微小型水下机器人运动控制及可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微小型化是未来水下机器人的一个重要发展方向。由于具有体积小、机动灵活、成本低、搭载方便的特点,微小型水下机器人可用于海洋探测与资源开发中的复杂海洋环境下的各种水下观测、水下作业等任务,是海洋探测与资源开发系统装备中的重要组成部分。在微小型水下机器人的研究和开发中,舵、翼、桨联合操纵的微小型水下机器人的运动控制以及可靠性技术是急需发展和完善的技术。
     论文以某微小型水下机器人为研究对象,首先建立了运动仿真模型,重点讨论了舵、翼有效作用的解算过程,并构建了具有半实物仿真功能的运动仿真系统。讨论了水下机器人PDCE运动控制系统体系结构及其主要组成部分。在充分考虑水下机器人运动能力的基础上建立目标指令解释单元以获得可直接执行的目标指令。详细讨论了舵、翼、桨联合操纵的推力分配方式,采用水下机器人纵倾控制和速度控制联合操纵的方法,实现深度控制。由于微小型水下机器人尺度小,施力装置少,其运动属于欠自由度,因此在控制方法上采用改进的粒子群优化算法对S面控制器进行了参数寻优,取得良好效果。提出广义S型模糊神经网络控制方法来提高微小型水下机器人的机动性和反应能力,试验验证了所提出控制方法的可行性和优越性。最后,对运动控制系统进行了可靠性评估和分析。提出基于Bayes思想的可靠性综合评估方法对控制系统进行可靠性评估,采用故障树分析法对控制系统进行可靠性分析来评价控制系统的可靠性水平,分析系统各组成部分的薄弱环节,提出了改进建议。
Miniaturization is one important direction for autonomous underwater vehicles in the future. Due to small volume, excellent maneuverability and invisibility, low energy consumption, low resistance, high ability to avoid obstacles, there is a good prospect for Mini autonomous underwater vehicles (mini-AUVs) in the fields of military communication, marine mining and expedition and so on. For mini-AUVs with fins, the research on motion control and reliability is needed be developed and perfected.
     In this thesis, the research object is certain mini-AUV. Firstly, we build the motion model in six-degree freedom and analyze the force and hydrodynamic coefficients, especially the fin effective action, and the simulation system with semi physical function is established. PDCE motion control system architecture for the AUVs and the ingredients are discussed in detailed. The unit of object order explanation is proposed based on considering thoroughly motion ability of the mini-AUVs, and the object orders which can be carried out directly are obtained. The force allocation function based on rudder-wing-propeller polar control is introduced, so we adopt pitch and velocity control to achieve depth control. Owing to small size and few force devices, motion control of the mini-AUVs is lacking-freedom control. So we propose improved particle swarm optimization (PSO) to optimize the parameters of S surface control, and the performance is satisfied. Moreover, we propose a novel control method bases on generalized sigmoid fuzzy neural network (SFNN) to improve the maneuverability and the ability to avoid obstacles. The experiment results verify the feasibility and superiority. Finally, reliability evaluation and reliability analysis are carried out for the motion control system. General evaluation method based on Bayes thought is proposed carried out reliability evaluation. Fault tree analysis is introduced to carry out reliability analysis to evaluate the reliability level of the motion control system and analyze the weakness of each ingredients, so we can give some improved advice.
引文
[1]T.S.Chance. AUV Surveys:Extending our Reach 20000 Km Later. Proceedings of the 13th International Symposium on Unmanned Untethered Submersible Technology; Durham, New Hampshire, August 24-27,2003
    [2]D. Richard Blidberg, Roy M.Turner, Steven G. Chappell. Autonomous Underwater Vehicles:Current activities and research opportunities, Robotics and Autonomous Systems,1991,7(2):139-150P
    [3]Adam J.A. Probing beneath the sea. IEEE Spectrum,1985,22(4):55-64P
    [4]Wernli, Robert L. AUV's-the maturity of the technology. Proceedings of OCEANS'99 MTS, USA,1999:1300-1307P
    [5]徐玉如,庞永杰,甘永,孙玉山.智能水下机器人技术展望.智能系统学报,2006,1(1),9-16页
    [6]徐玉如,肖坤.智能海洋机器人技术进展.自动化学报,2007,33(5),518-521页
    [7]朱继懋.潜水器设计.上海:上海交通大学出版社.1992
    [8]蒋新松,封锡盛,王棣棠.水下机器人.沈阳:辽宁科学技术出版社.2000
    [9]B.C.亚斯特列鲍夫.水下机器人.北京:海洋出版社.1984
    [10]Yun X., Bachmann E.R., McGhee R.B., Whalen R.H.. Testing and evaluation of an integrated GPS/INS system for small AUV navigation. IEEE Journal of Oceanic Engineering.1999,24(3):1-5,396-404P
    [11]Dhanak, M., An E., Holappa K., Smith S.. Using small AUV for oceanographic measurements. OCEANS'99 MTS/IEEE, Seattle, USA, 1999:1410-1417P
    [12]Von alt C.. REMUS 100 transportable mine countermeasure package. OCEANS 2003 Proceedings, San Diego, California, USA,2003: 1925-1930P
    [13]http://www.hydroidinc.com/remus 100.html
    [14]http://www.nektonresearch.com
    [15]http://www.atlas_elektronik.de
    [16]http://www.bluefinrobotics.com/bluefin9.htm
    [17]Schulz B., Hobson B., Kemp M., Meyer J., Moody R. Field results of multi-UUV missions using ranger micro-UUVs. OCEANS 2003. Proceedings, San Diego, California, USA,2003:956-961P
    [18]Moody R.. Development of a biological sensor bay for the Ranger AUV. OCEANS 2003. Proceedings, San Diego, California, USA,2003: 2184-2188P
    [19]http://underwater.iis.u-tokyo.ac.jp/robot/tamago/tamago.html
    [20]G. Trimble and E. Belcher. Ship Berthing and Hull Inspection Using the CetusII AUV and MIRIS High-Resolution Sonar. Proceedings of IEEE/MTS Oceans,2002.
    [21]http://www.uss-salem.org/
    [22]成巍,苏玉民,秦再白,万磊,徐玉如.一种仿生水下机器人的研究进展.船舶工程,2004,26(1),5-8页
    [23]陈尔奎,喻俊志,王硕,谭民.多仿生机器鱼群体及单体控制体系结构的研究.中国科学院研究生院学报2003,20(2),232-237页
    [24]苏玉民,万磊,李晔,庞永杰,秦再白.舵桨联合操纵微小型水下机器人的开发.机器人,2007,29(2),51-154页
    [25]Yoerger. D.N. and Slotine. J.E. Robust trajectory control of underwater Vehicles. IEEE J. Oceanic Engineering.1985, QE-10(4):462-470P
    [26]Nakamura, Y. and Savant, S. Nonlinear tracking control of autonomous underwater vehicles. Proceedings of IEEE Int. Conf. on Robotics and Automation,1992(3):4-9P
    [27]Goheen, K.R. and Jeffery, R.E. Multivariable self-tuning autopilots for autonomous and remotely operated underwater vehicles. IEEE Journal of Oceanic Engineering.1990,15(3):144-151P
    [28]Choi, S.K. andYuh, J. Experimental study on a learning control system with bound estimation for underwater vehicles. Int'l J. of Autonomous Robots.1996,3(3):187-194P
    [29]Tabaii S.S., El-Hawary F. and El-Hawary M.. Hybrid adaptive control of autonomous underwater vehicle. Proceedings of Symposium of Autonomous Underwater Vehicle Technology,1994:275-282P
    [30]Kazuo lshii, Teruo Fujii and Tamaki Ura. An On-line Adaption Method in a Neural Network Based Control System for AUV's. IEEE Journal of Oceanic Engineering,1995,20(3):221-228P
    [31]彭良,卢迎春,万磊,孙俊岭.水下智能潜器的神经网络运动控制.海洋工程,1995,13(2):38-46页
    [32]刘学敏,徐玉如.水下机器人运动的S面控制方法.海洋工程,2001,19(3):81-84页.
    [33]刘建成,于华南,徐玉如.水下机器人改进的S面控制方法.哈尔滨工程大学学报,2002,23(1):33-36页.
    [34]王丽荣.水下机器人控制系统故障诊断研究.哈尔滨工程大学博士学位论文.2006:23-25页
    [35]李晔,庞永杰,万磊,常文田,梁霄.水下机器人S面控制器的免疫遗传算法优化.哈尔滨工程大学学报.2006,7(sup):324-330页
    [36]刘学敏,刘建成,徐玉如.基于最小扰动BP算法的水下机器人运动控制.哈尔滨工程大学学报,2001,22(2):20-23页
    [37]梁霄,徐玉如,李哗,万磊,秦再白.基于目标规划的水下机器人模糊神经网络控制方法.中国造船.2007,48(3):123-127页
    [38]刑志伟.复杂海洋环境下水下机器人控制问题研究.沈阳:中国科学院沈阳自动化研究所博士论文,2003
    [39]郭波,武小悦.系统可靠性分析.长沙:国防科技出版社.2002
    [40]李守仁.可靠性工程.哈尔滨:哈尔滨船舶工程学院出版社.1991
    [41]梅启智,廖炯明,孙慧中.系统可靠性工程基础.北京:科学出版社.1987
    [42]金碧辉.系统可靠性工程.北京:国防工业出版社.2004
    [43]李海泉,李刚.系统可靠性分析与设计.北京:科学出版社.2003
    [44]宋保雄.系统可靠性设计与分析.西安:西北工业大学出版社.2000
    [45]金星,洪延姬.系统可靠性评定方法.北京:国防工业出版社.2005
    [46]蒋仁言,左明健.可靠性模型与应用.北京:机械工业出版社.1999
    [47]李殿璞,赵爱民,迟岩.水下机器人运动控制和仿真的数学模型.哈尔滨工程大学学报,1997,18(3):22-30页
    [48]常文君,刘建成,于华男,徐玉如.水下机器人运动控制与仿真的数学模型.船舶工程.2002,03:58-60页
    [49]施生达.潜艇操纵性.北京:国防工业出版社.1995
    [50]李晔,刘建成,徐玉如,庞永杰.带翼水下机器人运动控制的动力学建模.机器人.2005,27(2):128-131页
    [51]S.McMillan, D.E. Orin and R. McGhee. Efficient Dynamic Simulation of an Underwater Vehicle with a Robotic Manipulator. IEEE Trans.,1995: 1194-1206P.
    [52]Sighard F. Hoerner and Henry V. Borst. Fluid Dynamic Lift. Published by author, second edition,1985.
    [53]Su Yumin, Mitsuhisa Ikehata, Hisashi Kai. A numerical for designing three-dimensional wing based on surface panel method. J. SNAJ.1982: 39-47P
    [54]王献孚.船用翼理论.北京:国防工业出版社,1998:97-108页
    [55]朱计华.水下机器人近水面运动的变结构控制技术研究.哈尔滨工程大学.2007
    [56]缪泉明,冯学知,孙伯起.圆柱体在近水面的波浪力计算.中国船舶科学研究中心科技报告.1992
    [57]冯学知,孙伯起,缪泉明.潜艇近水面波浪扰动力研究.中国船舶科学研究中心科技报告.1996
    [58]孙伯起,缪泉明,冯学知,江浩.潜体近水面波浪力的数值计算方法.船舶力学,1997,1(1):21-26页
    [59]王鹢,王文武,孙枫等.干扰力作用下潜艇近水面运动的仿真.系统仿真学报.2003,15(1):84-87页
    [60]王毓顺.潜艇近水面空间运动联合控制系统研究.哈尔滨工程大学博士学位论文.2004
    [61]王燕飞,朱军,张振山.评估水动力系数对潜艇操纵性影响的一种方法.船舶力学.2005(10):61-68页
    [62]戴遗山.舰船在波浪中运动的频域与时域势流理论.北京:国防工业出版社.1998
    [63]李开生,张慧慧,费仁元,宗光华.机器人控制其体系结构研究的现状和发展.机器人.2000,22(3):235-240页
    [64]彭慧,封锡盛.“探索者”号自治式无缆水下机器人控制软件体系结构.机器人.1995,17(3):177-183页
    [65]Miller D J, Lennox R C. An Object-Oriented Environment for Robot System Architecture. IEEE Control System.1991,11(2):14-23P
    [66]Georgios A. Demetrious. A Hybrid Control Architecture for an Autonomous Underwater Vehicle. Louisiana:University of Southwestern Louisiana,1998
    [67]Bellingham J.G., Bales J.W., Atwood D. K., Chrissostomidis C., Consi T.R. and Goudey C. A.. Demonstration of a High-Performance, Low-Cost Autonomous Underwater Vehicle, Technical Report MITSG 93-28, MIT Sea Grant College Program, Autonomous Underwater Vehicle Laboratory, Cambridge, MA.1994
    [68]A.J.Healy,D.B.Marco,R.B.McGhee,B.P. Brutzman,R.Cristi,Evaluation of the Tri-Level Hybrid Control System for NPS PHOENIX Autonomous Underwater Vehicle, Proceedings of the International Program Development in Undersea Robotics and Intelligent Control (URIC)-A joint U.S/Portugal Workshop, Lisbon, Portugal, March 2-3, 1995:78-90P
    [69]甘永.水下机器人运动控制系统体系结构的研究.哈尔滨:哈尔滨工程大学.博士论文.2007
    [70]甘永,王丽荣,刘建成,徐玉如.水下机器人嵌入式基础运动控制系统.机器人.2004,26(3):246-249页
    [71]甘永,刘建成,王丽荣.嵌入式系统在水下机器人运动控制中的应用.2003年嵌入式世界研讨暨展示会论文集.2003:436-439页.
    [72]http://www.diamondsystem.com
    [73]孔祥营,柏桂枝.VxWorks及其开发环境Tornado.北京:中国电力出版社.2001
    [74]史小斌,孙殿璞,张艳玲.VxWorks串行设备驱动模式及其实现.现代电子技术.2003,1(10):72-74页
    [75]http://www.windriver.com
    [76]Albus J, McCain H, Lumia R. NASA/NBS Standard Reference Model for Telerobot Control System Architecture (NASREM). NBS Technical Note 1235, National Bureau of Standards, Gaithersburg, MD, July 1987.
    [77]R.A.Brooks. A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and Automation. Vol. RA-2,1986:14-23P
    [78]常文君,由光鑫,庞永杰,徐玉如.基于混合体系结构的多水下机器人协调控制体系.现代电子技术.中国海洋平台.2002,(3):12-16页
    [79]刘基余.GPS卫星导航定位原理与方法.北京:科学出版社.2003
    [80]http://www.xsens.com
    [81]Fleischer, S.D.; Huster, A.; Rock, S.M.; Demonstration of a vision-based dead-reckoning system for navigation of an underwater vehicle. OCEANS '98 Conference Proceedings, Volume:1,28 Sep-1 Oct.1998:326-330 P
    [82]Burton, R., Fleischer, S.D.., Leabourne, K.N.,Rock, S.M.Station keeping of an ROV using vision technology. OCEANS'97. MTS/IEEE Conference Proceedings, Volume:.1,6-9 Oct.1997:634-640P
    [83]陈耀南.高等数学(测绘专业用).上海:测绘出版社.1978
    [84]朱海,莫军.水下导航信息融合技术.北京:国防工业出版社.2002
    [85]Li Lu and Wan Lei. Applied navigation system of “SY-1”Small AUV. Proceedings of 13th International Symposium on Unmanned Untethered Submersible Technology, New Hampshire USA,2003
    [86]Kenned Y J and Eberhart R C. Particle swarm optimization. Institute of Electrical and Elecn'onics Engineers.1995, (11),1942-1948P
    [87]Eberhart R C and Kenned Y J. A new optimizer using particle swarm theory. Institute of Electrical and Electronics Engineers,1995, (10):39-43P
    [88]Eberhart R C and Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization. Institute of Electrical and Electronics Engineers.2000, (7):84-88 P
    [89]王启付,王战江,王书亭.一种动态改变惯性权重的粒子群优化算法.中国机械工程.2005,16(11):945-948页
    [90]Maurice Clercl Some math about particle swarm optimization, http:// clerc 1 maurice 1 free.fr.
    [91]窦全胜,周春光,马铭.粒子群优化的两种改进策略.计算机研究与发展.2005,(5):897-904页
    [92]武小悦.复杂关联系统的可靠性建模与分析.长沙:国防科技大学.博士论文.2000
    [93]电子设备可靠性预计手册GJB/Z299C-2006.北京:国防科学技术工业委员会.2006
    [94]Thorns Risse. On the Evaluation of the Reliability of k-out-of-n Systems. IEEE Transaction on Reliability.1987,36(4),433-435 P.
    [95]Barlow R.E. and Hunter L.C.. Reliability Analysis of a One-unit System.Opns.res.1961,9,200-208 P
    [96]Maccarini G. C.. Reliability of Devices Affected by Early Failure:an Effective Maintenance Policy. Reliability Engineer and System Safety 1992,37,167-171P
    [97]Some New Reliability Problems and Results for One-unit Repairable System. Microelectron. Reliabi..1996,36(4),465-468P
    [98]Tan Zhuoying, Cai Meifeng, Yue Zhongqi, Tham L.G. and Lee C.E.. Application and reliability analysis of DPM system in site investigation of HK weathered granite. Journal of University of Science and Technology Beijing,2005,12(6),481-488P
    [99]Chen Changjie, Wei Yiming and Cai Sijing. Reliability analysis of an associated system. Journal of Coal Science and Technology,2002,8(2), 103-106P
    [100]朱继洲.故障树原理和应用.西安:西安家童大学出版社.1989
    [101]周育才,刘少军,邓奕,刘忠伟.100MN多向模锻水压机计算机控制系统可靠性分析.机床与液压.2007,35(5):211-213页
    [102]宋保维,毛昭勇,王雯琴,胡海豹.基于故障树分析的鱼雷可靠性评定方法.系统仿真学报.2007,19(5):2180-2182页
    [103]孙红梅,高齐圣,朴营国.关于故障树分析中几种典型重要度的研究.可靠性与环境适应性理论研究.2007,25(2):39-42页
    [104]Takehisa Kohda. A Simple Method to Derive Minimal Cut Sets for a Non-coherent Fault Tree. International Journal of Automation and Computing,2006,2,151-156P
    [105]Pedro Antao, Guedes Soares. Fault-tree Models of Accident Scenarios of RoPax Vessels. International Journal of Automation and Computing,2006, 2,107-116P
    [106]Luo Shanming and Miao Xiexing. Reliability analysis of the velocity matching of coal cutting and caving in fully mechanized top-coal caving face. Journal of Coal Science and Technology,2002,8(1),68-726P
    [107]Cai Jiaku and Chen Jinshui. Data Transformation of Fault Tree by Using Matrix Operation. Chinese Journal of Mechanical Engineering,2003,16(3), 260-263P
    [108]Sawyer J P. Fault Tree Analysis of Mechanical Systems. Microelectron and Reliability.1994,54(4),653-667 P.
    [109]Krasich Milena. Use of Fault Tree Analysis for Evaluation of Ssystem-reliability Improvements in Design Phase. Proceedings of the Annual Reliability and Maintainability Symposium,2000,1-7P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700