几种硫酸盐矿物浮选的晶体化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天青石(SrSO4)、重晶石(BaSO4)和石膏(CaSO4·2H2O)是重要的硫酸盐矿物,也是重要的盐类矿物,在建筑、化工、医药等领域有着广泛的应用。天青石是碳酸锶的主要来源。碳酸锶的主要用途是生产电视机显像管面板玻璃及永磁材料。重晶石是提取钡盐的主要原料。石膏是重要的非金属材料,广泛应用于工业、农业和医药等领域。
     天青石、重晶石和石膏的浮选是一项重要的浮选理论与实践课题。这三种硫酸盐矿物常与某些其它盐类矿物伴生,由于表面具有相同活性或性质相近的离子,因此它们之间浮选分离困难。目前,对这三种硫酸盐矿物的浮选研究主要侧重于它们与某些其他盐类矿物之间如方解石、磷灰石、萤石的浮选分离,如重晶石与萤石、重晶石与方解石,天青石与方解石等分离研究。为了深入了解这三种硫酸盐矿物的浮选特性,必须对其浮选进行系统地试验研究。
     矿物的可浮性与晶体化学特性密切相关。矿物的晶体化学特性是指矿物的化学组成、化学键、晶体结构及其性质之间的关系,决定着矿物在溶液中解离后的表面性质,从而影响矿物的可浮性。因此本文对三种硫酸盐矿物的浮选进行了晶体化学研究。
     本文从矿物的晶体结构出发,通过大量的浮选试验,对三种硫酸盐矿物在阴离子捕收剂油酸钠、阳离子捕收剂十二胺及螫合捕收剂水杨羟肟酸浮选体系中不加活化剂和抑制剂时的可浮性,以及多价金属阳离子、无机阴离子调整剂、有机高分子化合物和有机螯合化合物对其可浮性的影响进行了系统的研究。同时,借助于晶体化学理论、浮选溶液化学理论以及现代表面测试技术(X射线光电子能谱分析、傅立叶红外光谱分析及ζ电位测定等),对三种硫酸盐矿物进行了晶体化学研究,并尝试运用计算机分子模拟计算对浮选的结果进行了验证。
     研究表明,在油酸钠和水杨羟肟酸浮选体系中三种矿物的可浮性大小为重晶石>天青石>石膏;在十二胺浮选体系中为:石膏>天青石>重晶石。XPS和红外光谱测试发现,油酸钠与三种硫酸盐矿物的作用为化学吸附,十二胺在矿物表面发生物理吸附,水杨羟肟酸则可能与矿物发生了螯合反应。对三种硫酸盐矿物晶体结构中的化学键进行了理论计算,发现化学键的键长、键能、静电力、离子键百分比和极性及键强决定了Mn+—O2-的断裂程度,而Mn+—O2-的断裂程度与三种硫酸盐矿物的可浮性密切相关。对于天青石和重晶石而言,Sr—O键、Ba—O键大量断裂,Sr2+、Ba2+在矿物表面大量暴露,在浮选溶液中易与阴离子捕收剂油酸钠产生化学吸附,并能与水杨羟肟酸发生螯合反应,因此两种矿物在油酸钠和水杨羟肟酸浮选体系中的可浮性较好。
     石膏结构中的Ca—O键不易断裂,Ca2+暴露很少,因此石膏表面电负性大,在阳离子捕收剂十二胺浮选体系中有较好的可浮性,好于在阴离子捕收剂油酸钠和螯合捕收剂水杨羟肟酸浮选体系中的可浮性。计算机分子模拟计算的结果表明,矿物与药剂作用前后的能量变化越大,矿物的可浮性越好。计算结果与浮选试验的结果是相符合的。
Celestite(SrSO4), barite(BaSO4) and gypsum(CaSO4·2H2O) are three kind of important sulfate minerals, which are also important salt minerals used widely in architecture, chemical industry and medical fields. Barite is a main raw material for extracting barium salt. Celestite is the main source of strontium carbonate, which is often used for producing kinescope panel glasses of TV sets and permanent-magnet materials. Gypsum is a kind of more important nonmetal material, used widely in the field of industry, agriculture and medicine.
     The flotation of Celestite, barite and gypsum is a significant topic of theory and practice. The three sulfate minerals usually accompany with these salt minerals, having ions with equal activities or similar properties on the surface, which makes the flotation separation difficult. At present, the research on the flotation of the three sulfate minerals mainly laid special emphasis on studying flotation separation between the three sulfate minerals and other salt minerals including calcite, apatite, and fluorite and so on.
     The floatability of minerals is closed related with their crystal chemistry characteristics. The crystal chemistry characteristics includes chemical composition, chemical bonds, crystal structure and the relation among them, which decide the surface properties of minerals after dissociating in the solution, and then influence the floatability. Consequently, this paper carried out the crystal chemical research on the flotation of the three sulfate minerals.
     This paper started from the crystal structure, and carried out the systematic study through vast scale flotation experiments on the floatability of the three sulfate minerals without activator and depressant in anion, cation and chelating collectors flotation system, and influence of polyvalent metal cation, inorganic anion modifiers, organic high molecular depressants and organic chelating agents on floatability of them. At the same time, the studies on crystal structures of three typical sulfate minerals with the aid of theory of crystal chemistry, theory of solution chemistry of flotation and modern advanced surface test technique (X-ray photoelectron spectrometric,ζ-potential measure) were carried out for research of crystal chemistry on three sulfate minerals in this paper, and computer simulation calculation was also attempted to carry out for verifying the results of flotation.
     The research shows that the floatability sequence of three sulfate minerals is barite>celestite>gypsum in the collector systems of sodium oleate and salicylhydroxamic acid; in lauryl amine system is:gypsum>celestite>barite. XPS and infrared spectrum analysis are used to find that it is chemical reaction between sodium oleate and three minerals, physical adsorption on the surface of minerals for lauryl amine, and it is chelating reaction between salicylhydroxamic acid and three minerals possibly.
     Theoretical calculation on chemical bonds in crystal structures of three minerals is carried out, finding that the bond length, bond energy, coulomb force, percentage and polarity of ionic bond and bonding strength determine the breaking level of Mn+—O2- when minerals dissociate in flotation system, and the breaking level of Mn+—O2- in crystal structures of three sulfate minerals is closed related with floatability. As to celestite and barite, The Ba-O, Sr-O bonds break largely and much Sr2+、Ba2+ exposing on the surfaces, which can generate chemical reaction with sodium oleate, and chelating reaction with salicylhydroxamic acid, so celestite and barite have good floatability in the systems of sodium oleate and salicylhydroxamic acid.
     The bond Ca-O in gypsum structure is more difficult to break, and Ca2+ exposes very little, so the electronegativity on the surface of gypsum is higher, which leads to a good floatability in the flotation system of lauryl amine, better than in the sodium oleate and salicylhydroxamic acid flotation systems. The results of computer aided calculation are accordant with the flotation experiments results, showing that the reaction energy of mineral and reagent changes more, the floatability is better.
引文
[1]孙传尧,印万忠.硅酸盐矿物浮选原理[M],北京:科学出版社,2001,2~10.
    [2]赵爱醒,潘铁虹.矿物晶体化学—矿物粉末X射线衍射法的研究及其应用[M],北京:中国地质大学出版社,1993,1~13.
    [3]李英堂,田淑艳,汪美凤.应用矿物学[M],北京:科学出版社,1995,27~68.
    [4]鲍林著,卢嘉锡等译.化学键的本质[M],上海科学技术出版社,1966.
    [5]邵美成.鲍林规则与键价理论[M],北京:高等教育出版社,1993.
    [6]I.D.Brown. In "Structure and Bonding in Crystals" [J],1981, Vol.Ⅱ, Chapter14,1~30.
    [7]孙传尧.分离钠铁硅酸盐霓石和铁矿物的新方法—络合浸蚀浮选法[D],北京:北京矿冶研究总院,1981.
    [8]孙传尧,吕永信.用络合浸蚀浮选法分离霓石和铁矿物[J],有色金属(季刊),1982,(2):42~51.
    [9]孙传尧,印万忠.关于硅酸盐矿物的可浮性与其晶体结构及表面特性关系的研究,矿冶,1998,(4):22~30.
    [10]孙传尧,贾木欣.用油酸钠作捕收剂几种硅酸盐矿物浮游性的分析[J],有色金属,2001,(4):57~61.
    [11]孙传尧,程新朝,李长根.钨铋钼萤石复杂多金属矿综合选矿新技术—柿竹园法[J],中国钨业,2004,(10):8~14.
    [12]印万忠.硅酸盐矿物晶体化学特性与表面特性及可浮性关系的研究[D],沈阳:东北大学,1999.
    [13]印万忠,孙传尧.矿物晶体结构与表面特性和可浮性关系的研究[M],国外金属矿选矿,1998,(4):8~11.
    [14]印万忠,韩跃新,魏新超,等.一水硬铝石和高岭石可浮性的晶体化学分析[J],金属矿山,2001,(6):29~33.
    [15]贾木欣.硅酸盐矿物表面特性的结构分析及对金属离子的吸附特性[D],沈阳:东北大学,2001.
    [16]贾木欣,孙传尧.几种硅酸盐矿物零电点、可浮性及键价分析[J],有色金属(选矿部分),2001,(6):1~9.
    [17]贾木欣,孙传尧.几种硅酸盐矿物晶体化学与浮选表面特性研究[J],矿产保护与利用,2001,(5):25~29.
    [18]贾木欣,孙传尧.硅酸盐矿物对金属离子吸附特性的研究[J],矿冶,2001,(3):25~30。
    [19]刘亚川,龚焕高,张克仁.石英长石矿物结晶化学特性与药剂作用机理[J],中国有 色金属学报,1992,(4):21~25.
    [20]Gaudin A M. Principle of Mineral Dressing, McGraw-Hill, New York, USA. 1stEd, 1939.
    [21]Wiegel R L and Li K. A random model for mineral liberation by size reduction. Transactions SME/AIME,1967,238:179~189.
    [22]#12
    [23]D.W.Fuerstenau.硅酸盐矿物结晶化学、表面性质和浮选行为[J],国外金属矿选矿,1978,(9):28~45.
    [24]R.W.M.Lai, D.W.Fuerstenau.氧化物和复杂氧化物的表面状态与化学键性质之间的关系[J],国外金属矿选矿,1987,(6):1~8.
    [25]Hogg R.矿物表面特性[J],国外金属矿选矿,1981,(12):1~15.
    [26]Carta M.矿物表面能的结构对电选和浮选的影响[J],国外金属矿选矿,1975,(5~6):13~25.
    [27]Plaksin I.N., Shafeyev R S and Chanturia V A. Relation between energy structure of mineral crystal and their flotation properties[C],8th IMPC,1968.
    [28]A.J.罗德汀格斯.晶体化学特性对磷灰石可浮性的影响[J],国外金属矿选矿,1994(2):25~34.
    [29]A.J.Rodrigue and P.R.GBrandao. The effect of crystal chemistry properties on the flotability of Apitite[C],18th IMPC, Sydney,1993:1479~1485.
    [30]PLAKSIN IN etal.8'TH INT'L MIN PROC CONGRESS,1968, S-3.
    [31]CARTA Metal. G, TH INTIL MIN PROC CONGRESS,1970.
    [32]CARTA Metal, TH INT1L MIN PROC CONGRESS,1973.
    [33]A.洛帕茨瓦尔维索等.在用十二烷基硫酸盐捕收剂浮选天青石时碳酸根离子的作用[J],国外金属矿选矿,2002,(7):20~24.
    [34]寇丽华.中国硫酸及硫酸盐进出口概况[J],硫酸工业,1996,(3):1~4.
    [35]石膏的特征及用途[J],山东国土资源,2005(2):46.
    [36]H.S.汉纳,P.索马森达兰.盐类矿物的浮选[C],//富尔斯特瑙MC,浮选(第一版,上卷),北京:冶金工业出版社,1981,136~194.
    [37]A.A.阿布拉莫夫.盐类矿物的疏水规律和浮选[J],国外金属矿选矿,2000,(11):30~35.
    [38]S.基特科夫.可溶于水的矿物资源的浮选[J],国外金属矿选矿,2005,(3):18~21.
    [39]Sorensen.E, "On the Adsorption of Some Anionic Collectors on Fluoride Minerals,"[J], J.Colloid and Interface Sci, Vol.45,NO.3,1973:601~607.
    [40]Gaudin.A. Flotation[M],2nd ed., McGraw-Hill, New York,1957,461~573.
    [41]Taggart,A.F, Handbook of Mineral Dressing (2nd)[M], J.Wiley&Sons, New York,1945,Sec.12:1~130.
    [42]F.B.Michell, The Practice of Mineral Dressing, Mine&Quality, Engineering Electrical Press, London,1950.
    [43]丁浩.磷灰石、方解石可浮性的初步研究[J],建材地质,1990,(6):39.
    [44]林海.C28作捕收剂浮选分离萤石和磷灰石的研究[J],建材地质,1993,(1):43.
    [45]李冬莲等.磷灰石常温浮选溶液化学的研究[J],矿冶工程,1999(3):35~37.
    [46]H.西斯等.磷酸盐矿石浮选药剂评述[J],国外金属矿选矿,2003(10):8~13.
    [47]周强.伴生方解石的萤石矿分选[J],化工矿物与加工,1985(2):40.
    [48]SPECK A etal. US BUREAU OF MINES REPORT OF INVESTIGATION,1963. No.6202.
    [49]PRENCH RO. J PHYSCHEM,1954, (58):805.
    [50]PECK AS etal.7'TH INT'L MIN PROC CONGRESS,1964.
    [51]BAHR A etal.8'TH INT'L MIN PROC CONGRESS,1968, PAPER S-11.
    [52]DOBIAS B. ERZMETALL,1968,21:275~281.
    [53]DOBIAS B, SPURNY J.3'TH INT'L CONGRESS ON SURFACE ACTIVE SUBS-TANCE,1960,(4):396~403.
    [54]朱一民.y-17脂肪酸钠盐与萤石的作用机理研究[J],非金属矿,1987,(2):36.
    [55]周维志.萤石浮选技术的新进展[J],广东有色金属学报,1998(5):1~7.
    [56]周维志.中国发明专利[P],ZL87105202.4,1987.
    [57]周维志.中国发明专利[P],ZL91112718.6,1991.
    [58]钟康年等.磷灰石与白云石的浮选分离[J],有色金属,1994(5):31~38.
    [59]陈华强.几种无机、有机抑制剂对方解石浮选抑制行为的研究[J],四川有色金属,1994(2):42~45.
    [60]张德海,周训华.萤石与重晶石浮选分离的新型抑制剂[J],化工矿物与加工,2000,(9):1~3.
    [61]郑桂兵,黄国智.萤石与方解石浮选分离抑制剂研究[J],非金属矿,2002,25(5):41~42.
    [62]黄国智.萤石和方解石浮选分离新药剂的研究[D],北京:北京矿冶研究总院,1995,27~29.
    [63]吴永云等.淀粉及改性淀粉作为萤石与重晶石的选择性抑制剂的研究[J],非金属矿1989,(3):18.
    [64]起冰翠,薛玉兰.氢氧化锌与石膏的沉淀浮选分离研究[J],国外金属矿选矿,1997, (12):29~32.
    [65]起冰翠,薛玉兰.羧甲基纤维素(CMC)对石膏及氢氧化锌浮选性质影响的机理研究[J],国外金属矿选矿,1996,(5):25~27.
    [66]岳成林。萤石、重晶石和方解石的可浮性研究[J],化工矿物与加工,2001,(9):8~10.
    [67]A.洛帕茨瓦尔维索等.在用十二烷基硫酸盐捕收剂浮选天青石时碳酸根离子的作用[J],国外金属矿选矿,2002,(7):20~24.
    [68]邵广全等.某天青石矿浮选工艺研究[J],有色金属(选矿部分)2005,(4):13~17.
    [69]松全元.重晶石基本可浮性的研究[J],矿产综合利用,1994(1):1~7。
    [70]周晓四,王资,武崇德.萤石-重晶石矿石综合利用研究[J],昆明冶金高等专科学校学报,2001,(12):21~24.
    [71]周晓四等.萤石-重晶石浮选分离试验研究[J],昆明冶金高等专科学校学报,1996,(12):74~79.
    [72]R.霍特等.从实验室到工业规模的天青石选矿[J],国外金属矿选矿,1994,(8):11~18.
    [73]林海等.萤石与重晶石浮选分离新工艺及机理研究[J],有色金属(季刊),1993,(1):47.
    [74]丘继存.选矿学[M],北京:冶金工业出版社,1987.
    [75]魏德洲.固体物料分选学[M],北京:冶金工业出版社,2000.
    [76]陈祖荫.矿石学[M],武汉:武汉工业大学出版社,1987.
    [77]张治元等.矿物表面的相互转化对盐类矿物共存体系浮选的影响[J],金属矿山,1995,(4):38~42.
    [78]东乃良.叶蛇纹石浮游特性及其抑制作用机理探讨[J],北京矿冶研究总院院报,1984,(2):37~43.
    [79]崔林.矿物的晶体缺陷与[J],国外金属矿选矿,1982,(10):10~20.
    [80]Harada.T, Vlijanje Defektov kristallieskih resetkev minerov nalh flotacionnye svojestva-per[J], VINITI-Flotation,1958, (6):27~42.
    [81]#12
    [82]朱俊士,主编.中国钒钛磁铁矿选矿[M],北京:冶金工业出版社,1996,91~102.
    [83]李长根.从含钙矿物中优先浮选白钨矿的新方法—含钙脉石矿物的选择性络合溶解抑制法[D],北京:北京矿冶研究总院,1981.
    [84]周菁.白钨常温浮选研究[J],湖南有色金属,1998(11):9~11.
    [85]叶雪均.低品位白钨矿石浮选工艺研究[J],中国钨业,1999(4):19~21.
    [86]潘兆橹.结晶学及矿物学[M],北京:地质出版社,1994.
    [87]王濮,等.系统矿物学(下册)[M],地质出版社,1987,271~343.
    [88]四川大学工科基础化学教学中心.近代化学基础(下册)[M],高等教育出版社,2002,(8):65.
    [89]T.佐尔泰,等著,施倪承,等译.矿物学原理[M],地质出版社,1992.
    [90]Z.兰特,等著,彭承美,译.索尔维法制碱法[M],北京:化学工业出版社,1983.
    [91]Phinney, Robin. Process for producing potassium hydroxide and potas-sium sulfate from sodium sulfate[P], US 6375824,2002.
    [92]Kresnyak, Steve, Halldorson, etal. Method for production of sodium bicarbonate sodium carbonate and ammonium sulfate from sodium sul-fate[P], US 5830422,1998.
    [93]Newman. Electrolytic sodium sulfate salt splitter comprising a polymericion conductor[P], US 5928488,1999.
    [94]Martin. Electrochemical production of sodium hydroxide and sulfuric acid from acidified sodium sulfate solution[P], US 5230779,1993.
    [95]Tejeda, Alvaro, R.Membrane. Process for converting sodium sulfate into sulfuric acid and sodium carbonate[P], US 4486283,1984.
    [96]化工部化工矿山设计研究院研究一室明矾石专题组.明矾石的浮选[J],化工矿山技术,1979(5):42~50.
    [97]仲维卓,等.硫酸盐类晶体中[SO4]2-四面体的结晶方位与晶体的形貌[J],无机材料学报,1997,(2):11~16.
    [98]Aquliano.D. Cryst Growth,1992, (125):519.
    [99]史红云.化学成分和键价对矿物晶体结构形式的影响[J],地质科技情报,1992,(12):41~45.
    [100]王淀佐.浮选剂作用原理及应用[M],北京:冶金工业出版社,1982.
    [101]Eigeles.M.A. Theoretical Bases of the Flotation of Non-Sulfide Minerals, Moskow, Metallurgizdat[J],1950,(Russ.),cited in ref. (5).
    [102]Fuerstenau.D.W. "Interfacial Processes in Mineral/Water Systems,"[J] Pure and Applied Chemistry, Vol.24,1970:135~164.
    [103]Kitchener,J.A.. "Mechanisms of Adsorption from Aqueous Solutions:Some Basic Problems," [J], J.Photographic Sci.,Vol.13,1965:152~158.
    [104]Healy.T.W.. "Principles of Adsorption of Organics at Solid-Solution Interfaces,"[J] J.Macromol.Sci.-Chem.,Vol.A8,No.3,1974:603~619.
    [105]Hanna,H.S.. Contribution to the Flotation of Phosphate Ores[D], Ain Shams Univ.,Cairo,1968.
    [106]Fuerstenau.D.W.. "The Adsorption of Surfactants at Solid/Water Interfaces,"[J] The Chemistry of Biosurfaces, M.L.Hair,ed.,Marcel Dekker, Inc.,New York,Vol.1,1971:143~176.
    [107]Somasundaran.P.. "Interfacial Chemistry of Particulate Flotation,"[C] Advances in Interfacial Phenomena of Partivulate Solution/Gas Systems, Application to Flotation Research, P.Somasundaran and R.B.Grieves,eds., AIChE Symposium Series, Vol.71,NO.150,1975:1~15.
    [108]Predali,J.J. and Cases,J.M.. "Thermodynamics of the Adsorption of Collectors,"[C] 10th Int'l Mineral Processing Congress,London,1973,Instn.Min.Metal.,Pub.1974:473~492.
    [109]French,R.O., et al., "Applications of Infrared Spectroscopy to studies in Surface Chemistry,"[J],J.Phys.Chem.,Vol.58,1954:805~810.
    [110]Gaudin.A.. Flotation[M],2nd ed., McGraw-Hill, New York,1957:461~573.
    [111]Klassen,V.J. and Mokrousov. V.A. An Introduction to the Theory of Flotation[M], London, Butterworths,1973.
    [112]Joy,A.S., and Robinson,A.J.. "Flotation," Recent Progress in Surface Science, J.F.Danielli, K.G.A., Pankurst, and A.C.Riddiford, eds., Acadamic Press Vol.2,1964:169~260.
    [113]华中一,罗维昂.表面分析[M],上海:复旦大学出版,1989.
    [114]潘道皑,等.物质结构[M],北京:高等教育出版社,1982.
    [115]王淀佐,胡岳华.浮选溶液化学[M],长沙:湖南科学技术出版社,1988 9~32.
    [116]吴卫国.有机螯合调整剂在矿物浮选中的抑制与活化作用[D],北京:北京科技大学,2007.
    [117]刘文刚,魏德洲,周东琴,等.螯合捕收剂在浮选中的应用[J],国外金属矿选矿,2006(7):4~8.
    [118]周东琴.含重金属离子废水的生物吸附-浮选法处理研究[D],沈阳:东北大学,2006.
    [119]赵景云,朱建光.水杨羟肟酸浮选菱铁矿和硫酸铅试验[J],有色金属,1991,43(4):27~32.
    [120]董宏军,陈正学.水杨羟肟酸浮选细粒钛铁矿的研究[J],矿冶工程,1991,11(3):19~22.
    [121]王艺峰,程时远,王世敏,等.高分子材料模拟中的分子力学法和力场[J],高分子材料与工程,2003(1):10~14.
    [122]杨小震.分子模拟与高分子材料[M],科学出版社,2002.
    [123]吉青,杨小震.分子力场发展的新趋势[J],化学通报,2005(2):111~116.
    [124]Rappe.A.K, Casewit.C.J. Colwell K S, et al. J. Am.Chem. Soc.,1992,114:10024.
    [125]Casewit.C.J, Colwell.K.S. Rappe.A.K. J. Am. Chem.Soc.,1992,114:10046.
    [126]Van Beest, Kramer.G.J, Van Santen.R.A. Phys. Rev.Lett.,1990,64:1955.
    [127]普拉蒂普.浮选药剂的分子模拟及合理设计[J],国外金属矿选矿,2004,(10):28~34.
    [128]蒋玉仁,薛玉兰,王淀佐。浮选药剂性能的能量判据计算[J],中南工业大学学报,1999,(10),481~484.
    [129]王淀佐,林强,蒋玉仁.选矿与冶金药剂分子设计[M],长沙:中南工业大学出版社,1996.
    [130]王淀佐.分子轨道理论在浮选药剂研究中的应用[J],有色金属,1978,(8):32~41.
    [131]见百熙.浮选药剂的分子结构及其规律性—用高等药物化学原理探讨浮选药剂分子的设计[J],有色金属,1983(2):48~57.
    [132]王淀佐,胡岳华.浮选剂找药分子设计理论的应用与发展[J],矿冶工程,1987(6):18~23.
    [133]杨刚,张爱琴,杨高文,等.黄药类浮选药剂电子结构与浮选机理的量子化学研究[J],常熟高专学报,2001,(3):43~46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700