464.
    [130]M.Machida,D.Kurogi,T.Kijima,MnO_x-CeO_2 binary oxides for catalytic NO_x-sorption at low temperatures.Selective reduction of sorbed NO_x.Chem.Mater.2000,12:3165-3170.
    [131]M.M Mohamed,I.Othman,R.M.Mohamed,Synthesis and characterization of MnO_x/TiO_2 nanoparticles for photocatalytic oxideation of indigo carmine dye.J.Photoch.Photobio.A 2007,191:153-161.
    [132]X.Tang,J.Hao,W.Xu,J.Li,Low temperature selective catalytic reduction of NO_x with NH_3 over amorphous MnOx catalysts prepared by three methods.Catal.Commun.2007,8:329-334.
    [133]N.Deb,A mechanistic approach on the solid state thermal decomposition of bimetallic oxalate coordination compounds of Mn(Ⅱ),Fe(Ⅱ)and Cu(Ⅱ)with cobalt.J.Anal.Appl.Pyrol.2007,78:24-31.
    [134]P.Yuan,X.Yin,H.He,D.Yang,L.Wang,J.Zhu,Investigation on the delaminated-pillared structure of TiO_2-PILC synthesized by TiCl_4 hydrolysis method.Micropor.Mespor.Mat.2006,93:240-247.
    [135]H.M.Yu,Q.H.Zhang,L.J.Qi,C.W.Lu,T.G.Xi,L.Luo,Thermal behavior of nitrided TiO_2/In_2O_3 by TG-DSC-MS combined with PulseTA.Thermochim.Acta 2006,440:195-199.
    [136]S.A.Stevenson,J.C.Vartuli,C.F.Brooks,Kinetics of the selective catalytic reduction of NO over HZSM-5.J.Catal.2000,190:228-239.
    [137]T.Komatsu,M.Nunokawa,I.S.Moon,T.Takahara,S.Namba,T.Yashima,Kinetic studies of reduction of nitric oxide with ammonia on Cu2+-exchanged zeolites.J.Catal.1994,148:427-437.
    [138]E.Y.Choi,I.S.Nam,Y.G.Kim,TPD study of mordenite-type zeolites for selective catalytic reduction of NO by NH_3.J.Catal.1996,161:597-604.
    [139]L.K.Boudali,A.Ghorbel,P.Grange,SCR of NO by NH_3 over V_2O_5 supported sulfated Ti-pillared clay:reactivity and reducibility of catalysts.Appl.Catal.A 2006,305:7-14.
    [140]H.Bosch,F.J.J.G.Janssen,F.M.G.van den Kerkhof,J.Oldenziel,J.G.van Ommen,J.R.H.Ross,The activity of supported vanadium oxide catalysts for the selective reduction of NO with ammonia.Appl.Catal.1986,25:239-248.
    [141]H.Y.Huang,R.Q.Long,R.T.Yang,Kinetics of selective catalytic reduction of NO with NH_3 on Fe-ZSM-5 catalyst.Appl.Catal.A 2002,235:241-251.
    [142]R.T.Yang,J.P.Chen,E.S.Kikkinides,L.S.Cheng,J.E.Cichanowicz,Pillared clays as superior catalysts for selective catalytic reduction of nitric oxide with ammonia.Ind.Eng.Chem.Res.1992,31:1440-1445.
    [143]J.M.Garcia-Cortes,J.Perez-Ramirez,M.J.lllan-Gomez,C.Salinas-Martinez de Lecea,Activation by sintering of Pt-beta catalysts in deNO_x HC-SCR.Structure-activity relationships.Catal.Commun.2003,4:165-170.
    [144]Y.Sakamoto,K.Higuchi,N.Takahashi,K.Yokota,H.Doi,M.Sugiura,Effect of the addition of Fe on catalytic activities of Pt/Fe/γ-Al_2O_3 catalyst.Appl.Catal.B 1999,23:159-167.
    [145]Z.P.Zhu,Z.Y.Liu,S.J.Liu,H.X.Niu,Catalytic NO reduction with ammonia at low temperatures on V_2O_5/AC catalysts:effect of metal oxides addition and SO_2.Appl.Catal.B 2001,30:267-276.
    [146]D.Nicosia,I.Czekaj,O.Krocher,Chemical deactivation of V2Os/WO3-TiO2 SCR catalysts by additives and impurities form fuels,lubrication oils and urea solution.Part Ⅱ.Characterization study of the effect of alkali and alkaline earth metals.Appl.Catal.B 2007,77:228-236.
    [147]M.N.Debbagh,C.S.M.de Lecea,J.P(?)rez-Ram(?)rez,Catalytic reduction of N_2O over steam-activated FEZSM-5 zeolite:comparison of CH_4,CO and their mixtures as reductants with or without excess O_2.Appl.Catal.B 2007,70:335-341.
    [148]K.Yamazaki,T.Suzuki,N.Takahashi,K.Yokota,M.Sugiura,Effect of the addition of transition metals to Pt/Ba/Al_2O_3 catalyst on the NO_x storage-reduction catalysis under oxidizing conditions in the presence of SO_2.Appl.Catal.B 2001,30:459-468.
    [149]M.H.Yao,R.J.Baird,F.W.Kunz,T.E.Hoost,An XRD and TEM investigation of the structure of alumina-supported ceria-zirconia.J.Catal.1997,166:67-74.
    [150]P.R.Ettireddy,N.Ettireddy,S.Mamedov,P.Boolchand,P.G.Smirniotis,Surface characterization studies of TiO_2 supported manganese oxide catalysts for low temperature SCR of NO with NH_3.Appl.Catal.B 2007,76:123-134.
    [151]J.A.Rodriguez,Interactions in bimetallic bonding:electronic and chemical properties of PdZn surfaces.J.Phys.Chem.1994,98:5758-5764.
    [152]V.A.de la Pena O'Shea,M.C.Alvarez-Galvan,J.L.G.Fierro,P.L.Arias,Influence of feed composition on the activity of Mn and PdMn/Al_2O_3 catalysts for combustion of formaldehyde/methanol. Appl. Catal.B 2005, 57: 191-199.
    [153] M. Sicot, S. Andrieu, F. Bertran, F. Fortuna, Probing interfacial properties of ferromagnetic/insulator bilayers with X-ray spectroscopies: Application to Fe, Co, Mn/MgO(001) interfaces. Mat. Sci. Eng. B 2006, 126: 151-154.
    [154] N.J. Price, J.B. Reitz, R.J. Madix, E.I. Solomon, A synchrotron XPS study of the vanadia-titania system as a model for monolayer oxide catalysts. J. Electron. Spectrosc. 1999, 98-99: 257-266.
    [155] S. Sayan, M. Kantcheva, S. Suzer, D.O. Uner, FTIR characterization of Ru/SiO_2 catalyst for ammonia synthesis. J. Mol. Struct. 1999, 480-481: 241-245.
    [156] J.C.S. Wu, Y.T. Cheng, In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation. J. Catal. 2006,237: 393-404.
    [157] S. Xie, J. Wang, H. He, Poisoning effect of sulphate on the selective catalytic reduction of NO_x by C_3H_6 over Ag-Pd/Al_2O_3. J. Mol. Catal. A 2006, 266: 166-172.
    [158] J. Valyon, W.K. Hall, Studies of the surface species formed from nitric oxide on copper zeolites. J. Phys. Chem. 1993, 97: 1204-1212.
    [159] G. Busca, V. Lorenzelli, Infrared study of the adsorption of nitrogen dioxide, nitric oxide and nitrous oxide on hematite. J. Catal. 1981, 72: 303-313.
    [160] K.I. Hadjiivanov, Identification of neutral and charge N_xO_x surface species by IR spectroscopy. Catal. Rev. Sci. Eng. 2000,42: 71-144.
    [161] W.S. Kijlstra, M. Biervliet, E.K. Poels, A. Bliek, Deactivation by SO_2 of MNO_x/Al_2O_3 catalysts used for the selective catalytic reduction of NO with NH_3 at low temperatures. Appl. Catal. B 1998,16:327-337.
    [162] I.S. Nam. J.W. Eldridge, J.R. Kittrell, Deactivation of a vanadia-alumina catalyst for nitric oxide reduction by ammonia. Ind. Eng. Chem. Prod. Res. Dev. 1986, 25: 192-197.
    [163] Z. Huang, Z. Zhu, Z. Liu, Combined effect of H_2O and SO_2 on V_2O_5/AC catalysts for NO reduction with ammonia at lower temperatures. Appl. Catal. B 2002, 39: 361-368.
    [164] Z. Huang, Z. Zhu, Z. Liu, Q. Liu, Formation and reaction of ammonium sulfate salts on V_2O_5/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures. J. Catal. 2003, 214:213-219.
    [165] Z. Zhu, Z. Liu, H. Niu, NO reduction with NH_3 over an activated carbon-supported copper oxide catalysts at low temperatures. Appl. Catal. B 2000,26: 25-35.
    [166] Z. Zhu, Z. Liu, H. Niu, S. Liu, Promoting effect of SO_2 on activated carbon-supported vanadia catalyst for NO reduction by NH_3 at low temperature. J. Catal. 1999, 187: 245-248.
    [167] X. Tang, J. Hao, H.Yi, J. Li, Low-temperature SCR of NO with NH_3 over AC/C supported manganese-based monolithic catalysts. Catal. Today 2007, 126: 406-411.
    [168] X. Jiang, G. Ding, L. Lou, Y. Chen, X. Zheng, Effect of ZrO_2 addition on CuO/TiO_2 activity in the NO+CO reaction.Catal.Today 2004,93-95:811-818.
    [169]B.M.Reddy,B.Chowdhury,E.P.Reddy,A.Fernandez,Characterization of MoO_3/TiO_2-ZrO_2 catalysts by XPS and other techniques.J.Molecular Catal.A 2000,162:431-441
    [170]J.C.Wu,C.S.Chung,C.L.Ay,I.Wang,Nonoxidative dehydrogenation of ethyibenzene over TiO_2-ZrO_2 catalysts:Ⅱ.the effect of pretreatment on surface properties and catalytic activities.J.Catal.1984,87:98-107.
    [171]G.Xie,Z.Liu,Z.Zhu,Q.Liu,J.Ge,Z.Huang,Simultaneous removal of SO_2 and NO_x from flue gas using a CuO/Al_2O_3 catalyst sorbent Ⅱ.Promotion of SCR activity by SO_2 at high temperatures.J.Catal.2004,224:42-49.
    [172]M.Waqif,P.Bazin,O.Saur,J.C.Lavalley,G.Blanchard,O.Touret,Study of ceria sulfation.Appl.Catal.B 1997,11:193-205.
    [173]R.Zhang,H.Alamdari,S.Kaliaguine,SO_2 poisoning of LaFe_(0.8)Cu_(0.2)O_3 perovskite prepared by reactive grinding during NO reduction by C_3H_6.Appl.Catal.A 2008,340:140-151.
    [174]D.Peak,R.G.Ford,D.L.Sparks,An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite.J.Colloid.Interface Sci.1999,218,289-299.
    [175]吴强,高洪伟,贺泓,原位漫反射红外光谱法研究SO_2对Ag/Al_2O_3选择性催化丙烯还原NO_x反应的影响.催化学报.2006,27:403-408.
    [176]H.Abdulhamid,E.Fridell,J.Dawody,M.Skoglundh,In situ FTIR study of SO_2 interaction with Pt/BaCO_3/Al_2O_3 NO_x storage catalysts under lean and rich conditions,J.Catal.2006,241:200-210.
    [177]A.Datta,R.C.Cavell,R.W.Tower,Z.M.George,Claus catalysis.I.Adsorption of sulfur dioxide on the alumina catalyst studied by FTIR and EPR spectroscopy.J Phys.Chem.1985,89:443-449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700