白钨矿与萤石、方解石及石英的浮选分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国已发现的钨矿床大部分为矽卡岩型,矿石中含有大量的石英,并伴生萤石、方解石等富含钙的脉石矿物,含钙脉石与白钨矿的表面性质相近,浮选行为相似,使捕收剂对白钨矿的选择性降低。针对这一问题,采用五种具有代表性的捕收剂,在pH调整剂、水玻璃作用下,对白钨矿、萤石、方解石和石英的浮选行为进行了研究。通过溶液化学计算、动电位测试、红外光谱分析,对白钨矿与萤石、方解石浮选分离的机理进行了探讨,在此基础上对柿竹园黑白钨共生矿进行白钨浮选预富集试验研究。
     单矿物浮选研究表明:五种捕收剂对白钨矿、萤石和方解石均具有较好的捕收能力,浮选行为相似,可浮性差异小,这是导致白钨矿难以选择性有效回收的原因;在高碱、高水玻璃用量的浮选体系中,采用广州有色金属研究院研制的新型捕收剂TAB-3时,水玻璃对萤石有较好的抑制效果,对方解石抑制也较明显;在低碱、低水玻璃用量时,TAB-3对白钨、石英也具有较好的选择性捕收能力。采用合适的调整剂(NaOH为pH调整剂,水玻璃为抑制剂)及选择性捕收能力较强的TAB-3为捕收剂,有利于白钨矿与萤石、方解石及石英的浮选分离。
     对含W030.26%,脉石矿物以萤石为主、且含有方解石的柿竹园黑白钨矿采用组合调整剂TT+水玻璃、新型捕收剂TAB-3进行白钨浮选预富集小型试验,获得含WO311.70%、对原矿回收率为73.23%的预富集精矿,有效地实现了白钨矿与萤石、方解石的浮选分离。进行工业试验,钨的总回收率较原试验工艺提高了10%。
     由试验研究知:[SiO(OH)3-]可能是水玻璃对萤石、方解石起抑制作用的主要组分,同时溶液中还有水玻璃组分[Si(OH)4]、[SiO2(OH)22-].动电位和红外光谱结果表明:TAB-3在白钨矿表面发生化学吸附,在萤石表面发生非化学吸附,在方解石表面的吸附微弱;在白钨矿表面水玻璃以缔合羟基的形式吸附,TAB-3对白钨矿仍有较强的化学吸附;水玻璃在萤石表面以Si032-和SiO44-、方解石表面以SiO32-的形式强烈吸附,使TAB-3对萤石和方解石的吸附较差。水玻璃在白钨矿、萤石和方解石表面吸附形式和吸附强度的不同使矿物之间的可浮性差异增大。
At present most tungsten beds founded in China are skarn type in which associated gangue minerals contain such as calcite, fluorite. Those minerals have similar surface chemical composition with scheelite and this depressed the selectivity on scheelite. To solve this problem, five representative collectors were examined on the flotation behaviour of scheelite, fluorite, calcite and quartz with different pH regulators and depressant sodium silicate. The mechanism between reagents and minerals is discussed by solution chemistry of flotation calculation, dynamic potential analysis, infrared spectrum analysis. Based on pure mineral results actual ore flotation of Shi Zhu yuan was carried out.
     Pure mineral flotation results indicate that:collectors have good collectivity for scheelite, fluorite and calcite, have similar flotation behavior and this makes it difficult to recovered scheelite effectively in the actual production; Under alkaline condition, along with the increasing dosage of sodium silicate, when using TAB-3 developed by Guangzhou Research Institute of Non-ferrous Metals, fluorite can be depressed distinctly by sodium silicate and calcite also obviously; Under low alkaline condition, with low dosage of sodium silicate, TAB-3 showing strong selective-collecting ability for scheelite and quartz. When using sodium silicate as depreesant, with NaOH as pH regulator, TAB-3 shows strong selective-collecting ability, it is advantageous to flotation separation of scheelite from fluorite, calcite and quartz.
     From scheelite flotation tests of a wolframite-scheelite associated、fluorite richly and calcite included ore of Shi Zhu-yuan. According to the raw ore in which with 0.26%WO3 in the form of scheelite, adopt regulators TT + sodium silicate, new collector TAB-3, mineral dressing index of scheelite pre enrichment concentrate in lab assaying WO311.70%, with recovery 73.23% was obtained, realized separation of scheelite and fluorite, calcite. Compared with former experiment technology, about more than 10% of total recovery of tungsten has been acquired.
     By experiment studies, SiO(OH)3-may be the main component that play the role as inhabition, meanwhile there are [Si(OH)4], [SiO2(OH)22-] of sodium silicate in solution. Dynamic potential and infrared spectrum results show that:TAB-3 can occur chemical adsorption on scheelite, non-chemical adsorption on fluorite, adsorption on calcite weakly. Sodium silicate can adsorpt on scheelite in the form of associating hydroxyl, and TAB-3 can still occur chemical adsorption; Sodium silicate can adsorpt on fluorite in the form of SiO2- and SiO44-; and calcite of SiO44-. The adsorption forms and intensity of sodium silicate enlarged the flotability differences between scheelite, fluorite and calcite.
引文
[1]孙延绵.论我国白钨资源现状及其开发利用[J].矿业研究与开发,2003,(1):69-71.
    [2]杨晓峰,刘全军.我国白钨矿的资源分布及选矿的现状和进展[J].矿业快报,2008,(4):1-6.
    [3]季永康.中国钨资源接替问题的研究[J].世界有色金属,1999,(8):4.
    [4]孔昭庆.中国钨矿业资源现状与可持续发展[J].中国矿业,2001,(1):30.
    [5]周乐光.矿石学基础[M].北京:冶金工业出版社,2007:150.
    [6]王豫新,崔国际.钨(上册)[M].赣州:江西有色冶金研究所,1979:120~121.
    [7]Kononov,O.V. Crystal chemical analytic of flotability of scheelite、 molybdo scheelite and powellite [J]. Soverm. metod Potrol. Issled,1976,(5):95-99.
    [8]Yanis,N.A. Flotability of calcium-containing minerals and their interacton with sodium oleate during finishing of scheelite concentrate[J]. Obogashch Rud,1982, 27(4):14-16.
    [9]谢光,吴威孙,刘广泌.选矿手册(第八卷第二册)[M].北京:冶金工业出版杜,1990:12~13.
    [10]安占涛,罗小娟.钨选矿工艺及其进展[J].矿业工程,2005,5(3):29-30.
    [11]张忠汉,张先华,叶志平.难选白钨矿重—浮选矿新工艺的研究[J].广东有色金属学报,2001,11(2):80.
    [12]孙伟,胡岳华,覃文庆,等.钨矿回收工艺研究进展[J].矿产保护与利用,2000,(1):43-46.
    [13]林海清.近20年来我国钨选矿技术的进展[J].中国钨业,2001,16(5-6):72-73.
    [14]魏庆玉.白钨的化学选矿[J].中国钨业,2000,15(4):27.
    [15]冷文华,朱龙华,冯其明.钨矿物研究进展[J].矿产保护与利用,1999,(5):33.
    [16]胡为柏.浮选[M].北京:冶金工业出版社,1990:350-353.
    [17]陈家模.多金属硫化矿浮选分离[M].贵阳:贵州科技出版社,2011:226.
    [18]叶雪均.白钨常温浮选工艺研究[J].中国钨业,1999,14(5-6):113-117.
    [19]张忠汉.我国钨矿石浮选技术进展[C]//2007年中国稀土资源综合利用与环境保护研讨会论文集.北京:中国稀土学会,2007:161-162.
    [20]王彦杰.浮选矽卡岩型白钨矿的药剂选择[J].有色金属,1980,(5):32-36.
    [21]朱一民.浮选白钨的几个问题[J].有色矿山,1992,(2):31-34.
    [22]黄枢,肖金华.“石灰浮选法”在白钨精选中的应用[J].江西有色金属,1994,8(1):19.
    [23]胡岳华,王淀佐.白钨矿/萤石浮选行为的溶液化学研究[J].矿冶,1996,5(1):29-33.
    [24]刘林,田学达,张小云.同离子效应对含钙矿物可浮性的影响[J],湘潭大学自然科学学报,1996,21(2):67-69.
    [25]杨思孝,易凤英.“石灰法”浮选矽长岩型白钨矿的几个工艺因素探讨[J].四川有色金属,1990,(3):36-38.
    [26]朱玉霜,朱建光.浮选药剂的化学原理[M].长沙:中南工业大学出版社,1987:120-121.
    [27]叶雪均等.某低品位白钨矿浮选试验研究[J].中国钨业,2006,(5):20-23.
    [28]孙伟,胡岳华,覃文庆,等.钨矿浮选药剂研究进展[J].矿产保护与利用,2000,(3):42-46.
    [29]J.F.Olivera, et al.国外金属矿选矿,1992,(2):4-8.
    [30]程新潮.黑钨矿、白钨矿、萤石和方解石分离基础理论和新方法的研究[D].长沙:中南大学,1996.
    [31]Glebotsky.A.V,朱一民译.国外金属矿选矿,1989,(5):1-6.
    [32]叶雪均.低品位白钨矿矿物浮选工艺研究[J].中国钨业,1999,(4):18-21.
    [33]王淀佐.浮选理论新进展[M].北京:科学出版社,1992:153-154.
    [34]Pearson.R.G, Amer.J.Chem.Soc,1965,(85):3533.
    [35]张旭,李占成,戴惠新.白钨矿浮选药剂的使用现状及展望[J].矿业快报,2008,(9):9.
    [36]李隆峰,肖庆苏,程新潮.钨矿物选矿的现状与进展[J].国外金属矿选矿1996,(12):23-25.
    [37]陈让怀.羧酸类捕收剂改性研究进展[J].矿冶工程,1994,14(1):34-38.
    [38]周晓彤,邓丽红.新型复合捕收剂TA在湖南某钨矿浮选工艺的应用[J].矿产综合利用,2008,(6):24.
    [39]Aknazarova.T.V. Use of 4,5,6,7-tetrahydrobenzo thiophene-3-carbohy droxamic acid for flotation of scheelite.Dokil.Akad.Nauk.SSR,1990,33(4):244-246.
    [40]江信开.含钙矿物浮选分离新方法及其机理研究[D].北京:北京矿冶研究总院,1987.
    [41]邱显扬,程德明,王淀佐.苯甲羟肟酸与白钨矿作用机理的研究[J],矿冶工程,2001,21(3):39-40.
    [42]陆英英等.萤石白钨石榴石浮选分离的新型药剂—LP系列捕收剂[J].有色矿冶,1993,(1):20.
    [43]王淀佐.浮选剂作用原理及应用[M].北京:冶金工业出版社,1982:308-312.
    [44]Noborit. Mining Engineering,1980,36(8):556-575.
    [45]R.Amold, et al. Inter. J. Mineral. Process,1978,5(2):143-152.
    [46]Hicyilmaz.C等.国外金属矿选矿,1992,(7):11-14.
    [47]肖庆苏,李长根,康桂英.矿冶,1996,(3):26-28.
    [48]Hu Yuehua, Wang Dianzao. Ivestigation of collecting nature of a-amino aryl phosphonic acid on fluorite, barite and scheelite[J]. J.Cent.South Inst.Min.Metal, 1990,21(4):375.
    [49]朱玉霜,朱建光.浮选药剂的化学原理(修订版)[M].长沙:中南工业大学出版社,1996:127-128.
    [50]王晖,钟宏.钨浮选研究现状及展望[J].江西有色金属,1996,10(2):17-18.
    [51]张忠汉,张先华,叶志平等.柿竹园多金属矿GY法浮钨新工艺研究[J].矿冶工程,1999,19(4):22-25.
    [52]陈文胜.硫化钠在黑白钨矿加温精选中的应用研究[J].中国钨业,2002,17(3):26-28.
    [53]徐晓萍等.江西某大型白钨矿钨的选矿试验研究[J].中国钨业,2007,22(2):23-26.
    [54]孟宪瑜,于雪,高起鹏.低品位白钨矿选矿工艺试验研究[J].有色矿冶,2007,23(5):15.
    [55]吴谨光.近代傅里叶变换-红外光谱技术及应用(上)[M].北京:科学技术文献出版社,1994:613-616.
    [56]谢晶曦.红外光谱在有机化学和药剂化学中的应用[M].北京:科学出版社,1987:284.
    [57]Fuerstenau.M.C.浮选(上册)[M].北京:冶金工业出版社,1981:47-49.
    [58]大连理工大学分析中心教研室.光波谱分析在有机化学中的应用[M].大连:大连理工大学教材,1982:66-69.
    [59]朱超英,孟庆丰,朱家骥.pH值调整剂对白钨矿与方解石和萤石分离的影响[J].矿冶工程,1990,10(1):21-22.
    [60]王淀佐,林强,蒋玉仁.浮选药剂分子设计[M].长沙:中南工业大学出版社,1996:41.
    [61]朱建光.浮选药剂[M].北京:冶金工业出版社,1993:60-61.
    [62]M.C.富尔斯瑶.浮选[M].北京:冶金工业出版社,1981:50-52.
    [63]王淀佐,胡岳华.浮选溶液化学[M].湖南:湖南科学技术出版社,1988:199-207.
    [64]A·尤卡尔,袁小林,林森,等.萤石浮选中捕收剂的吸附机理[J].国外金属矿选矿,2003,(7):20-23.
    [65]杨南如.无机非金属材料测试方法(重排本)[M].武汉:武汉理工大学山版社,2006:45.
    [66]杨南如,岳文海.无机非金属材料图谱手册[M].武汉:武汉工业大学出版社,2000.:40.
    [67]刘旭.微细粒白钨矿浮选行为研究[D].长沙:中南大学,2010.
    [68]闻辂,梁婉雪,章正刚,等.矿物红外光谱学[M].重庆:重庆大学出版社,1989:55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700