无机阴离子对三种典型含钙盐类矿物浮选行为影响及作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白钨矿资源丰富,是工农业生产和国防建设所需要的重要原料,但白钨矿一般与萤石、方解石和磷灰石等含钙盐类矿物共生,它们之间表面性质相似、溶解组分作用复杂以及存在矿物表面的相互转化现象,导致含钙盐类矿物的浮选分离困难,难以高效回收利用。本论文以三种典型含钙盐类矿物为研究对象,即白钨矿、萤石和方解石,通过单矿物浮选试验、白钨矿实际矿石浮选试验、Zeta电位测定、吸附量测定以及浮选溶液化学计算,研究了在油酸钠作捕收剂体系下F-、CO32-、WO42-和Si032-(包括模数1和模数2.4)对白钨矿、萤石和方解石浮选行为的影响,揭示了这些无机阴离子与三种含钙矿物表面的作用机理。
     单矿物浮选试验的结果表明:F-、C032-、和W042-在一定的浓度范围内,对白钨矿和方解石的的浮选行为有一定的活化作用,而对萤石的活化效果不明显;模数1的Si032-在低浓度时,对三种含钙矿物均有一定的活化作用,高浓度时,对三种含钙矿物表现出抑制作用;模数2.4的Si032-在低浓度时,仅对白钨矿浮选有活化作用,高浓度时,对白钨矿表现出抑制作用,而对萤石和方解石在整个试验浓度范围内都有很强的抑制作用。两种模数的Si032-对三种含钙矿物抑制能力大小顺序一致,为萤石>方解石>白钨矿。
     通过单矿物浮选试验得到的结论,在白钨矿的实际矿石浮选中,添加适量的碳酸钠和模数2.4的水玻璃,成功实现了白钨矿和萤石、方解石的浮选分离,最终获得了含W0360.08%,回收率70.38%的白钨精矿。
     矿物表面Zeta电位测试和捕收剂吸附量测试结果表明:F-在三种含钙矿物表面的吸附较弱,对矿物表面电性和矿物表面捕收剂吸附的影响较小;CO32-、WO42-和两种模数Si032-在三种矿物表面发生了较强的特性吸附;在一定的浓度范围内,CO32-、WO42-和模数1的Si032-对油酸钠在三种含钙矿物表面的吸附有一定的增强,模数2.4的Si032-仅对白钨矿表面油酸钠的吸附有一定的增强,而萤石和方解石表面的油酸钠吸附量都随着模数2.4的Si032-浓度增加而急剧下降。
     三种含钙矿物溶解行为研究和浮选溶液化学计算结果表明:在高碱性条件下,油酸钠主要通过与矿物表面Ca2+发生化学键合作用来浮选三种含钙矿物;无机阴离子对三种含钙矿物浮选行为的活化作用是因为降低了Ca2+沉淀捕收剂的作用,增强了矿物表面与捕收剂的相互作用,提高了矿物的浮选回收率;Si032-起抑制作用时,其主要成分为活性硅酸胶体,通过吸附在矿物表面,增强了矿物表面亲水性,从而降低矿物的可浮性。
Scheelite abounds in resources, which are essential materials of industry, agriculture and national defense. However, scheelite, fluorite and apatite commonly constitute mineral intergrowth, the similarity among the natures of the minerals, the complicated interactions among the dissolved species and the mutual transformation between the mineral surfaces, which could account for the difficulty of the separation of calcium salt minerals and high-efficiency. In this thesis, three typical calcium salt minerals regarded as the research object, namely, scheelite, fluorite and calcite, by doing single mineral flotation tests, scheelite ore flotation tests, Zeta potential measurement, determination of adsorption magnitude and flotation solution chemical calculation in the system that using sodium oleate as collector, the investigation that different modules of F", CO32-, WO42- and SiO32-(module 1 and module 2.4) could responsible for the vary flotation behavior of scheelite, fluorite and calcite has been carried out, which also exploded the interrelation between those anions and the surfaces of these three minerals.
     According to the results of the single mineral flotation tests, F-, CO32-, and WO42- could activate the scheelite and calcite within a certain range of concentration, while they don't have distinct activation to fluorite. With low concentration of SiO32-(module 1), the activation takes place to all these three minerals to some degree, while enhancing the concentration of SiO32- (module 1), it shows depression to those minerals. With low concentration of SiO3- (module 2.4), the activation to scheelite takes place, while depression to scheelite is shown with high concentration of SiO32-(module 2.4). Meanwhile, SiO32-(module 2.4) shows strong depression to fluorite and calcite within the whole range of concentration. The depressive capability of SiO32-(module 1 and module 2.4) to these three minerals is accordant:fluorite> calcite> scheelite.
     Another conclusion could be drawn from the single mineral flotation teats is, during scheelite ore flotation, the scheelite could be successfully separated from fluorite and calcite by adding proper amount of sodium carbonate and sodium silicate (module 2.4). By adopting this way of flotation, the scheelite concentrates which grade of WO3 is 60.08% and recovery is 70.38% are finally being obtained.
     The tests of zeta potential and the adsoption magnitude of collector at the mineral surface show that:the adsorption of F- to the calcium minerals is relatively weak and it only has slight influence over the surface charge and the adsorption of collectors of the mineral surface. CO32-、WO42- and SiO32-(module 1 and module 2.4) generate relatively strong specific adsorption to all the three minerals. Within a certain concentration range of CO32-、WO42- and SiO32-(module 1), the adsorption between sodium oleate and these three calcium minerals could be enhanced, while the adsorption of sodium oleate to fluorite and calcite would be rapidly reduced with the enhance of concentration of SiO32-(module 2.4).
     The dissolution behavior research and the calculation of solution chemistry of flotation of these three calcium minerals show that:sodium oleate float these calcium minerals mainly by the chemical-bond between sodium oleate and Ca2+ at the mineral surface in the highly alkaline conditions. The activation of inorganic anions to the flotation behavior of the calcium minerals is due to the chemical reaction which declined the capability of Ca2+ as precipitator of collectors, enhanced the interaction between the collectors and the mineral surface, and increased the recovery of minerals. While SiO32- is used as depressor, its main ingredient is active silica colloid. It reduces the minerals'floatability by the adsorption at the mineral surface which could improve the hydrophilic property of mineral surface.
引文
[1]卢烁十,孙传尧.盐类矿物浮选现状[J].矿冶,2007,16(3):1-4.
    [2]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1989.
    [3]余军,薛玉兰.新型捕收剂CKY浮选黑钨矿、白钨矿的研究[J].矿冶工程,1999,19(2):34~36.
    [4]曾庆军,林日孝,张先华.ZL捕收剂浮选白钨矿的研究和应用[J].材料研究与应用,2007,1(3):231-233.
    [5]邓丽红,周晓彤.新型捕收剂R_(31)浮选低品位白钨矿的研究[J].矿产保护与利用,2007,(4):19-22.
    [6]朱建光,赵景云.RO—X系列捕收剂浮选含钙矿物[J].矿产综合利用,1991,(3):1-6.
    [7]陆英英,林强.萤石白钨石榴石浮选分离的新型药剂—LP系列捕收剂[J].有色矿冶,1993,(1):20.
    [8]杨丽珍.YF-01捕收剂在内蒙古某萤石矿的应用[J].化工矿产地质,2007,29(4):245~248.
    [9]罗惠华,王俊.海州式磷矿低温浮选的研究[J].中国矿业,2006,15(10):92~94.
    [10]孙伟,胡岳华,覃文庆等.钨矿浮选药剂研究进展[J].矿产保护与利用,2000,(3):42~46.
    [11]肖庆苏,李长根,康桂英.柿竹园多金属矿CF法浮选钨主干全浮选矿工艺研究[J].矿冶,1996,(3):26-28.
    [12]C.Hiffyilmaz, U.Atalay and G.Ozbayoglu.Selective flotation of scheelite using amines[J].Minerals engineering,1993(3):313-320.
    [13]胡岳华,王淀佐.新型两性捕收剂浮选萤石、重晶石、白钨矿的研究[J].有色金属(选矿部分),1989,(4):10~13.
    [14]胡岳华,邱冠周,徐竞等.白钨矿、萤石浮选行为的溶液化学研究[J].矿冶,1996,(1):28~33.
    [15]江信开.《含钨矿物浮选分离新方法及其机理研究》.北京矿冶研究总院硕士研究论文.1986,12.
    [16]朱玉霜,朱建光.浮选药剂的化学原理(修订版)[M].长沙:中南工业大学出版社,1996.
    [17]张忠汉,张先华,叶志平等.柿竹园多金属矿GY法浮钨新工艺研究[J].矿冶工程,1999,(4):22~25.
    [18]孙伟,刘红尾,杨耀辉.F—305新药剂对钨矿的捕收性能研究[J].金属矿山, 2009,(11):64~66.
    [19]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[M].长沙:中南工业大学出版社,1993,6.
    [20]王彦杰.浮选矽卡岩型钨矿的药剂选择[J].有色金属:选矿部分1980,(5):32~36.
    [21]朱超英,孟庆丰,朱家骥.pH调整剂对白钨矿与方解石和萤石分离的影响[J].矿冶工程,1990,10(1):19-23.
    [22]朱玉霜,朱建光.浮选药剂的化学原理[M].长沙:中南矿冶学院出版社,1987.
    [23]高玉德,邹霓,韩兆元.湖南某白钨矿选矿工艺研究[J].中国钨业,2009,24(4):20~22.
    [24]杨耀辉,孙伟,刘红尾.高效组合抑制剂D1对钨矿物和含钙矿物抑制性能研究[J].有色金属(选矿部分),2009,(6):50-54.
    [25]周维志.萤石浮选技术的新进展[J].广东有色金属学报,1998(5):1-7.
    [26]程新朝.黑钨矿、白钨矿、萤石和方解石分离基础理论和新方法的研究[D].长沙:中南工业大学.
    [27]朱建光,朱玉霜合编.浮选药剂[M].1982,8
    [28]刘清高,韩兆元,管则皋.白钨矿浮选研究进展[J].中国钨业,2009,24(4):23-27.
    [29]李隆峰.肖庆苏.程新朝.钨矿物选矿的现状和进展[J].国外金属矿选矿1996:23-30.
    [30]胡岳华,孙伟,蒋玉仁等.柠檬酸在白钨矿萤石浮选分离中的抑制作用及机理研究[J].国外金属矿选矿,1998:27~29.
    [31]叶雪均.低品位白钨矿石浮选工艺研究[J].中国钨业,1999,(4):18-21.
    [32]王秋林,周菁,刘忠荣等.高效组合抑制剂Y88白钨矿常温精选工艺研究[J].湖南有色金属,2003,19(5):11-12.
    [33]陈文胜.硫化钠在黑白钨加温精选中的应用研究[J].中国钨业,2002,17(3):26~28.
    [34]程新朝.白钨矿常温浮选工艺及药剂研究[J].有色金属(选矿部分),2000,(3):35~38.
    [35]杨晓峰,刘全军.我国白钨矿的资源分布及选矿的现状和进展[J].矿业快报,2008,(4):6~9.
    [36]叶雪均.白钨矿常温浮选工艺研究[J].中国钨业,1999,14(5~6):113~117.
    [37]孟宪瑜,于雪,高起鹏.低品位白钨矿选矿工艺试验研究[J].有色矿冶,2007,23(5):15~17.
    [38]曾庆军,林日孝,张先华等.东北某白钨矿选矿工艺的研究[J].广东有色金属学报,2006,16(3):164-167.
    [39]王国生,管则皋,韩兆元.湖南某白钨矿选矿试验研究[J].矿产综合利用,2008,(3):9~12.
    [40]高玉德,邹霓,韩兆元.湖南某白钨矿选矿工艺研究[J].中国钨业,2009,24(4):20~22.
    [41]程琼,徐晓萍,曾庆军等.江西某白钨粗精矿加温精选试验研究[J].矿产综合利用,2007,(4):3~6.
    [42]赵磊,邓海波,李仕亮.白钨矿浮选研究进展[J].现代矿业,2009,(9):15~17,26.
    [43]邓丽红,周晓彤.白钨矿常温浮选工艺研究[J].中国钨业,2008,23(5):20~22.
    [44]聂光华,邱盛华.广西某白钨矿选矿试验研究[J].中国钨业,2010,25(3):15-18.
    [45]梁友伟.贵州某地白钨矿选矿试验研究[J].矿产综合利用,2010,(2):3-6.
    [46]高玉德,梁冬云,徐晓萍等.西北某白钨矿常温浮选工艺研究[J].中国钨业,2010,25(3):11~14.
    [47]艾光华,叶雪均,任祥君.江西某白钨矿钨的选矿试验研究[J].中国钨业,2009,24(4):28~31.
    [48]黄万抚.“石灰法”浮选白钨矿的研究[J].江西冶金,1989,9(1):16-19.
    [49]黄枢,肖金华.石灰浮选法在白钨精选中的应用[J].江西有色金属,1994,8(1):19~23.
    [50]杨斌清.湖南某钨矿选矿试验研究[J].江西有色金属,1996,10(3):21-23.
    [51]李豫学,邓芳超等.国外钨选矿厂[C].中国选矿科技情报网,1984.4.
    [52]Jonas Baltrusaitis, Vicki H. Grassian. Calcite(1014) surface in humid environments[J]. Surface Science,2009,603:99-104.
    [53]Oleg S. Pokrovsky, Sergey V. Golubev, Jacques Schott, Alain Castillo. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH,25 to 150℃ and 1 to 55 atm pCO2:New constraints on CO2 sequestration in sedimentary basins[J]. Chemical Geology.2009,265:20-32.
    [54]O.S. Pokrovsky, S.V. Golubev, G. Jordan. Effect of organic and inorganic ligands on calcite and magnesite dissolution rates at 60℃ and 30 atm pCO2[J]. Chemical Geology 2009,265:33-43.
    [55]E. Ruiz-Agudo, M. Kowacz, C.V. Putnis, A. Putnis. The role of background electrolytes on the kinetics and mechanism of calcite dissolution[J]. Geochimica et Cosmochimica Acta,2010,74:1256-1267.
    [56]F. Hernainz Bermudz DE Castro, M. Calero DE Hoces. Flotation Rate of Celestite and Calcite[J]. Chemical Engineering Science,1996,51(1):119-125.
    [57]Yue-hua Hu, Fan Yang, Wei Sun. The flotation separation of scheelite from calcite using a quaternary ammonium salt as collector[J]. Miner. Eng. 2010,10(1016):1-3.
    [58]A. Ozkan, Z. Uslu, S. Duzyol, H. Ucbeyiay. Correlation of shear flocculation of some salt-type minerals with their wettability parameter [J]. Chemical Engineering and Processing.2007,46:1341-1348.
    [59]Keqing Fa, Anh V. Nguyen, Jan D. Miller. Interaction of calcium dioleate collector colloids with calcite and fluorite surfaces as revealed by AFM force measurements and molecular dynamics simulation[J]. Int. J. Miner. Process. 2006,81:166-177.
    [60]Israelachvili J. N.. Intermolecular and Surface Forces[M]. Acadmic Press,1985
    [61]P. C. Hiemenz. Principles of Colloid and Surface Chemistry [M].Marcel Dekker Inc.,1977.
    [64]Somasundaran, P. et al., in"Adsorption on and surface chemistry of hydroxyapatite", ed[J]. By D. N. Misra, Plenum Pub. Co.,1984,129-149.
    [65]王淀佐,邱冠周,胡岳华.资源加工学[M].北京:科学出版社,2005:211.
    [66]张治元,王博.盐类矿物浮选中矿物的溶解与转化[J].江西有色金属,1997,11(3):20~23.
    [67]张治元,王博,傅景海.矿物表面的相互转化对盐类矿物共存体系浮选的影响[J].金属矿山,1995,(4):38~41.
    [68]Miller, J.D.et al., in "Principles of Mineral Flotation", The Wark Symposium, ed[J]. By M.H. Jones and J.T. Woodcock,1984:31-42.
    [69]Ananthapadmanabhan, K.P. et al., Miner. Metall[M]. Process,1984:36-42.
    [70]卢寿慈,翁达.界面分选原理及应用[M].北京:冶金工业出版社,1992:299.
    [71]Nordstrom, D.K., Plummcr, L.N., Langmuir, Buscnbcrg, E., et al. Revised chemical equilibrium data for major water-mineral reactions and their liminations. Chemical Modeling of Aqueous System Ⅱ[J]. Ameriean Chemical Soeiety Symposium Series,1990:398-413.
    [72]张治元,王博.共存体系中矿物表面的相互转化[J].西部探矿工程,1994,6(6):9~11.
    [73]韩跃新,印万忠,王泽红等.矿物材料[M].北京:科学出版社,2006.280~281.
    [74]杨少燕.菱锌矿浮选的理论与工艺研究[D].长沙:中南大学资源加工与生物工程学院,2010:23-24.
    [75]赵磊.白钨矿与含钙脉石矿物浮选分离新工艺研究[D].长沙:中南大学资源加工与生物工程学院,2010:52.
    [76]胡熙赓,黄和慰,毛钜凡.浮选理论与工艺[M].长沙:中南工业大学出版社,1970:225~230.
    [77]田学达.含钙矿物浮选分离新工艺与理论[D].长沙:中南大学资源加工与生物工程学院,1995:32~33.
    [78]江庆梅.混合脂肪酸在白钨矿与萤石、方解石分离中的作用[D].长沙:中南大学资源加工与生物工程学院,2009:65-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700