涉及常山酮中间体—取代哌啶类化合物合成的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了常山酮关键中间体2-丙酮基哌啶类化合物的合成,尝试了以Darzens反应、臭氧化反应与Wacker反应构建丙酮基的方法。
     以3-羟基吡啶为原料,通过Mannich反应、乙酰化、水解、选择性保护、氧化等步骤制得3-烷氧基-2-吡啶醛,并以此为原料经Wittiing反应制得2-(2’-烷氧羰基-2’-甲基乙烯基)-3-烷氧基吡啶。以所得的两个化合物分别尝试直接法Darzens反应和分步法Darzens反应合成2-丙酮基-3-烷氧基哌啶的前体。
     以3-羟基毗啶为原料,经溴化、醚化、以CuI催化的Kumada偶联反应选择性制备2-甲基烯丙基-3-甲氧基吡啶,并以此为原料经成盐、还原、水解、保护等步骤制得N-苄基-2-甲基烯丙基-3-乙酰氧基哌啶。分别以N-苄基-2-甲基烯丙基-3-乙酰氧基哌啶和2-甲基烯丙基-3-甲氧基吡啶尝试臭氧化反应,后者反应产物为2-丙酮基-3-烷氧基哌啶的前体2-丙酮基-3-甲氧基吡啶,但收率较低。
     以3-羟基吡啶为原料经溴化、醚化、Kumada偶联反应制得2-烯丙基-3-甲氧基吡啶,然后经成盐、还原、水解、再还原、保护等步骤得到N-苄基-2-烯丙基-3-乙酰氧基哌啶;还以3-羟基吡啶为原料,通过成盐、还原、von Braun反应、Claisen重排、保护等多步反应制得N-苄氧羰基-2-烯丙基-3-甲氧基吡啶。所合成的两个化合物分别在催化量的PdCl2和CuCl存在下,通氧气分别进行Wacker反应,成功得到常山酮中间体2-丙酮基哌啶类化合物:前者反应产物为N-苄基-2-丙酮基-3-羟基哌啶,后者反应产物为N-苄氧羰基-2-丙酮基-3-甲氧基哌啶。对以上每步的反应条件都进行了优化,相比较,后者合成路线更具实用化。
This thesis focuses on the synthesis of substituted 2-acetonylpiperidines as the key intermediate of Halofuginone. Several synthetic methods including Darzens reaction, ozonation reaction and wacker reaction had been examined to construct the acetonyl group.
     Using 3-pyridinol as starting material, through Mannich reaction, hydrolyzation, selective protection, oxidation etc,3-(benzyloxy)picolinaldehyde was obtained, then it reacted with a wittig reagent to get 3-(3-methoxypyridin-2-yl)-2-methylacrylate. These two products were tried to synthesis substitueted 2-acetonylpyridine through Darzens reaction and stepwise process of Darzens reaction, respectively.
     Using 3-pyridinol as starting material, through bromination, etherification, selective Kumada reaction catalyzed by Cul etc,3-methoxy-2-(2-methylallyl)pyridine was synthesized in satisfied yield. Then it was further converted into 1-benzyl-2-(2-methylallyl)piperidin-3-yl acetate through saltification, reduction, hydrolyzation, protection etc. These two compounds were then oxidized with ozone, respectively. The desired product (methoxypyridin-2-yl)propan-2-one was obtained from the latter compound, but only in low yields.
     Using 3-pyridinol as starting material, through bromination, etherification, Kumada reaction etc,3-methoxy-2-allylpyridine was obtained, then further transformation was done to synthesize 2-allyl-l-benzylpiperidin-3-yl acetate through saltification, reduction, hydrolyzation, reduction, protection etc.; using same starting material, through saltification, reduction, von Braun reaction, Claisen rearrangement, protection etc, benzyl 2-allyl-3-methoxypiperidine-l-carboxylate was obtained in high yield. These two compounds were examined to synthesize 2-acetonylpiperidines by Wacker oxidation catalyzed by PdCl2 and CuCl, respectively. Desired products 1-(1-benzyl-3-hydroxypiperidin-2-yl)propan-2-one and benzyl 3-methoxy-2-(2-oxopropyl)piperidine-l-carboxylate were obtained. Reaction conditions of each step were optimized so that this procedure can be used in the large scale.
引文
[1]M. Rubiralta, E. Giralt, A. Diez. Piperidine[M]. Elsevier:New York.1991.
    [2]G Jones. The Knoevenagel Condensation[J]. Org. React.1967,15:204-283.
    [3]D. V. Tyndall, T. A. Nakib, M. J. Meegan. A Novel Synthetic Route to Phenyl-Substituted Pyridines Synthesis of [1] Benzopyrano[4,3-b]Pyridines, [1]Benzothiopyrano
    [4,3-b]Bpyridines and Pyrido[3,2-b][1,4]Benzothiazines(1-Azaphenothiazines)[J]. Tetrahedr on Lett.1988,29:2703-2706.
    [4]K. H. Noel, R. J. Stanley, A. L. John, S. Hector, I. W. Richard. New Alkaloids of the ent-Kaurene Type from Anopterus Species (Escalloniaceae). I The Structure and Reactions of Anopterine[J]. Aust. J. Chem.1976,29:1295-1318.
    [5]E. W. Monroe, M. C. Wani, N. M. Brian, et al. Plant Antitumor Agents, Isolatio n, Structure, and Antitumor Activity of Alkaloids from Anopterus Glandulosus[J]. J. N at. Prod.1987,50:1152-1155.
    [6]F. Y. Jacqui, T. Neeranat, T. W. H. Milton, J. R. Andrea, W. R. Jackson. Synthe sis and Evaluation of Potentially Transdermal Morphine Derivatives[J]. Aust. J. Chem. 2011,64:1339-1345.
    [7]T. G. Hales. Arresting the Development of Morphine Tolerance and Dependence [J]. British Journal of Anaesthesia.2011,107:653-655.
    [8]A. Banafsheh, C. Peter, P. Marie-Odile. Morphine and Tumor Growth and Metast asis[J]. Cancer Metastasis Review.2011,30:225-238.
    [9]T. K. Logan, J. Yu, S. F. Michael, D. C. Nicola, Z. Hu, L. Ping. Scopolamine I mpairs Behavioural Function and Arginine Metabolism in the Rat Dentate Gyrus[J]. Ne uropharmacology.2011,61:1452-1462.
    [10]P. S. Watson, B. Jiang, B. Scott. A Diastereoselective Synthesis of 2,4-Disubstitut ed Piperidines:Scaffolds for Drug Discovery[J]. Org. Lett.2000,2:3679-3681.
    [11]R. Deng, Y. Y. Xu. A New Quinazolone Alkaloid from Leaves of Dichroa Febrifuga[J]. J. Chin. Pharm. Sci.2000,9(3):116-118.
    [12]T. Chou, F. Y. Fu, Y. Kao. Antimalarial Constituents of Chinese Drug, Ch'ang Shan, Dichvoa febvifuga Lour[J]. J. Am. Chem. Soc.1948,70:1765-1768.
    [13]B. R. Baker, R. E. Schaub, J. P. Joseph, F. J. McEvoy, J. H. Williams. An Anti malarial Alkaloid from HYDRANGEA. XIV. Synthesis of 5-,6-,7-, and 8-Monosubs tituted Derivatives [J]. J. Org. Chem.1952,17:141-148.
    [14]R. I. Hewitt, W. S. Wallace, E. R. Gill, J. H. Williams. An Antimalarial Alkaloi d from Hydrangea. Ⅶ. The Effects of Various Synthetic Quinazolones Against Plasmo dium Lophurae in Ducks[J]. Am. J. Trop. Med. Hyg.1952,1:768-772.
    [15]E. Waletaky, G. Princeton, S. Berkelhammer, K. Trenton. Method for Treating Co ccidiosis with Quinazolinones[P].1967, US pat.3,320,124
    [16]金光明,丁希强.直杀球虫与强力灭球虫对鸡柔嫩艾美耳球虫的疗效观察[J].中国畜牧兽医.2004,31(12):42-44.
    [17]J. B. Grant, M. Q. Xie, T. Fukata, J. M. Gilbert, L. R. McDougald. Evaluation of Anticoccidial Drugs in Chicken Embryos[J]. Parasitol. Res.1991,77:595-599.
    [18]程文虹,张震宇.常山酮的抗球虫效果[J].饲料研究.2005,6:35-37.
    [19]张衡术,薛斌,黄崇本.常山酮对人裂痕成纤维细胞Ⅰ型胶原合成的影响[J].中国临床康复.2005,9(22):134-135.
    [20]吴宁鹏,王建平,班付国,周红霞,沈建忠.常山酮残留检测方法的研究进展[J].中国兽药杂志.2006,40(9):37-40.
    [21]Z. Garish, J. H. Pinthus, V. Barak. Growth Inhibition of Prostate Cancerxenograft s by Halofuginone[J]. Prostate.2002,51(2):73-78.
    [22]S. Najdi, M. J. Kurth. Synthesis of (2R,6R)-(-)-2,6-lupetidine:2,6-disubstituted p iperidines as potentially useful "C2-symmetric" chiral reagents[J]. Tetrahedron Lett. 1990,31:3279-3282.
    [23]A. Ashoorzadeh, V. Caprio. A Convergent Enantioselective Synthesis of the Anti-malarial Agent (±)-Febrifugine[J]. Synlett 2005,2:346-348.
    [24]G. A. Molander, E. D. Dowdy, S. K. Pack. A Diastereoselective Intramolecular Hydroamination Approach to the Syntheses of (+)-.(±)-, and (-)-Pinidinol[J]. J. Org. Chem.2001,66,4344-4347.
    [25]S. Kobayashi, M. Ueno, R. Suzuki, H. Ishitani, H. Kim, Y. Wataya. Catalytic A symmetric Synthesis of Antimalarial Alkaloids Febrifugine and Isofebrifugine and Their Biological Activitity[J]. J. Org. Chem.1999,64:6833-6841.
    [26]M. Katoh, R. Matsune, H. Nagase, T. Honda. Stereocontrolled Synthesis of a Pot ent Antimalarial Alkaloid, (+)-febrifugine[J]. Tetrahedron Lett.2004,45:6221-6223.
    [27]T. Taniguchi, K. Ogasawara. A Diastereocontrolled Synthesis of (+)-Febrifugine: A Potent Antimalarial Piperidine Alkaloid[J]. Org. Lett.2000,2(20):3193-3195.
    [28]L. E. Burgess, E. K. M. Gross, J. Jurka. The Preparation of s-Substituted, β-Hyd roxy Piperidines and Pyrrolidines:The Total Synthesis of Febrifugine [J]. Tetrahedron Lett.1996,37:3255-3258.
    [29]O. Okitsu, R. Suzuki, S. Kobayashi. Efficient Synthesis of Piperidine Derivatives. Development of Metal Triflate-Catalyzed Diastereoselective Nucleophilic Substitution Reactions of 2-Methoxy-and 2-Acyloxypiperidines[J]. J. Org. Chem.2001,66:809-82
    [30]G. P. B. Maxime. Synthesis of Piperidines[J]. Tetrahedron,2004,60:1701-1729.
    [31]H. H. Jensen, L. Lyngbye, A. Jensen, M. Bols. Stereoelectronic Substituent Effec ts in Polyhydroxylated Piperidines and Hexahydropyridazines[J]. Chem. Eur. J.2002,8, 1218-1226.
    [32]B. R. Baker, F. J. McEvoy. An Antimalarial Alkaloid from HYDRANGEA. XXII I. Synthesis by the Pyridine Approach[J]. J. Org. Chem.1955,20:136-142.
    [33]D. F. Barringer, G. Berkelhammer, S. D. Carter, L. Goldman, A. E. Lanzilot. Ste reochemistry of febrifugine. I. The Equilibrium Between cis-andtrans-(3-Substituted 2-Piperidyl)-2-Propanone[J]. J. Org. Chem.1973,38:1933-1936.
    [34]H. Rapoport, E. J. Volcheck. The Synthesis of Desoxycarpyrinic and Carpyrinic Acids[J]. J. Am. Chem. Soc.1956,78:2451-2455.
    [35]L. A. Walter, C. K. Springer, J. Kenney, S. K. Galen, N. Sperber. Derivatives of 3-Piperidinol as Central Stimulants[J]. J. Med. Chem.1968,11:792-796.
    [36]C. Y. Ishag, K. J. Fisher, B. E. Ibrahim, G. M. Iskander, A. R. Katrizky.1,3-Di polar Character of Six-membered Aromatic Rings. Part 56. The Cycloadditions of Acet ylenes and 3-Oxidopyridinium Betaines[J]. J. Chem. Soc. Perkin. Trans. I.1988,917-9 20.
    [37]D. P. Evans, H. B. Walson, R. Williams. A Kinetic Study of the Formation of A cyltrimethylammonium Iodides in Methyl-alcholic Solution[J]. J. Chem. Soc.1939, 1345-1348.
    [38]H. Sakagami, K. Ogasawara. Diastereocontrolled Synthesis of Enantiopure trans-a nd cis-5-Allylprolinols via a Ring-Contraction Protocol[J]. Synlett 2001,45-48.
    [39]H. Tanaka, H. Sakagami, K. Ogasawara. Diastereoselective Synthesis of 3,5-trans-(+)-(3R,5R)-3-Carbomethoxycarbapenam from 3-Hydroxypyridine:Questioning the Stere ochemical Assignment of the Natural Product[J]. Tetrahedron Lett.2002,43,93-96.
    [40]Y. Takeuchi, M. Hattori, H. Abe, T. Harayama. Synthesis of D/L-febrifugine and D/L-isofebrifugine[J]. Synthesis 1999,10:1814-1818.
    [41]Y. Takeuchi, K. Azuma, K. Takakura, H. Abe, T. Harayama. Asymmetric Synthe sis of (+)-Febrifugine and (+)-Isofebrifugine Using Yeast Reduction[J]. Chem. Commun. 2000:1643-1644.
    [42]Y. Takeuchi, K. Azuma, K. Takakura, H. Abe, H. Kim, Y. Wataya, T. Harayam a. Asymmetric Synthesis of (+)-Febrifugine and (+)-Isofebrifugine Using Yeast Reducti on[J]. Tetrahedron 2001,57:1213-1218.
    [43]Y. Takeuchi, M. Koike, K. Azuma, H. Nishioka, H. Abe, H. Kim. Synthesis and Antimalarial Activity of Febrifugine Derivatives[J]. Chem. Pharm. Bull.2001,49(6): 721-725.
    [44]赵韧.华东理工大学硕士学位论文(2006).
    [45]张越,牛玉环,董博芳,王银华,邸晓涛,杜会茹.7-溴-6-氯-4(3H)-喹诺啉酮和5-溴-6-氯-4(3H)-喹诺啉酮的合成[J].精细化工.2006,23:822-824.
    [46]董于虎.华东理工大学硕士学位论文(2010).
    [47]S. Kobayashi, M. Ueno, R. Suzuki, H. Ishitani, Catalytic Asymmetric Synthesis o f Febrifugine and Isofebrifugine[J]. Tetrahedron Lett.1999,40:2175-2178.
    [48]W. Chen, X. M. Zhao, L. Lu, T. Cohen.2-Phenylthio-3-bromopropene, A Valuab le Synthon, Easily Prepared by a Simple Rearrangement[J]. Org. Lett.2006,8:2087-2 090.
    [49]M. Yasuda, S. Tsuji, Y. Shigeyoshi, A. Baba. Cross-Coupling Reaction of a-Chlo roketones and Organotin Enolates Catalyzed by Zinc Halides for Synthesis of γ-Diketo nes[J]. J. Am. Chem. Soc.2002,124:7440-7447.
    [50]S. Gladiali, F. Soccolini. Synthesis of Glycidic Esters in a Two-Phase Solid-Liquid System[J]. Synth. Commun.1982,12:355-360.
    [51]A. Stempel, E. C. Buzzi.3-Pyridols in the Mannich Reaction[J]. J. Am. Chem. Soc.1949,71:2969-2972.
    [52]T. Yasuyuki, U. Kouichi, C. Jun, H. Takao, I. Michio, A. Ryo, O. Chiho, T. Hir ofumi, S. Tsunehiko. New Highly Active Taxoids from 9p-Dihydrobaccatin-9,10-acetal. Part 4[J]. Bioorg. Med. Chem.2003,11:4431-4447.
    [53]C. A. Kamlesh, E. K. Edward. Synthesis and Reactions of Heterocyclic Methyl 2-Propenoates and 2,3-Epoxypropanoates with Nucleophiles[J]. J. Heterocycl. Chem.198 5,22:65-69.
    [54]G. J. Clark, L. W. Deady. Synthetic Vses of the Sequential Ring Positional React ivity in Pyridin-3-ol and Derivatives [J]. Aust. J. Chem.1981,34(4):927-932.
    [55]C. Tiecco, M. Tingoli, L. Testaferri, D. Chenelli, E. Wenkert. Total Synthesis of Orellantine The Lethal Toxin of Cortinarins Orellanns Fries Mushroom [J]. Tetrahedron 1986,42(5):1475-1486.
    [56]E. A. Hallinan, J. H. Timothy, K. H. Robert, T. Sofya, N. R. Shashidhar, V. Jea n-Pierre, F. R. Michael, S. Awilda, A. S. Michael, R. Melvin. N-Substituted Dibenzox azepines as Analgesic PGE2 Antagonists[J]. J. Med. Chem.1993,36:3293-3299.
    [57]M. W. Thekla, V. N. Reinier, L. Johan. Specific Isotope Enrichment of Methyl Methacrylate. Eur[J]. J. Org. Chem.1999,2909-2914.
    [58]A. I. Morales-Ramos, Y. H. Li, M. Hilfiker, J. S. Mecom, P. Eidam, D. C. Shi, P. S. Tseng, C. Brooks, D. Zhang, N. Wang, J. P. Jaworski, D. Morrow, H. Fries, R. Edwards, J. Jin. Structure-Activity Relationship Studies of Novel 3-Oxazolidinedion e-6-Naphthyl-2-Pyridinones as Potent and Orally Bioavailable EP3 Receptor Antagonists [J]. Bioorg. Med. Chem. Lett.2011,21(10):2806-2811.
    [59]R. B. Clark, M. He, C. Fyfe, D. Lofland, W. J. O'Brien, L. Plamondon, J. A. S utcliffe, X. Y. Xiao.8-Azatetracyclines:Synthesis and Evaluation of a Novel Class of Tetracycline Antibacterial Agents [J]. J. Med. Chem.2011,54(5):1511-1528.
    [60]T. Koike, Y. Hoashi, T. Takai, O. Uchikawa. Synthesis of 4-aza Analog of Ram elteon:a nNovel Tricyclic 1,6,7,8-Tetrahydro-2H-Cyclopenta[d]Furo[2,3-b]Pyridine Deriv ative as Melatonin Receptor Ligand[J]. Tetrahedron Lett.2011,52(23),3009-3011.
    [61]K. J. Stowers, K. C. Fortner, M. S. Sanford. Aerobic Pd-Catalyzed sp3 C-H Olef ination:A Route to Both N-Heterocyclic Scaffolds and Alkenes[J]. J. Am. Chem. Soc. 2011,133(17),6541-6544.
    [62]C. N. Furukawa, T. S. Fujihare. Preparation of Pyridyl Orignard reagents and Cr oss coupling Reactions with Sulfoxides bearing Azaheterocycles[J]. Tetrahedron Lett.1 987,28(47):5845-5848.
    [63]赵银燕.华东理工大学硕士学位论文(2004).
    [64]杜巧玲.华东理工大学硕士学位论文(2005).
    [65]刘谷雨,杜巧玲,谢俊杰,张凯黎,陶晓春NiCl2·6H2O催化芳基硼酸的自身偶联反应[J].催化学报.2006,27(12):1051-1052.
    [66]S. B. Philip. The Reactions of Ozone with Organic Compounds[J]. Chem. Rev. 1957,14:925-995.
    [67]B. Chiara, D. Bruno, L. Giordano, P. Daniele. A Convenient Approach to the N-Substituted Amino Dienes, N-Benzyl-5-Ethenyl-3,4-Dihydropyridin-2-One and N-Cbz-5-Ethenyl-1,2,3,4-Tetrahydropyridine[J]. Heterocyclic 1995,41:973-982.
    [68]J. Smidt, W. Hafner, R. Jira, J. Sedlmeier, R. Sieber. Katalytische Umsetzungen von Olefinen an Platinmetall-Verbindungen Das Consortium-Verfahren zur Herstellung v on Acetaldehyd[J]. Angew. Chem.1959,71:176-182.
    [69]C. Guolin, W. Xinyan, S. Deyong, L. Hui, L. Fei, H. Yuefei. Preparation of Ena ntiopure Substituted Piperidines Containing 2-Alkene or 2-Alkyne Chains:Application t o Total Syntheses of Natural Quinolizidine-Alkaloids[J]. J. Org. Chem.2010,75:1911-1916.
    [70]K. B. Timothy, E. G. Robert. Highly Enantioselective Catalytic Dynamic Resolution of N-Boc-2-lithiopiperidine:Synthesis of (R)-(+)-N-Boc-Pipecolic Acid, (S)-(-)-Coniine, (S)-(+)-Pelletierine,(+)-β-Conhydrine, and (S)-(-)-Ropivacaine and Formal Synthesis of (-)-Lasubine Ⅱ and (+)-Cermizine C[J]. J. Am. Chem. Soc.2010,132:12216-12217.
    [71]S. Park, S. Chung, N. Martin. Acceptor, Donor, and Captodative Stabilization in Transition States of 5-Hexen-l-yl Radical Cyclizations[J]. J. Am. Chem. Soc.1986,108: 240-244.
    [72]M. Katoh, R. Matsune, T. Honda. Chiral Synthesis of (+)-Febrifugine and (-)-Isofebrifugine by Means of Samarium Diiodide-Promoted Carbon-Nitrogen Bond Cleavage Reaction[J]. Heterocyclic 2006,67:189-204.
    [73]G. L. Cheng, X. Y. Wang, D. Y. Su, H. Liu, F. Liu, Y. F. Hu. Preparation of Enantiopure Substituted Piperidines Containing 2-Alkene or 2-Alkyne Chains:Application to Total Syntheses of Natural Quinolizidine-Alkaloids [J]. J. Org. Chem.2010,75:1911-1916.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700