岩体力学行为拉格朗日分析方法研究与工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了岩土体力学行为分析的拉格朗日方法,工程岩体流变行为力学模型和流变行为拉格朗日分析方法,要点如下:
     1.连续介质力学行为拉格朗日分析方法综述
     对连续介质力学分析拉格朗日方法国内外研究和应用现状作了综述。
     探讨了拉格朗日数值方法的力学背景、基本特点与求解思想,总结了三维连续介质拉格朗日分析方法(FLAC3D)的基本原理、主要公式、有关的处理方法以及主要计算步骤。
     2.连续介质力学行为拉格朗日分析方法FLAC3D研究
     研究了连续介质力学分析拉格朗日方法FLAC3D的基本特点,并与有限单元法作了比较,指出了其优点和不足。还通过算例,研究了Drucker-Prager和Mohr—Coulomb两个屈服准则计算结果的差异,膨胀角取值、大变形问题与小变形问题、精度设置对计算结果的影响。本部分研究成果如下:
     (1) FLAC3D方法以节点运动方程为支配方程,追踪了介质从受荷到达到平衡状态的过程,而有限元法是根据节点平衡方程直接求解,这是二者基本的区别。
     (2) FLAC3D没有采用介质真实的阻尼特性和节点质量,给出的不是介质所经历的真实过程,不能正确反映过程的影响,因此它所给出的介质应力和变形计算结果的物理意义是不甚明确的。
     (3) FLAC3D求解过程中的介质振动,是一种噪音,可引起弹塑性介质计算结果误差。而用于确定弹性介质在平衡状态下的应力与变形,有很好的精度,计算结果几乎不受求解过程中介质振动的影响。
     (4) FLAC3D方法的优点是数学运算简单,求解过程收敛,处理岩土体大变形、弹塑性、有开挖和支护等复杂情况也比较方便。缺点是计算结果物理意义不明确;运算时间长、效率低;大量的时间步有可能产生积累误差;用于弹塑性介质分析时,存在噪音误差。
     (5) 在计算精度方面,FLAC3D方法不如有限元法直接,存在更多的误差环节,有限元法更有优势。
     (6) Drucker—Prager准则与Mohr-Coulomb准则结果差异颇大;膨胀角取值对结果的影响是敏感和显著的;在很多情况下,大变形与小变形模式差异不是很大,取小变形模式是合适的,在一般情况下计算精度取10~(-5)是足够的。
     3.拉格朗日分析方法的改进与计算软件编制
     提出了由节点不平衡力直接确定节点位移的求解思想,并给出了位移公
In this thesis, Lagrange numerical method of rock mechanical behavior analysis, engineering rock rheology mechanical model and rheological behavior Lagrange analysis method are studied. The main points are as follows.
    1. Lagrange method of continua mechanical behavior analysis summaries
    The current domestic and overseas situation of Lagrange method study and application is summarized.
    Mechanics background and solving thoughts of Lagrange method for continua mechanical behavior analysis are probed. Basic principles, main formulae, some treatment methods and main calculation steps of FLAC3D are summarized.
    2. Study on Lagrange analysis method for continua in three dimensions (FLAC3D)
    Characteristics of FLAC3D are studied, and comparisons between FLAC3D and finite element method are made. The advantages and defects of FLAC3D are pointed out. Difference of calculation results between Drucker-Prager and Mohr— Coulomb yield criterion, influence of dilation angle value, large deformation problem and small deformation problem, precision setting on calculation result are also studied through examples. The research achievements of this part are below:
    (1) FLAC3D method uses node motion equation and traces the medium motion process from being loaded to reaching equilibrium state. While the finite element method solves from node mechanical equilibrium equation directly. This is the basic difference between the two methods.
    (2) FLAC3D does not use the real medium damping property and node mass, so the real process experiencing by the medium is not given and the influence of medium motion process on result cannot be reflected rightly. So the physical meaning of calculation result of stress and deformation given by FLAC3D is not very clear.
    (3) In FLAC3D, the medium vibration during solving process
引文
1. Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 2.0. Itasca Consulting Group, Inc., 1997.
    2.龚晓南.土工计算机分析.北京:中国建筑工业出版社,2000.
    3.王泳嘉,邢纪波.离散单元法同拉格朗日元法及其在岩土力学中的应用.岩土力学,1995,16(2):1—14.
    4.吴洪词.长江三峡水利枢纽船闸陡高边坡稳定性的拉格朗日元分析.贵州工业大学学报,1998,27(1):32-38.
    5.陈文胜,冯夏庭,葛修润.静态松弛快速拉格朗日分析方法原理.岩石力学与工程学报,1999,18(6):680-684.
    6.黄润秋,许强.显式拉格朗日差分分析在岩石边坡工程中的应用.岩石力学与工程学报,1995,14(4):346-354.
    7.程桦,孙钧.软弱围岩复合式隧道衬砌力学机理非线性大变形数值分析.岩石力学与工程学报,1997,16(4):327-336.
    8.程桦,孙均.三峡船闸及高边坡非线性大变形数值分析.岩土力学,1998,19(4):1-7.
    9.康红普.回采巷道锚杆支护影响因素的FLAC分析.岩石力学与工程学报,1999,18(5):497-502.
    10.盛谦,丁秀丽,冯夏庭.三峡船闸高边坡考虑开挖卸荷效应的位移反分析.岩石力学与工程学报,2000,19(增):987-993.
    11.丁秀丽,盛谦.三峡大坝左厂房3#坝段坝基渗流场与应力场耦合分析.岩石力学与工程学报,2000,19(增):1001-1005.
    12.寇晓东,周维垣,杨若琼.三维快速拉格朗日法及其在拱坝稳定分析中的应用.水利水电技术,2000,31(7):4-7.
    13.朱建明,徐秉业,朱峰.FLAC有限差分程序及其在矿山工程中的应用.中国矿业,2000,04期:78-81.
    14.寇晓东,周维垣,杨若琼.FLAC-3D进行三峡船闸高边坡稳定分析,岩石力学与工程学报,2001,20(1):6-10.
    15.国胜兵,赵毅,赵跃堂.地下结构在竖向和水平地震荷载作用下的动力分析.地下空间,2002,22(4):314-319.
    16.陈祥军,汤劲松.用FLAC3D进行马崖高边坡稳定性分析.石家庄铁道学院学报,2002,15(3):76-79.
    17.丁秀美,黄润秋,臧亚君.预应力锚索框架作用下附加应力的FLAC3D模拟.成都理工大学学报(自然科学版),2003,30(4):339-345.
    18.邱祥波,杨冬梅,徐帮树.3-D FLAC在公路隧道风机洞室稳定性分析中的应用.岩土力学,2003,24(5):751-754.
    19.杜守继,职洪涛,翁慧俐,等.高速公路软岩隧道复合支护机理的FLAC解析.中国公路学报,2003,16(2):70-73.
    20.徐卫亚,宋晓晨,周维垣.水电站进水口岩石高边坡及坝坡与洞室相互作用的三维数值分析.岩石力学与工程学报,2004,23(16):2712-2717.
    21.姜谙男,刘建,李洪东.水布垭枢纽地下厂房开挖支护过程三维数值模拟.岩土力学,2004,25(1):45—54.
    22.何满潮,王树仁.大变形数值方法在软岩工程中的应用.岩土力学,2004,25(2):185—188.
    23.刘春玲,祁生文,童立强等.利用FLAC3D分析某边坡地震稳定性.岩石力学与工程学报,2004,23(16):2730-2733.
    24.李术才,李树忱,朱维申.泰安抽水蓄能电站围堰稳定性的流-固耦合分析.岩石力学与工程学报,2004,23(8):1275-1279.
    25.刘彤,伍法权,吉卫东.偏压条件下大型地下厂房围岩变形稳定性分析.工程地质学报,2005,13(04):465-470.
    26.王芝银,李云鹏,郭书太.大型地下储油洞粘弹性稳定性分析.岩土力学.2005,26(11):1705-1710.
    27.闫长斌,徐国元,李夕兵.爆破震动对采空区稳定性影响的FLAC3D分析.岩石力学与工程学报,2005,24(16):.2894-2899.
    28.陈占军,朱传云,周小恒.爆破荷载作用下岩石边坡动态响应的FLAC3D模拟研究.爆破,2005,22(4):8-13.
    29.华渊,朱赞成,周太全.基于有限差分法的隧道新型支护结构稳定性分析.岩石力学与工程学报,2005,24(15):2718-2722.
    30.王生俊,贾学民,韩文峰.高速公路下伏采空区剩余沉降量FLAC3D计算方法.岩石力学与工程学报,2005,24(19):3545-3550.
    31.朱继良,黄润秋.某水电站坝前堆积体稳定性的三维数值模拟分析.岩土力学,2005,26(8):1318-1322.
    32.王志伟,王庚荪.裂隙性粘土边坡渐进性破坏的FLAC模拟.岩土力学,2005,26(10):1637-1640
    33. F. Kirzhner, G. Rosenhouse. Numerical Analysis of Tunnel Dynamic Response to Earth Motions. Tunnelling and Underground Space Technology, 2000, 15(3):249-258.
    34. G. Murali Mohan, P. R. Sheorey, A. Kushwaha. Numerical estimation of pillar strength in coal mines. International Journal of Rock Mechanics & Mining Sciences, 38(2001): 1185-1192.
    35. C. Y. Chen, G. R. Martin. Soil-structure interaction for landslide stabilizing piles. Computers and Geotechnics, 29(2002): 363-386.
    36. G. E. Exadaktylosa, M. C. Stavropoulou. A closed-form elastic solution for stresses and displacements around tunnels. International Journal of Rock Mechanics & Mining Sciences, 39(2002): 905-916.
    37. Y. H. Hatzora, M. Talesnickb, M. Tsesarsky. Continuous and discontinuous stability analysis of the bell-shaped caverns at Bet Guvrin, Israel. International Journal of Rock Mechanics & Mining Sciences, 39(2002): 867-886.
    38. A. C. Waltham, G. M. Swift. Bearing capacity of rock over mined cavities in Nottingham. Engineering Geology, 75 (2004): 15-31.
    39. N. Benmebarek, S. Benmebarek, R. Kastner. Numerical studies of seepage failure of sand within a cofferdam. Computers and Geotechnics, 32 (2005): 264-273.
    40. N. E. Yasitli, B. Unver. 3D numerical modeling of longwall mining with top-coal caving. International Journal of Rock Mechanics & Mining Sciences, 42(2005): 219-235.
    41.王贵君.盐岩层中天然气存储洞室围岩长期变形特征.岩土工程学报,2003,25(4):431-435.
    42.徐平,李云鹏,丁秀丽等.FLAC~(3D)粘弹性模型的二次开发及其应用.长江科学院院报,2004,21(2):10-13.
    43.漆泰岳,陆士良,高波.FLAC锚杆单元模型的修正及其应用.岩石力学与工程学报,2004,23(13):2197-2200.
    44.常来山,王家臣,李慧茹.节理岩体边坡损伤力学与FLAC-3D耦合分析.金属矿山,2004,339(9):16-18.
    45. D. F. Malan. Time-dependent behavior of deep level tabular excavations in hard rock. Rock Mechanics and Rock Engineering, 1999, 32(2): 123-155.
    46. Tien-Chien Chen, Rong-Her Chen, San-Shyan Lin. A nonlinear homogenized model applicable to reinforced soil analysis. Geotextiles and Geomembranes, 18 (2000): 349-366.
    47. X. Chen, C. P. Tan, C. M. Haberfield. Numerical evaluation of the deformation behaviour of thick-walled hollow cylinders of shale. International Journal of Rock Mechanics and Mining Sciences, 37 (2000): 947-961.
    48. T. G. Sitharam, G. Madhavi Latha. Simulation of excavations in jointed rock masses using a practical equivalent continuum approach. International Journal of Rock Mechanics & Mining Sciences, 39 (2002): 517-525.
    49. Boidy E, Bouvand A, Pellet F. Back analysis of time-dependent behavior of a test gallery in claystone. Tunneling and Underground Space Technology, 2002, 17(4): 415-424.
    50. Dragan Grgic, Francoise Homand, Dashnor Hoxha. A short-and long-term rheological model to understand the collapses of iron mines in Lorraine, France. Computers and Geotechnics, 2003, 30(7): 557-570.
    51. Sompote Youwai, Dennes T. Bergado. Numerical analysis of reinforced wall using rubber tire chips-sand mixtures as backfill material. Computers and Geotechnics, 31(2004): 103-114.
    52.小出昭一郎[日].分析力学.北京:北京师范大学出版社,1989.
    53.尤书平.分析力学.北京:水利电力出版社,1989.
    54.R.罗森伯[美].离散系统分析动力学.北京:人民教育出版社,1981.
    55.W.M.赖,D.鲁宾,E.克莱勃[美],康振黄,陈君楷,邹盛铨等译.连续介质力学引论.成都:四川科学技术出版社,1985.
    56.范镜泓,高芝晖.非线性连续介质力学基础.重庆:重庆大学出版社,1987.
    57.徐芝纶.弹性力学(第二版).北京:高等教育出版社,1982.
    58.华东水利学院.弹性力学问题的有限单元法(修订版).北京:水利电力出版社,1978.
    59.张允真,曹富新.弹性力学及其有限单元法.北京:中国铁道出版社,1983.
    60.王仁,黄文斌,黄筑平.塑性力学引论.北京:北京大学出版社,1992.
    61.郑颖人,龚晓南.岩土塑性力学基础.北京:中国建筑工业出版社,1989.
    62.何福保,沈亚鹏.板壳理论.西安:西安交通大学出版社,1993.
    63.黄克智,陆明万,薛明德.弹性薄壳理论.北京:高等教育出版社,1988.
    64.朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用.北京:科学出版社,2002.
    65.周维垣.高等岩石力学.北京:水利电力出版社,1990.
    66.张忠亭,王宏,陶振宇.岩石蠕变特性研究进展概况.长江科学院院报,1996,Vol.13 Supp.:1-5.
    67.孙钧,凌建明.三峡船闸高边坡岩体的细观损伤及长期稳定性研究.岩石力学与工程学报,1997,16(1):1-7.
    68.肖洪天,强天弛,周维垣.三峡船闸高边坡损伤流变研究及实测分析.岩石力学与工程学报,1999,18(5):497-502.
    69. J. F. Shao, Q. Z. Zhu, K. Su. Modeling of creep in rock materials in terms of material degradation. Computers and Geotechnics, 30(2003): 549-555.
    70.夏熙伦,徐平,丁秀丽.岩石流变特性及高边坡稳定性流变分析.岩石力学与工程学报,1996,15:312-322.
    71.朱维申,邱祥波,李术才等.损伤流变模型在三峡船闸高边坡稳定分析的初步应用.岩石力学与工程学报,1997,16(5):431-436.
    72.朱维申,张强勇.节理岩体脆弹性断裂损伤模型及其工程应用.岩石力学与工程学报,1999,18(3):245-249.
    73.章根德,剡公瑞.岩体高边坡流变学性状有限元分析.岩土工程学报,1999,21(2):166-170.
    74.徐平,杨挺青,徐春敏等.三峡船闸高边坡岩体时效特性及长期稳定性分析.岩石力学与工程学报,2002,21(2):163-168.
    75.张玉军,刘谊平.锚固正交各向异性岩体的三维粘弹粘塑性有限元分析.岩石力学与工程学报,2002,21(12):1770-1775.
    76.周火明,丁秀丽,盛谦.三峡工程地下电站开挖的粘弹性数值模拟及稳定性评价.长江科学院院报,2002,19(1):31-34.
    77.陈尚法,佘成学,陈胜宏.大岩淌滑坡的弹粘塑性自适应有限元分析.岩石力学与工程学报,2002,21(2):169-175.
    78. Fakhimi, Ahmad All. The influence of time-dependent deformation of rock on the stability of underground excavations. Ph. D. thesis, University of Minnesota, 1992.
    79.孙钧.岩土材料流变及其工程应用.北京:中国建筑工业出版社,1999.
    80.芮勇勤,贺春宁,王惠勇.层状边坡渐进破裂与失稳过程数值模拟探讨.长沙交通学院学报,2002,18(3):8-12.
    81.黄河小浪底水库岩体蠕变试验研究报告.黄河水利委员会勘测规划设计院,1990.
    82.黄河小浪底水库围岩径向变形试验研究报告.黄河水利委员会勘测规划设计院,1991.
    83.邓荣贵,周德培,张倬元等.一种新的岩石流变模型.岩石力学与工程学报,2001,20(6):780—784.
    84.单仁亮,薛友松,张倩.岩石动态破坏的时效损伤本构模型.岩石力学与工程学报,2003,22(11):1771—1776.
    85.张伟,茜平,陈晓平.流变理论在深基坑开挖中的应用探讨.武汉大学学报(工学版),2003,36(2):93—96.
    86.软岩流变特性研究.长江科学院,2003.12.
    87.大型地下洞室群稳定性与优化分析“清江水布垭枢纽地下洞室群开挖支护方案优化分析与稳定性研究报告”.中国科学院武汉岩土力学研究所,2002.
    88.朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学.北京:科学出版社,1996.
    89.章根德,何鲜,朱维耀.岩石介质流变学.北京:科学出版社,1999.
    90.L.M.卡恰诺夫[美],杜善义,王殿富译.连续介质损伤力学引论.哈尔滨:哈尔滨工业大学出版社,1989.
    91.程峰.岩体开挖的能量耗散及施工顺序优化.中国科学院武汉岩土力学研究所博士学位论文,1998.
    92.邓广哲.裂隙岩体非线性蠕变断裂损伤特性与模型研究.中国科学院武汉岩土力学研究所博士学位论文,1997.
    93.刘高.高地应力区结构性流变围岩稳定性研究.成都理工大学博士学位论文,2001.
    94.张玉军.锚固岩体流变特性的模型试验及理论研究.同济大学博士学位论文,1992.
    95. BORIS BENKO. Numerical Modeling of Complex Slope Deformation and Landslides. Ph. D. thesis, University of Saskatchewan, 1997.
    96. Chunhe Yang. Time-dependent Behavior of Rock Salt—Experimental Investigation and Theoretical Analysis. Ph. D. thesis, University of Nevada, 2000.
    97. Liao Jih-Sheng. Stability of near surface excavations in weak rock and soil. Ph. D. thesis, University of Wisconsin, 1988.
    98.杨法玉,马国彦.对黄河小浪底水利枢纽地下厂房围岩稳定性分析方法的研究.水利发电,1995,(1):23—26.
    99.朱维申,程峰.能量耗散本构模型及其在三峡船闸高边坡稳定分析中的应用.岩石力学与工程学报,2000,19(3):261-264.
    100.刘建华,朱维申等.岩土介质三维快速拉格朗日数值分析方法研究.岩土力学,2006,27(4):525-529.
    101.刘建华,朱维申等.小浪底水利枢纽地下厂房岩体流变与稳定性FLAC~(3D)数值分析.岩石力学与工程学报,2005,24(14):2484-2489.
    102.姚纬明,李同春,任旭华等.岩体材料包络型复合弹塑性计算模型.岩土工程学报,1999,21(1):95-99.
    103.李宁,G. Swoboda.当前岩石力学数值方法的几点思考.岩石力学与工程学报,1997,16(5):502-505.
    104.孙钧.岩石力学在我国的若干进展.西部探矿工程,1999,11(1):1-5.
    105.龚晓南.21世纪岩土工程发展展望.岩土工程学报,2000,22(2):238-242.
    106.陈文胜,冯夏庭,葛修润.基于静态松弛的一种广义界面单元方法.岩石力学与工程学报,2000,19(1):,24-28.
    107.杨强,陈新,周维垣.岩土工程加固分析的弹塑性力学基础.岩土力学,2005,26(4):553-557.
    108.陈卫忠,李术才,邱祥波.断裂损伤耦合模型在围岩稳定性分析中的应用.2002,23(3):288-291.
    109.陈卫忠,朱维申,李术才.节理岩体断裂损伤耦合的流变模型及其应用.水利学报,1999,12:33-37.
    110.张强勇,朱维申,金亚兵.弹塑性损伤模型在某地下厂房工程中的应用.岩石力学与工程学报,1999,18(6):654-657.
    111. Kazuhiko Miura, Yoshiaki Okui, Hideyuki Horii. Miromechanics-based prediction of creep failure of hand rock for long-term safty of high-level radioactive waste disposal system. Mechanics of Materials, 35(2003): 587-601.
    112. G. N. BOUKHAROV, M. W. CHANDA, N. G. BOUKHAROV. The Three Processes of Brittle Crystalline Rock Creep. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1995, 32 (4): 325-335.
    113. R. Prikryl. Some microstructural aspects of strength variation in rocks. International Journal of Rock Mechanics & Mining Sciences, 38(2001): 671-682.
    114. D. F. Malan. Simulating the Time-dependent Behavior of Excavation in Hard Rock. Rock Mechanics and Rock Engineering, 2002, 34 (4): 225-254.
    115. E. Maranini, M. Brignoli. Creep behavior of a weak rock: experimental characterization. International Journal of Rock Mechanics and Mining Sciences, 36(1999): 127-138.
    116. Chunhe Yang, J. J. K. Daemen, Jian-hua Yin. Experimental investigation of creep behavior of salt rock. International Journal of Rock Mechanics and Mining Sciences, 36(1999): 233-242.
    117. Yang Zhifa, Wang Zhiyin, Zhang Luqing, etc. Back analysis of viscoelastic displacements in a soft rock road tunnel. International Journal of Rock Mechanics & Mining Sciences, 38(2001): 331-341.
    118. D. E. MUNSON. Constitutive Model of Creep in Rock Salt Applied to Underground Room Closure. Int. J. Rock Mech. Min. Sci., 1997, 34 (2): 233-247.
    119. G. GIODA, G. SWOBODA. DEVELOPMENT AND APPLICATIONS OF THE NUMERICAL ANALYSIS OF TUNNELS IN CONTINUOUS MEDIA. INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 23(1999): 1393-1405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700