Sm_2O_3微晶的水热与溶剂热法制备工艺、结构与性能关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化钐(Sm_2O_3)是一种具有4f电子结构的宽禁带金属氧化物,常温下禁带宽度为4—6eV,Sm_2O_3晶体具有三种晶型,当温度高于850℃时,单斜晶相转变为立方晶相,在2000℃左右转变为六方晶相,属于多晶相转化的氧化物,氧化钐具有高的电阻率,高的介电常数,高的化学稳定性和热稳定性等性能,具有优越的电学、光学和磁学性能,广泛应用于陶瓷电容器、汽车尾气处理、催化剂和医学等方面;另外,纳米Sm_2O_3还具有核性质,可用作原子能反应堆的结构材料、屏蔽材料和控制材料等领域。本研究采用SmCl_3·6H_2O和Sm(NO_3)_3·6H_2O为起始原料,在水热法、溶剂热法条件及模板剂辅助条件下对Sm_2O_3纳米材料的合成工艺进行了系统的研究,制备出Sm_2O_3纳米晶,采用XRD、SEM、UV-vis等测试手段对纳米晶进行结构与性能的表征,系统研究了氧化钐纳米晶的合成条件对产物结构及光学性能的影响;揭示出水热温度、水热时间、前驱液浓度、pH值、模板剂的种类等,以及溶剂热的溶剂种类、溶剂配比、模板剂的种类对Sm_2O_3纳米晶晶体结构及形貌的影响规律。此外,通过控制反应条件(反应温度、时间、pH值、前驱物浓度、钐源、溶剂/水体积比例和不同模板剂等)对最终煅烧产物进行了物相晶体结构和形貌的可控制备。主要研究内容和成果如下:
     以SmCl_3·6H_2O和Sm(NO_3)_3·6H_2O为起始原料,采用水热法制备出纯相Sm_2O_3粉体。通过控制不同水热反应温度、前驱物的浓度、前驱液pH值、水热反应时间以及钐源等工艺因素,对水热体系下合成工艺参数对产物的物相、形貌和反应机理等进行了研究。采用XRD,SEM对纳米晶进行了系统的表征。结果表明,对于单斜相Sm_2O_3纳米棒状粉体,其最佳制备工艺为以SmCl_3·6H_2O为前驱体,水热反应在200oC温度,将前驱液浓度控制在0.4M,其pH值等于9的条件下反应48h,可得到尺寸均一,分散性好,结晶性强的纳米棒状Sm_2O_3粉体;前驱物浓度为1.0M,其他工艺因素不变时,得到性状良好的立方相Sm_2O_3粉体。通过对不同工艺因素的研究可知,水热反应产物物相与形貌对于最终煅烧产物的物相形貌等有着显著影响,而对于不同工艺参数的改变,其前驱物水解反应也随之变化,最终影响产物的物相与形貌。水热温度、前驱液浓度和pH值以及钐源对前驱物发生的水解反应有着较大影响,最终改变了产物的晶体结构,而前驱物浓度、钐源以及水热反应时间主要影响产物的结晶过程,对其最终形貌影响较大。
     通过研究在异丙醇、乙二醇以及乙醇体系中不同有机溶剂与水体积含量比例对产物物相和形貌的影响,对Sm_2O_3纳米粉体进行了系统的物相与形貌的可控制备,研究了不同溶剂体系下Sm_2O_3粉体的合成反应机理。结果表明,采用不同有机溶剂均可得到纯相的单斜相Sm_2O_3粉体,但该产物的形貌则有着明显区别。与水热体系中结果相比,在异丙醇体系中所得最终产物结晶取向性明显降低,同样的结果在乙二醇与乙醇体系中也可发现。此外,对于立方相Sm_2O_3粉体,采用纯乙醇体系进行溶剂热反应,可以得到纯度较高的目标产物。在异丙醇体系中,立方相产物仅在异丙醇与水混合体系中存在,而在乙二醇体系中则不能得到立方相产物。这说明立方相Sm_2O_3作为介稳态晶体结构,其对反应溶剂以及溶剂比例十分敏感,通过对比溶剂间性质区别推测溶剂极性以及溶剂分子的位阻因素可能为影响产物物相与结晶的主要影响因素。
     对水热/溶剂热体系下模板剂对Sm_2O_3物相和形貌的影响进行了研究。针对水热/溶剂热两种体系下产物的反应机理不同,采用不同模板剂对产物的形貌进行了尺寸和形状的可控制备。结果表明,在水热体系中,柠檬酸三钠、PVP、乌洛托品和草酸的加入有助于立方相的Sm_2O_3的形成,其对应形貌的取向性较低,主要为纳米球状和无规则颗粒状结构。CTAB、EDTA和NaNO_3的加入则会得到纯相的单斜相Sm_2O_3粉体,其形貌主要为纳米棒状结构。该棒状结构的直径,长度则依模板剂的不同而变化。在溶剂热体系中,加入羧甲基纤维素钠作为模板剂时,所得产物为纯相的单斜相Sm_2O_3结构。除此以外,CTAB、PEG-4000和油酸的加入,都会得到含有较多立方相Sm_2O_3的混合产物。在溶剂热体系中加入模板剂后所得产物均有显著变化,加入CTAB后可得到短棒状和六方片状混合产物形貌;羧甲基纤维素钠的加入可得到均匀纳米球状颗粒;PEG-4000和油酸的加入则会得到棒状与无规则颗粒状混合的产物形貌。通过不同模板剂在溶剂热体系中所得物相与形貌特征,分析了模板剂在产物结晶成核过程中的影响,揭示出模板剂影响最终产物形貌的生长机理。
     对于在水热/溶剂热条件下制备的不同形貌的Sm_2O_3粉体进行了紫外可见光吸收光谱的表征,并对具有不同形貌的Sm_2O_3粉体进行了禁带宽度的计算。结果表明,水热条件下添加不同模板剂所得产物的紫外-可见吸收光谱中的吸收曲线大致走向相同,在200—250nm的紫外区域内具有较强的吸收能力,最强吸收峰位于230nm处附近,在410nm处的可见光区域内还存在一个较弱的吸收峰。从紫外-可见吸收光谱分析可以发现,溶剂热条件下所制备产物的吸收曲线大致形状相同,在200—280nm的紫外区域内具有较强的吸收能力,最强吸收峰位于230—250nm处附近,在410nm处的可见光区域内还存在一个较弱的吸收峰。不同粒径和微观结构的Sm_2O_3粉体材料,因具有不同的量子尺寸效应和颗微观内应力,其所表现得光学性能中的禁带宽度也随之不同,从4.820eV变化至4.928eV。
As a typical kind of metal oxides with4f electronic structure, three crystalphases are found in Sm_2O_3materials, of which the band gaps range from4to6eV. Sm_2O_3is a multiphase oxide which is found transiting from the monoclinicphase to cubic phase at850℃and then to hexagonal phase at2000℃. Theyhave been deeply studied for their high resistivity, dielectric constant chemicalstability and thermal stability with excellent electrical, optical and magneticproperties, which are considered to be widely used in fields including ceramiccapacitor, samarium metal preparation, automobile tail gas treatment, catalystsand medical treatments; Besides, Sm_2O_3materials are also found to have nuclearproperties to be used as structure, shielding and controlling materials of theatomic furnaces. Herein, hydrothermal and solvothermal methods with varioustemplates were employed to prepare Sm_2O_3microcrystals, of which the Smsources were SmCl_3·6H_2O and Sm(NO_3)_3·6H_2O. The synthesis process weresystematically investigated by using XRD, SEM and UV-Vis to characterize theproducts crystal structure and corresponding properties; The influences ofhydrothermal temperature, reaction time, precursor concentration, pH value ofthe precursor solutions, different Sm sources, templates, reaction solvents andratio between solvent and templates were completely investigated to control thecrystal structure and morphologies of the calcined products. The following arethe main research contents and results:
     Pure Sm_2O_3particles were successfully prepared by using SmCl_3·6H_2O andSm(NO_3)_3·6H_2O as the start materials. By changing the reaction temperature,precursor concentration, precursor solution pH value, reaction time and Smsources, the synthesis process were systematically controlled to study the productphase, morphologies and reaction mechanisms. XRD and SEM were used for thecharacterization. Results show that under the optimum reaction conditions (Smsources: SmCl_3·6H_2O; Reaction temperature:200oC; Precursor concentration:0.4M; pH value:9; Reaction time:48h.), monoclinic Sm_2O_3particles with goodcrystallinity and dispersing properties are obtained. When the precursor ischanged concentration to1.0M, the as-obtained products present a crystal phaseof cubic Sm_2O_3with nanorod-like microstructure. By studying the influences ofdifferent reaction conditions, it is found that the calcined product phase andmorphology are greatly influenced by the hydrothermal products. Differentreaction temperature, precursor concentrations, pH values and Sm sources arefound to influence the product crystal structure; while the precursorconcentration, Sm sources and reaction times are found to have great effects onthe products morphologies.
     By studying influences of different organic solvent ratio on the productphase and morphology, the Sm_2O_3nanoparticles were systematically preparedwith controllable phases and morphology to investigate the Sm_2O_3reactionmechanism. Results show that monoclinic Sm_2O_3particles could be obtained indifferent solvent conditions with obvious morphology changes. It is found thatthe crystal orientation of the as-obtained product decrease clearly in isopropylalcohol system. Same results were found in both ethylene glycol and alcoholsystem. Besides, cubic Sm_2O_3particles could be obtained in pure alcoholcondition with high productivity. This phase could be also found in mixture ofisopropyl alcohol and water system, rather than in ethylene glycol, which suggestthat the cubic Sm_2O_3possess a metastable crystal structure with high sensitivityto solvent content. Comparing the different properties of these solvents suggeststhat the polarity and the molecular hindering effect of different solvents may bethe main influence factors when changing product phases and crystallizations.
     The influences of different hydro/solvothermal templates on the productphase and morphology were investigated. Aiming at the differences of the reaction mechanism between hydrothermal and solvothermal system, differenttemplates were employed to control the size and shape of the products. Theresults show that, under hydrothermal conditions, trisodium citrate, PVP,urotropin and oxalic acid may give rise to the formation of cubic Sm_2O_3phasewith low growth orientation, spheres-like and irregular particle morphologies.However, CTAB, EDTA and NaNO_3lead to the formation of monoclinic Sm_2O_3rods, which diameter and length that varies with different templates. Theproducts from solvothermal conditions are found more sensitive to the change oftemplates, which exhibit various morphologies: Mixed short rod and hexagonalsheet-like structure with CTAB as the template; Uniform spheres-likenanoparticles with carboxymethylcellulose sodium; Mixed rods andirregularly-shaped particles with PEG-4000and oleic acid as the templates.According to these changes of product phase and morphology, the influences ofthe templates were analyzed to propose possible growth mechanisms in differentconditions.
     The as-obtained Sm_2O_3particles with different morphologies werecharacterized by UV-vis absorption spectra to calculate their corresponding bandgaps. The results show that the obtained products under hydrothermal conditionscould have high absorption in ultraviolet range of200—250nm, where thehighest peak were found at230nm. Besides, a weak absorption peak could alsobe found at410nm to suggest possible optical properties in visible-light range.The products prepared under solvothermal conditions exhibit high ultravioletabsorption peaks at the range from200to280nm with the highest peaks at230—250nm. Moreover, another weak visible light absorption peak could be foundat410nm. The corresponding band gaps of these hydro/solvothermal-treatedparticles present various value from4.820eV to4.928eV, which is suggested tobe related with their different sizes and microstructures. These differences arebelieved to results in the change of quantum size effect and microscopic stress ofthe products to show different optical properties.
引文
[1]王辉.掺杂钦酸钡粉体及陶瓷的制备和介电性能研究[D].西安:西北大学,2004.
    [2]贡长生.新型功能材料[M].北京:化学工业出版社,2001.
    [3]范富康,丘泰.功能陶瓷现状与发展动向[J].硅酸盐通报,1995,4:29-36.
    [4]曲远方.功能陶瓷及应用[M].北京:化学工业出版社,2003.
    [5]王永龄.功能陶瓷性能与应用[M].北京:科学出版社,2003.
    [6]苏锵.稀土材料──21世纪的新材料[J].中国科学院院刊,1997,2:79-81.
    [7]张洪杰,李德谦,洪广言等.我国稀土化学的进展[J].化学通报,2001,64(6):326-432.
    [8]韩万书.中国固体无机化学十年展[M].北京:高等教育出版社,1998.
    [9]倪嘉赞,洪广言.稀土新材料及新流程进展[M].北京:科学出版社,1998.
    [10]董相延,曲晓刚,洪广言等.CeO2纳米晶的制备及其在电化学上的应用[J].科学通报,1996,41(9):847-850.
    [11]刘颖,朱达川.纳米稀土材料的研究[J].四川大学学报(工程科学版),2002,34(4):1-2.
    [12]陈占恒.稀土材料及其在高技术领域的应用[J].稀土,2002,21(1):53-57.
    [13]徐光宪.稀土(第2版)[M].北京:冶金工业出版社,1978.
    [14]欧阳世翕.稀土在高新技术产业中应用及发展〔J〕.稀土信息,1999,(5):8.
    [15] Wang Dian-zuo et al. Research and development of rare earth advanced materials inchina [J]. Journal of Rare Earth,1996,14(3):223.
    [16] Yu Zong-sen,Chen Min-bo. Rare earth elements and their application [M]. Beijing:Metallurgical Industry Press,1995.199.
    [17]翁瑞.浅谈稀土在汽车尾气净化催化剂中的应用[C].头:全国稀土信息网,1999.1~13.
    [18]彭正顺,华志强,杨秉川等. Ho代替Y的YBCO外延薄膜制备及导电性[J].中国稀土学报,1998,16(2):139.
    [19] Shosuke Mochizuki. Intense white luminescence of Sm2O3irradiated withultraviolet laser light under vacuum[J]. Journal of Physica B,2003(340-342):944-948.
    [20] A A Dakhel. Dielectric and optical properties of samarium oxide thinfilms[J]. Journal of Alloys and Compounds,2004(365):233-239.
    [21] MottNF,DauisEA.Electronic processes in non-crystalline materials[M].Oxford,1979,289-295.
    [22] V A Rozhkov,A Yu Trusova,I G Berezhnoy.Thin solid Films,1998(325):151-155.
    [23] B M andal, S N Thakur. Laser photoacoustic spectra of Sm3+ion in Sm2O3andSmCl3·6H2O in the spectral profile484-542nm[J]. Spectrochimica Acta Part A,2004(60):933-939.
    [24] A C Hernandes. Optical properties of Sm3+doped lead fluorborateglasses[J].Journal of Physics and Chemistry of Solids,2000(60):1535-1542.
    [25] M R Esquivel. Effect of reaction temperature on the chloriniation of aSm2O3-CeO2-C mixture[J]. Thermochimica Acta,2005(432):47-55.
    [26] M R Esquivel. Chlorination of samarium sesquioxide[J]. Journal of MaterialsProcessing Technology,2005(170):304-309.
    [27] J–F Martel,S Jandl.Optical crystal field of study Sm2O3(C-and B-type)[J].Journalof Alloy and Compounds,1998(275-277):353-355.
    [28] Jingguo Hou,Yanchun Zhao.Preparation of samarium oxide nanoparticales and itscatalytic activity on the esterification[J]. Materials Chemistry and Physics,2002(77):65-69.
    [29] Sangmoon Park, Gregory S Herman. Oxide films:low-temperature deposition andcrystallization[J]. Journal of Solid State Chemistre,2003(175):84-87.
    [30] G A M Hussein, D J Buttrey. Formation and characterization of samarium oxidegenerated form different precursors[J].Thermochimica Acta,2003(402):27-36.
    [31]廖巧丽,梁珍成,秦永宁等.镧、铈氧化物对镍催化剂活性的促进作用[J].中国稀土学报,1995,13(1):35.
    [32]郝茂荣. Ni/γ-Al2O3体系中添加稀土氧化物产生的电子效应[J].稀土,1997,18(3):31.
    [33]翟润生,辛勤,李力等.利用CO作为分子探针考察Ni-Al2O3间的相互作用[J].燃料化学学报,1984,12(2):64.
    [34]张学文,俞寿明,檀健等. La-Cu-Fe-O/γ-Al2O3催化剂的抗烧结研究[J].应用化学,1992,9(4):107.
    [35]罗梦飞,朱波,袁贤鑫.氧化铈对氧化锰结构和催化性能的影响[J].中国稀土学报,1995,13(1):31.
    [36]施尔畏,王步国,夏长泰.水热的应用与发展[J].无机材料学报,1996,11(2):204-208.
    [37]徐如人.无机合成与制备化学[M].高等教育出版社,2001:128-163.
    [38] M Yoshimura. Importance of Soft Solution Processing for Advanced InorganicMaterials [J]. J. Mater. Res.1998,13(5):1091-1098.
    [39]夏长泰,施尔畏,仲维卓等.水热法制备BaTiO3粉体[J].无机材料学报.1995,9(3):293-299.
    [40] Manabu Hirasawa, Koji Kajiyoshi and Kazumichi Yanagisawa. Hydrothermal SoftChemical Synthesis and Particle Morphology Control of BaTiO3in SurfactantSolutions [J]. J. Am. Ceram. Soc.,2005,88(6):1415-1420.
    [41]王秀峰,王永兰,金志浩.热法制备纳米陶瓷粉体[J].稀有金属材料与工程.1995,24(4):1-6.
    [42] M Yoshimura. In Situ Fabrication of Morphology-controlled Advanced CeramicMaterials by Soft Solution Processing [J]. Solid State Ion. Diffus. React.1997,98(3-4):179-208.
    [43] Hyo Seok Lee, Jai Joon Lee, Tae Sun Chang, et al. Hydrothermal Synthesis forLarge Barium Titanate Powders at a Low Temperature: Effect of Titania Aging inan Alkaline Solution [J]. J. Am. Ceram. Soc.,2007,90(9):2995-2997.
    [44] M Yoshimura, et al. Soft Processing for Advanced Inorganic Materials [J]. MRSBulletin.2000,25(9):12-25.
    [45] R Roy. Acceleration the Kinetics of Low-Temperature In organic Syntheses [J]. J.Solid State Chem,1994,111:11-17.
    [46] A Rabenau. The Role of Hydrothermal Synthesis in Preparative Chemistry. Angew.Chem.,1985,24:1026-1040.
    [47] V N Rumyantsev. Choice of a mineralizer for hydrothermal synthesis and crystalgrowth [J]. Kristallografiya,1977,22(5):1069-1074.
    [48]张智敏,任建国,王自为.无机合成化学机技术[M].中国建材工业出版社,2002.
    [49]江名喜,杨天足,楚广等.配合-水热氧化法合成锑掺杂二氧化锡纳米粉末[J].中南大学学报.2006,37(2):247-251.
    [50]施尔畏,仲维卓,夏长泰等. Bi4Ge3O12(BGO)微晶粒的水热法制备[J].硅酸盐学报,1996,24:360-364.
    [51] S Somiya. Hydrothermal Preparation of Fine Powders [J]. AdvancedCeramics Ⅲ, Tokyo,1988:207-243.
    [52] W Zhu, C C Wang, S A Asiale. Fast-Sintering of HydrothermallySynthe-sized BaTiO3Powders and Their Dielectric Properties [J]. J. Mater. Sci.,1997,32:4303-4307.
    [53] Shigeyuki Somiya and rustum Roy. Hydrothermal synthesis of fine oxidepowders [J]. Bulletin of Materials Science,2000,23(6):453-460.
    [54] S E Yoo, M Yoshimura, S Somiya. Direct preparation of BaTiO3Powdersfrom titanium metal by anodic oxidation under hydrothermal conditions [J].J. Mater. Sci. Lett.,1988,8:530-532.
    [55] H M Kingston, L B Jassie. Microwave Energy for Acid Decomposition atElavated Temperatures and Pressures Using Biological and BotanicalSamples [J]. Anal. Chem.,1986,58:2534-2541.
    [56] S Komarneni, R Roy and Q H Li. Microwave-Hydrothermal Synthesis ofCeramic Powders [J]. Mater. Res. Bull.,1992,27:393-1045.
    [57] S Komarneni, Q H Li, K M Stefansson, R Roy. Microwave-Hydrothermal AKumar, R Roy. Reactive-Electrode Submerged-Arc Process for ProducingFine Non-Oxide Powders [J]. J. Am. Ceram. Soc.,1989,72:354-356.
    [58] Processing for synthesis of Electronic Powders [J]. J. Mater. Res.,1993,8:3176-3183.
    [59] C S E Papp, L B Fischer. Application of Microwave Digestion to the Analysis ofPeat [J].1987,112(3):337-338.
    [60] N Yamasaki,T WeiPing,K Jiajun,K Hosoi. Low-Temperature Sintering of Calciumand Magnesium Carbonate by the Hydrothermal Hot-Pressing Technique [J]. J.Mater. Sci. Lett.,1995,14:1268-1270.
    [61] K Yanagisawa, K Ioku, N Yamasaki. Formation of Anatase Porous Ceramics byHydrothermal Hot-Pressing of Amorphous Titania spheres [J]. J. Am. Ceram.Soc.,1997,80:1303-1306.
    [62] K Hosoi, T Hashida, H Takahashi et al. New Processing Technique forHydroxyapatite Ceramics by the Hydrothermal Hot-Prcessing Method [J]. J. Am.Ceram. Soc.,1996,79:2771-2774.
    [63] A Kumar, R Roy. RESA-A Wholly New Process for Fine Oxide Powder Preparation[J]. J. Am. Ceram. Soc.,1989,72,354-356.
    [64] M Gobe,K Kon-no,K Kandori and A Kitahara. Preparation and Characterization ofMonodisperse Magnetite Sols in W/O Microemulsion [J]. J. Colloid. Inter Sci.1983,93:293-295.
    [65] P Ayyub et al. Synthesis and Mossbauer Characterization of Microcrystalline YFeO3[J]. Mater. Lett.1991,24:431.
    [66] T Sugimoto, K Sakata, and A Muramatsu. Formation Mechanism of MonodispersePseudocubic Fe2O3Particles from Condensed Ferric Hydroxide [J]. Gel. J. Colloid.Inter Sci.1993,159:372-382.
    [67] E U Franck. Survey of Selected Non-Thermodynamic Properties and ChemicalPhenomena of Fluids and Fluid Mixtures [J]. Phys. Chem. Earth,1981,13/14:65-88.
    [68]蒲永平,董敏,陈寿田.水热处理对固相合成的钛酸钡粉体的影响[J].陕西科技大学学报.2005,23(4):25-28.
    [69]傅玉普,郝策,蒋山.物理化学[M],大连理工大学出版社,2004:78-83.
    [70]张克从,张乐潓.晶体生长科学与技术[M].科学出版社,1997:252-268.
    [71]张克从,张乐潓.晶体生长科学与技术[M].科学出版社,1997:269-282.
    [72] G Blasse and A F Corsnit. Electronic and Vibrational Spectra of Orderedperovskites [J]. J. Solid State Chem.,1973,6:513-517
    [73]何新华,郑敏贵,陈志武.烧结工艺对Sr0.3Ba0.7Bi3.7La0.3Ti4O15陶瓷显微结构及介电性能的影响[J].稀有金属材料与工程,2009,38(1):424-427.
    [74]陈智慧,李江涛,胡章贵.两步烧结法合成钇铝石榴石透明陶瓷[J].无机材料学报,2008,23(1): l30-134.
    [75]郭良斋. ZnNb2O6陶瓷粉体制备技术研究[D].中国海洋大学硕士学位论文.
    [76]吴淑雅.钙钛矿铌酸盐电介质陶瓷粉末的水热合成[D].浙江大学博士学位论文,2008.
    [77]仲维卓,人工晶体(第二版)[M].北京:科学出版社,1994.
    [78] Y Q Zheng,E W Shi,W J Li,Z Z Chen,W Z Zhong,X F Hu. Formation of ZirconiaPolymorphs under Hydrothermal Conditions [J]. Sci. in China(E),2002,35:273-281.
    [79]郑燕青,施尔畏,李汶军等.水热条件下二氧化锆同质变体的形成[J].中国科学(E),2002,31:289-295.
    [80]施尔畏,陈之战,元如林等.水热结晶学[M],科学出版社,2004:107-109.
    [81]张勇,王友法,闰玉华.水热法在低维人工晶体生长中的应用与发展[J].硅酸盐通报,2002,3:22–26.
    [82]何赐全,杜海燕,孙家跃.无机纳米材料的水热合成及其衍生方法[J].化工新型材料,2007,35,10:19–20.
    [83]施尔畏,陈之战,元如林.水热结晶学[M].北京:科学出版社,2004.
    [84] Wojciech Suchanek,Tomoaki Watanbe,Masahiro Yoshimura. Preparation of BaTiO3thin films by the hydrothermal electrochemical method inflowing solution[J]. SolidState Ionics,1998,109:65-72.
    [85] Dang Duc Vuong,Go Sakai,Kengo Shimanoe,et al. Preparation of grain-controlledtin oxide sols by hydrothermal treatment for thin film sensor application[J].Sensors and Actuators2004, B(103):386-391.
    [86] Dalberth M J,Stauber R E,Price J C,et al. Improved low frequency and microwavedielectric response in strontium titanate thin films grown by pulsed laserablation[J]. Appl. Phys. Lett.,1998,72(4):507-509.
    [87] Jia Q X, Findikoglu A T, Reagor D, et al. Improvement in performance ofelectrically tunable devices based on nonlinear dielectric SrTiO3using ahomoepitaxial LaA1O3layer[J], Appl. Phys. Lett.,1998,73(7):897-899.
    [88] Qianwang Chen,Yitai Qian,Zuyao Chen et al. Photoluminescence in ultrafine zincsulfide thin film[J]. Appl. Phys. Lett.,1995,66(13):1608-1610.
    [89]邓宏,姜斌,曾娟等.水热法在制备电子陶瓷粉体中的应用[J].材料导报,2001,15(7):30-32.
    [90]李永强.水热法合成钛酸铋粉体的研究[D].陕西:陕西科技大学,2004.
    [91]李汶军,施尔畏,郑燕青等.氧化物晶体的成核机理与晶粒粒度[J].无机材料学报,2000,15(5):777-786.
    [92] Wang X. F., Wang Y. L. and Jing Z. H., Progress in hydrothermal preparation ofceramics [J]. Ceramics Bulletion,1995,3:25-30.
    [93]施尔畏,夏长泰,王步国等.水热法制备陶瓷粉体晶粒粒度[J].硅酸盐学报,1997,25(3):287-293.
    [94] Richard E.Riman, Wojciech L, etal. Hydrothermal crystallization of ceramics[J].Ann. Chim. Sci. Mat,2002,27(6):15-36.
    [95]郑燕青,施尔畏,元如林等.二氧化钛晶粒的水热制备及其形成机理研究[J].中国科学(E),1999,29(3):206-213.
    [96]施尔畏,夏长泰,王步国等.水热法制备的陶瓷粉体晶粒粒度[J].硅酸盐学报,1997,25(3):287-293.
    [97] G C Kennedy. Pressure-Volume-Temperature Relations in Water at ElevatedTemperatures and Pressures [J]. Am. J. Sci.,1950,248:540-564.
    [98] K H Dudziak, E U Franck. Measurements of Water Viscosity up to56℃and3500bars [J]. Ber. Bunsenger Phys. Chem.,1966,70:1120-1208.
    [99] E U Franck. Survey of Selected Non-Thermodynamic Properties and ChemicalPhenomena of Fluids and Fluid Mixtures [J]. Phys. Chem. Earth,1981,13/14:65-88.
    [100]黄承焕.金属硫化物和氧化物的微波合成及性能研究[D].长沙:中南大学,2005.
    [101]张兰.微波辅助法二氧化钛溶胶的制备、掺杂及光催化活性研究[D].重庆:重庆大学,2009.
    [102]石建.微波加热合成La(1-x)SrxMnO3的结构与性能研究[D].天津:天津大学,2008.
    [103]孙庆军.水热与微波水热法合成形貌可控纳米氧化钨粉体[D].新疆:新疆大学,2008.
    [104]林亮.微波辅助法低温制备纳米晶TiO2溶胶及其光催化性能[D].重庆:重庆大学,2008.
    [105]孙永欣,赵青,刘力等.微波水热合成ZrO2-8%Y2O3纳米粉体[J].硅酸盐学报,2005,33(10):1255-1258.
    [106]张勇,王友法,闫玉华.水热法在低维人工晶体生长中的应用与发展[J].硅酸盐通报,2002(3):22-26.
    [107]李汶军,施尔畏,田明原等.水热法制备氧化锌纤维及纳米粉体[J].中国科学(E辑),1998,28(3):212-218.
    [108]王广健,刘正旺,刘义武等.微波水热合成Mn2Ti2Al2MCM41分子筛及其催化双氧水环氧化苯乙烯的性能[J].催化学报,2008,29(11):1159-1164.
    [109]江锦春,程文娟,张阳等.微波水热条件对氧化锌晶体的形态和粒度的影响[J].人工晶体学报,2005,34(2):255-258.
    [110]种法国,赵景联.微波水热晶化制备纳米二氧化钛光催化剂及其性能研究[J].高校化学工程学报,2006,20(1):138-141.
    [111]丁希楼,赵凯,李家等.TiO2晶体的微波水热法制备及光催化性能的研究[J].环境工程学报,2010,4(4):801-804.
    [112] A.Bonamartini Corradi, F. Bondioli, A. M. Ferrari, et a1. Synthesis andcharacterization of nanosized ceria powders by microwave hydrothermalmethod[J]. Materials Research Bulletin,2006,41:38-44.
    [113]夏昌奎,黄剑锋,曹丽云等.微波水热法制备ZnO纳米晶[J].人工晶体学报,2008,37(4):833-838.
    [114]廖学红,王伟.单模微波水热控制合成纳米硫化铜[J].黄冈师范学院学报,2009,29(6):28-31.
    [115]许斌生,曹丽云,黄剑锋等.微波水热法合成硅酸钇纳米晶[J].人工晶体学报,2009,38(6):1329-1332.
    [116]刘大为,王芬,朱建锋等.微波水热法合成硅酸锆纳米粉体的研究[J].中国陶瓷工业,2010,17(5):10-13.
    [117]吴健松,肖应凯,梁海群.丁醇-变频微波-水热法制备优质碱式硫酸镁晶须及表征[J].人工晶体学报,2009,38(1):285-289.
    [118]杨忠波,常爱民,赵青等.纳米晶钛酸锶钡(Ba0.5Sr0.5TiO3)粉体的微波水热合成[J].材料科学与工程学报,2006,24(4):578-581.
    [119]夏傲,苗鸿雁,谈国强等.微波水热合成镧掺杂钛酸铋粉体初探[J].压电与声光,2010,32(3):426-428.
    [120]弭群,曹丽云,黄剑锋等.C/C复合材料微波水热浸渍H3PO4改性研究[J].航空材料学报,2010,30(4):70-74.
    [121]吴东辉,金瑞娣,汪信.微波水热改性法制备S2-2O8/Fe2O3-SiO2固体酸及催化性能研究[J].应用化学,2005,22(8):879-882.
    [122]王艳,黄剑锋,朱辉等.微波水热辅助电沉积法制备Bi2S3薄膜[J].无机化学学报,2010,26(6):977-980.
    [123]杨华明.无机功能材料[M].北京:化学工业出版社,2007.57-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700