基于应力波的木材缺陷二维成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腐朽、空洞等木材内部缺陷会严重影响木材物理力学特性,是降低木材质量的重要原因之一,也是木材材性检测中不可缺少的内容。我国现存大量具有重要历史意义的木结构古建筑,在对其进行维修和保护的过程当中,要求在不破坏原有结构的基础上,使用无损检测的技术与设备进行检测与鉴定。因此,针对木材内部缺陷的无损检测技术引起了人们广泛的重视。
     在现有的木材材性检测方法中,应力波无损检测技术因其传播距离远、使用方便、可靠、快速等特点,成为了国内外研究的焦点。但由于专利保护和技术封锁,我国尚无成熟的应力波检测产品,只能依靠价格昂贵的进口设备。因此,急需开发出国产的木材应力波无损检测设备,以降低科研单位、林业高等院校和生产企业等单位的研究、生产成本,提高我国木材无损检测技术水平。
     本文在综合分析国内外研究人员对应力波检测木材物理力学特性和内部缺陷的基础上,通过应力波在木材中的传播时间、距离和速度三项参数建立点速度模型算法、线速度模型算法和加权修正线速度模型算法,并通过山海关老龙头海神庙正殿和后殿的大量实际检测数据进行验证,进而将三种算法模型得出的结果与FAKOPP的检测结果进行对比,其结果为点速度模型算法和线速度模型算法基本表征了木材的内部缺陷,加权修正线速度模型算法的结果与FAKOPP的检测结果相同。
     本文开发了基于数字信号处理器(DSP)的应力波无损检测设备,同时编制了控制程序和人机交互界面等软件系统,并对木质圆盘进行实际检测。通过和FAKOPP进行比较后,发现自主开发研发的应力波无损检测设备不但能够有效、准确的检测木材内部应力波传播时间与速度,而且可以生成木材内部缺陷二维图像,准确度达到了FAKOPP的检测水平,本设备具有精度高,成本低,易操作等特点,填补了国产木材应力波无损检测设备的空白。
     综合以上理论研究和设备开发,本文建立了基于应力波的木材缺陷二维成像技术,取得了较好的实际测试效果,开发了国产木材应力波无损检测设备,与国外同类产品比较,其性价比更高,如能达到批量生产的程度,将获得良好的社会效益和经济效益。
The internal defects of woods, such as decay and holes, will seriously affect physical andmechanical properties of woods. Those defects which are the important parts in wood inspectioncould reduce quality and downgrade of woods. There are many ancient wooden structures inChina which have important historical significance. The nondestructive detection technologiesand equipments, which caused no original structural damage, were used in repairment andprotection of ancient wooden structures. Therefore, nondestructive detection technologies forwood internal defects have aroused widespread attention.
     In all the detection methods of wood property, stress wave nondestructive testingtechnology has become the focus of domestic and foreign research because of its longtransmission distance, easy to use, reliable, fast and other characteristics. But in the patentprotection and technology blockade, there were no domestic stress wave detection products, sothe expensive imported equipments were needed. It is important to develpe the domestic stresswave detection products to reduce the research and production cost of academy and forestryenterprise. It will also improve wood nondestructive testing technology.
     Stress wave detection for physical and mechanical properties and internal defects of woodswere comprehensive analyzed, also the propagation law and detection methods of stress wave inwoods were widely studied. Furthermore, based on travel time, distance and the velocity of stresswave, a points velocity algorithm, a lines velocity algorithm and a weighting lines velocityalgorithm were proposed and established. A large number of actual measurement data were usedto test the validity of the three algorithms, which measured by FAKOPP and obtained from mainhall and opisthodomos hall in sea god temple of ShanHaiGuan. It was shown that the pointsvelocity algorithm and lines velocity algorithm could indicate the basic characterization of woodinternal defects. and the results of weighting lines velocity algorithm was as same as FAKOPP.
     A stress wave nondestructive detection equipment was developed, also a control softwareand man-machine interface for the equipment were programed. A practical tests were carried outbased on the wooden disc specimens, to compared the characteristics of the equipment andFAKOPP. It is found that the equipment not only can detect travel time and speed of stress wavein wood effectively and accurately, but also obtain a two-dimensional image of internal defectsof wood which was as same as FAKOPP. The equipment has the advantages of high precision,low cost, easy operation, and a certain market competition.
     A wood defect two-dimensional imaging technique based on stress wave, which has madea better test results, was established after the above theory research and actual equipmentdevelopment. Compared with foreign equipment, the equipment developed by this technique hada lower price and higher performance. It will be able to obtain good social and economic benefitsif the equipment can achieve mass production.
     .
引文
[1] Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment2010: MainReport. Food and Agriculture Organization of the United Nations,2010.
    [2]李家伟,陈积懋.无损检测手册.机械工业出版社,2002.
    [3]中国机械工程学会无损检测学会.无损检测概论.机械工业出版社,1993.
    [4]王立海,杨学春,徐凯宏.木材无损检测技术的研究现状与进展.林业科技,2002(3):35-38.
    [5]姜忠华,申世杰,翟志文,等.木材无损检测的现状与发展趋势.林业机械与木工设备,2010(002):4-7.
    [6]王欣,申世杰.木材无损检测研究概况与发展趋势.北京林业大学学报,2009,31(1):202-205.
    [7]朱益民.木材无损检测的现状及展望.云南林业科技,1996(1):82-84.
    [8]王立海,杨学春,徐凯宏.木材缺陷无损检测技术研究现状.林业科技,2002,27(3):35-38.
    [9]胡英成,顾继友,王逢瑚.木材及人造板物理力学性能无损检测技术研究的发展与展望.世界林业研究,2002,15(4):39-46.
    [10] Niemz P, Kucera L J, P hler E. Vergleichende Untersuchungen zur Bestimmung des dynamischen E-Moduls mittels Schall-Laufzeit und Resonanzfrequenzmessung. HOLZFORSCHUNG UNDHOLZVERWERTUNG,1997,49(5):91-93.
    [11]孟令联,赵钟声,等.木材无损检测技术及其应用与展望.林业机械与木工设备,2001,29(9):4-6.
    [12]史伯章,尹思慈,阮锡根.木材声速的研究.南京林产工业学院学报,1983,3:6-12.
    [13]戴澄月,刘一星,丁汉喜,等.木材强度超声检测的研究.东北林业大学学报,1987,15(2):82-95.
    [14]赵学增,刘一星,李坚,等.用FFT方法分析木材的打击音响快速测定木材弹性常数的研究.东北林业大学学报,1988,16:29-35.
    [15]王志同,曹志强,袁卫国.用应力波非破损检测技术检测中密度纤维板弹性模量的研究.木材工业,1995,9(5):17-21.
    [16]王志同,曹志强,袁卫国.用应力波非破损检测技术检测中密度纤维板弹性模量的研究续.木材工业,1995,9(6):21-24.
    [17]胡英成.利用振动法对人造板动态弹性模量进行无损检测的研究.硕士学位论文,1997.
    [18]中华人民共和国国家标准:针叶树木材缺陷基本检量方法GB155.3-84
    [19] Ross R J, Brashaw B K, Pellerin R F. Nondestructive evaluation of wood. Forest products journal,1998,48(1):14-19.
    [20] Szymani R, McDonald K A. Defect detection in lumber: state of the art. Forest Products Journal,1981,31(11):34-44.
    [21]李坚.八十年代的扫描技术木材缺陷的自动探测.木材工业,1989,1:43-47.
    [22]王志同.无损测试技术在木材工业中的应用.世界林业研究,1991,4(4):64-69.
    [23] Creffield J W, Beesley Jr J. Use of X-rays for monitoring decay in timber panels. Forest Products Journal,1980,30(6):48-51.
    [24] Funt B V, Bryant E C. Detection of internal log defects by automatic interpretation of computertomography images. Forest Products Journal,1987,37(1):56-62.
    [25]许文台. X射线检测木材实验报告.森林工业通讯,1979,2:15-17
    [26]青郁,刘自强,崔广兴,等.木材内腐X光电视检测研究.东北林业大学学报,1983,11(4):109-114.
    [27]刘自强,戴澄月,韩圭焕.木材缺陷的X射线无损检测.林业科学,1984,20(2):34-37.
    [28]刘自强,乔景渌.木材缺陷图象的伪彩色处理.林业科学,1989,25(2):185-189.
    [29]王庭魁,刘自强,王耀明. X射线无损检测树木年轮的研究.东北林业大学学报,1987,15(2):97-101.
    [30]戚大伟.木材无损检测图像处理系统的研究.林业科学,2001,37(6):92-96.
    [31]童雀菊,丁建文,王厚立.非破坏性木材内部缺陷检测-木材CT扫描研究动态.林产工业,2005,32(2):5-7
    [32]童雀菊,丁建文,王厚立.非破坏性木材内部缺陷检测(续)-木材CT扫描研究动态.林产工业,2005,32(3):14-16,43.
    [33]孙天用,王立海.基于应力波与X射线二维CT图像原木内部腐朽无损检测.森林工程,2011,27(6):26-29.
    [34] Karsulovic J T, Leon L A, Dinator M I. The use of linear attenuation coefficients of gamma radiation fordetecting knots in Pinus radiata. Forest products journal,1999,49(2):73-76.
    [35] Karsulovic J T, Dinator M I, Morales R. Nondestructive gamma radiation methods for detection of centralrot in logs of lenga (Nothogagus pumilio). Forest products journal,2002,52(11-12):87-93.
    [36] Dunlop J I. Testing of poles by using acoustic pulse method. Wood Science and Technology,1981,15(4):301-310.
    [37] Dunlop J I. Testing of poles by acoustic resonance. Wood Science and Technology,1983,17(1):31-38.
    [38] Noguchi M, Nishimoto K, Imamura Y, et al. Detection of very early stages of decay in western hemlockwood using acoustic emissions. Forest products journal,1986,36(4):35-36.
    [39] Beall F C, Wilcox W W. Relationship of acoustic emission during radial compression to mass loss fromdecay. Forest products journal,1987,37(4):38-42.
    [40]于鸣,任洪娥,常春媛.木材强度无损检测的音频信号分析.木材加工机械,2006,3:28-33.
    [41] Anderson R B, Wiedenbeck J K, Ross R J. Nondestructive evaluation for detection of honeycomb in thesawmill: An economic analysis. Forest products journal,1997,47(6):53-59.
    [42]吕立仁,陈兆斌.超声波检测木材质量的可行性探讨.铁道技术监督,1999(6):33-34.
    [43] Wang J, Biernacki J M, Lam F. Nondestructive evaluation of veneer quality using acoustic wavemeasurements. Wood science and technology,2001,34(6):505-516.
    [44] Tiitta M E, Beall F C, Biernacki J M. Classification study for using acoustic-ultrasonics to detect internaldecay in glulam beams. Wood science and technology,2001,35(1-2):85-96.
    [45]杨慧敏,王立海.超声波功率谱技术在木材空洞缺陷无损检测中应用.森林工程,2005,21(2):8-9.
    [46]杨慧敏,王立海.基于超声波频谱分析技术的木材孔洞缺陷无损检测.东北林业大学学报,2007,35(8):30-32.
    [47] Quin Jr F, Steele P H, Shmulsky R. Locating knots in wood with an infrared detector system. Forestproducts journal,1998,48(10):80-84.
    [48]张鸿富,李耀翔.近红外光谱技术在木材无损检测中应用研究综述.森林工程,2009,25(005):26-31.
    [49]曲志华,王立海.红外热像技术及其在木材无损检测中应用的可行性探讨.森林工程,2009,25(1):21-24.
    [50]孟宪静,孙天用,王立海.基于红外热像技术的木材内部缺陷检测的研究.森林工程,2011,27(6):33-35.
    [51] Hall L D, Rajanayagam V, Stewart W A, et al. Magnetic resonance imaging of wood. Canadian journal offorest research.1986,16(2):423-426.
    [52] Hall L D, Rajanayagam V, Stewart W A, et al. Detection of hiddon morphology of wood by magneticresonance imaging. Canadian Journal of Forest Research,1986,16(3):684-687.
    [53] Chang S J, Olson J R, Wang P C. NMR imaging of internal features in wood. Forest Products Journal,1989,39(6):43-49.
    [54] Coates E R, Chang S J, Liao T W. A quick defect detection algorithm for magnetic resonance images ofhardwood logs. Forest products journal,1998,48(10):68-74.
    [55] Wang S, Suchsland O, Hart J H. Dynamic test for evaluating decay in wood. Forest Products Journal,1980,30(7):35-37.
    [56]WilcoxWW.Sensitivityofthe picktest forfielddetectionofearlywooddecay. ForestProductsJournal,1983,33(2):29-30.
    [57]邓志刚,邓荣斌.板材缺陷的微波检测.林业机械与木工设备,1998,26(6):30-31.
    [58]刘晶,刘镇波.激光技术在木材无损检测中的应用.森林工程,2003,19(3):15-16.
    [59] Pham D T, Alcock R J. Automated grading and defect detection: a review. Forest products journal,1998,48(4):34-42.
    [60]粱善庆,蔡智勇,王喜平,等.北美木材无损检测技术的研究与应用.木材工业,2008,22(3):5-8.
    [61]于雷,戚大伟.计算机断层扫描技术检测木材缺陷的研究.森林工程,2006,22(5):13-15.
    [62]戴景民,汪子君.红外热成像无损检测技术及其应用现状.自动化技术与应用,2007,26(1):1-7.
    [63]王朝志,张厚江.应力波用于木材和活立木无损检测的研究进展.林业机械与木工设备,2006,34(3):9-13.
    [64]杨学春,王立海.应力波技术在木材性质检测中的研究进展.森林工程,2002,18(6):11-12.
    [65]闫在兴.基于应力波原木内部缺陷二维图像重建的初步研究.哈尔滨:东北林业大学,2008.
    [66]杨学春.基于应力波原木内部腐朽检测理论及试验的研究:博士学位论文.,2004.
    [67] Bodig J. The process of NDE research for wood and wood composites. The e-journal of nondestructivetesting. NDT. net. ISSN,2001:1435-4934.
    [68]段新芳,李玉栋,王平.无损检测技术在木材保护中的应用.木材工业,2002,16(5):14-16.
    [69] Ross R J, Pellerin R F. NDE of wood-based composites with longitudinal stress waves. Forest ProductsJournal,1988,38(5):39-45.
    [70] Ross R J, McDonald K A, GREEN D W, et al. Relationship between log and lumber modulus of elasticity.Forest Products Journal,1997,47(2):89-92.
    [71] Ross R J. Relationship between stress wave transmission time and compressive properties of timbersremoved from service. US Dept. of Agriculture, Forest Service, Forest Products Laboratory,2001.
    [72] Simpson W T, XIPING W. Relationship between longitudinal stress wave transit time and moisturecontent of lumber during kiln-drying. Forest products journal,2001,51(10):51-54.
    [73] Kang H, Booker R E. Variation of stress wave velocity with MC and temperature. Wood Science andTechnology,2002,36(1):41-54.
    [74] Ross R J, Yang V W, Illman B L, et al. Relationship between stress wave transmission time and bendingstrength of deteriorated oriented strandboard. Forest products journal,2003,53(3):33-35.
    [75] Brashaw B K, Wang X, Ross R J, et al. Relationship between stress wave velocities of green and dryveneer. Forest products journal,2004,54(6):85-89.
    [76]王立海,高珊.应力波在冻结状态白桦活立木中传播速度的试验.东北林业大学学报,2008,36(11);36-38
    [77] Ishiguri F, Matsui R, Iizuka K, et al. Prediction of the mechanical properties of lumber by stress-wavevelocity and Pilodyn penetration of36-year-old Japanese larch trees. Holz als Roh-und Werkstoff,2008,66(4):275-280.
    [78]冯海林,李光辉.应力波传播模型及其在木材检测中的应用.系统仿真学报,2010,(6):1490-1493
    [79] Wang X, Ross R J, Mattson J A, et al. Several nondestructive evaluation techniques for assessing stiffnessand MOE of small-diameter logs. US Department of Agriculture, Forest Service, Forest ProductsLaboratory,2001.
    [80] Wang X, Ross R J, Mattson J A, et al. Nondestructive evaluation techniques for assessing modulus ofelasticity and stiffness of small-diameter logs. Forest products journal,2002,52(2):79-85.
    [81] Gerhards C C. Comparison of two nondestructive instruments for measuring pulse transit time in wood.Wood science,1978,11(11):13-16.
    [82]尚大军,段新芳,杨中平,等.两种无损检测方法对CCA处理材的性能评价比较.木材工业,2008,22(2):17-19.
    [83] Mari o R A, Fernández M E, Fernández-Rodríguez C, et al. Detection of pith location in chestnut lumber(Castanea sativa Mill.) by means of acoustic tomography and longitudinal stress-wave velocity. EuropeanJournal of Wood and Wood Products,2010,68(2):197-206.
    [84] Bulleit W M, Falk R H. Modeling stress wave passage times in wood utility poles. Wood Science andTechnology,1985,19(2):183-191.
    [85] Ross R J, Ward J C, TenWolde A. Identifying bacterially infected oak by stress wave nondestructiveevaluation. US Department of Agriculture, Forest Service, Forest Products Laboratory,1992.
    [86] Ross R J, Ward J C, TenWolde A. Stress wave nondestructive evaluation of wet wood. Forest productsjournal,1994,44(7/8):79-83.
    [87] Ross R J, DeGroot R C, Nelson W J, et al. The relationship between stress wave transmissioncharacteristics and the compressive strength of biologically degraded wood. Forest products journal,1997,47(5):89-93.
    [88] Yamamoto K, Sulaiman O, Hashim R. Nondestructive detection of heart rot of Acacia mangium trees inMalaysia. Forest Products Journal,1998,48(3):83-86.
    [89] Ishiguri F, Kawashima M, Iizuka K, et al. Relationship between Stress-Wave Velocity of Standing Treeand Wood Quality in27-Year-Old Hinoki (Chamaecyparis obtusa Endl.). Journal of the Society ofMaterials Science,2006,55(6):576-582.
    [90]梁善庆,胡娜娜,林兰英,等.古树名木健康状况应力波快速检测与评价.木材工业,2010,24(003):13-15.
    [91]杨学春,王立海.原木内部腐朽应力波二维图像的获取与分析.林业科学,2007,43(11):93-97.
    [92]张希栋,王立海,杨学春.含水率对原木孔洞缺陷应力波检测效果的影响.林业科技,2009,(4);54-56
    [93] Schad K C, Kretschmann D E, Mcdonald K A,et al. Stress wave techniques for determining quality ofdimensional lumber from switch ties. US Dept. of Agriculture, Forest Service, Forest Products Laboratory,1995.
    [94] Schad K C, Schmoldt D L, Ross R J. Nondestructive methods for detecting defects in softwood logs. USDepartment of Agriculture, Forest Service, Forest Products Laboratory,1996.
    [95]林文树,杨慧敏,王立海.超声波与应力波在木材内部缺陷检测中的对比研究.林业科技,2005,30(2):39-41.
    [96] ChienMing C, TeHsin Y. Investigation on strength grading of drift wood in Taiwan by using stress-wave-based tomography.2012IUFRO Conference Division5Forest Products, Estoril, Lisbon, Portugal,8-13July2012. Final program, proceedings and abstracts book. IUFRO (International Union of ForestryResearch Organizations),2012.
    [97]梁善庆,赵广杰,傅峰.应力波断层成像诊断木材内部缺陷.木材工业,2010,24(005):11-13.
    [98] Ross R J, McDonald K A, Soltis L A, et al. NDE of historic structures: USS Constitution. NondestructiveEvaluation Techniques for Aging Infrastructure and Manufacturing. International Society for Optics andPhotonics,1996:266-274.
    [99] Ross R J, Pellerin R F, Volny N, et al. Inspection of timber bridges using stress wave timing nondestructiveevaluation tools: a guide for use and interpretation. US Department of Agriculture, Forest Service, ForestProducts Laboratory,1999.
    [100]段新芳,王平.应力波技术在古建筑木构件腐朽探测中的应用.木材工业,2007,21(2):10-12,22
    [101]安源,殷亚方,姜笑梅,等.应力波和阻抗仪技术勘查木结构立柱腐朽分布.建筑材料学报,2008,11(4):457-463.
    [102]陈勇平,李华,黎冬青,等.古建筑木材中应力波传播速度的影响因素.木材工业,2012,26(2):37-40.
    [103] Ross R J, Ritter M A, Schad K C. Determining in-place modulus of elasticity of stress-laminated timberdecks using NDE. National Conference on Wood Transportation Structures. Madison: Forest ProductsLaboratory,1996:277-281.
    [104] Ross R J, Willits S W, Segen W V, et al. A Stress Wave Based Approach to NDE of Logs for AssessingPotential Veneer Quality. Part1. Small-Diameter Ponderosa Pine. Forest products journal,1999,49(11/12):61-62
    [105] Wang X, Ross R J, McClellan M, et al. Strength and stiffness assessment of standing trees using anondestructive stress wave technique. US Department of Agriculture, Forest Service, Forest ProductsLaboratory,2000.
    [106] Rippy R C, Wagner F G, Gorman T M, et al. Stress-wave analysis of Douglas-fir logs for veneerproperties. Forest products journal,2000,50(4):49-52.
    [107] Wang X, Ross R J, McClellan M, et al. Nondestructive evaluation of standing trees with a stress wavemethod. Wood and fiber science,2001,33(4):522-533.
    [108] Lang E M, Bejo L, Divos F, et al. Orthotropic Strength and Elasticity of Hardwoods in Relation toComposite Manufacture Part III: Orthotropic Elasticity of Structural Veneers. Wood and fiber science,2003,35(2):308-320.
    [109] Wagner F G, Gorman T M, Wu S Y. Assessment of intensive stress-wave scanning of Douglas-fir treesfor predicting lumber MOE. Forest products journal,2003,53(3):36-39.
    [110] Ross R J, Zerbe J I, Wang X, et al. Stress wave nondestructive evaluation of Douglas-fir peeler cores.Forest Products Journal,2005,55(3):90-94.
    [111] Guntekin E, Emiroglu Z G, Yilmaz T. Prediction of Bending Properties for Turkish Red Pine (Pinusbrutia Ten.) Lumber using Stress Wave Method. BioResources,2012,8(1):231-237.
    [112]胡勤龙.应力波时间仪的研制及其应用.仪表技术与传感器,1996,(11):44-46.
    [113]孟瑞华,胡勤龙,等.应力波时间仪的研制和应用.南京化工大学学报,2000,22(6):55-57.
    [114]肖江,杨建华,李黎.基于单片机的单板层积材抗弯强度应力波波速检测系统.木材加工机械,2008,19(1):1-5.
    [115]冯国红,王立海.应力波木材无损检测信号采集系统.森林工程,2008,24(2):22-24,87.
    [116]鲍亦兴,钟宏九.固体中的弹性波.上海力学,1988,9(3):55-82
    [117]董敏煌.地震勘探.石油大学出版社,2000
    [118]王礼立.应力波基础.国防工业出版社,1985
    [119]吴斌,韩强,李沈.结构中的应力波.科学出版社.2001
    [120]侯亮,许桂华,王进花,等.基于自适应加权平均的车速检测研究.交通运输系统工程与信息,2012,12(6):48-51.
    [121]杨慧敏,王立海.立木与原木内部腐朽二维成像检测技术研究进展!.林业科学,2010,46(7):170-175.
    [122]周翠.基于FPGA的高斯滤波器的快速实现[J].空军雷达学院学报,2011,25(3):186-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700