平板式氧化锆汽车氧传感器技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,平板式ZrO_2汽车氧传感器由于尺寸小,响应快,能耗低,易集成,在恶劣环境下工作稳定等优点成为汽车尾气控制的主流氧传感器,本文围绕氧传感器的制备工艺流程所涉及的粉体制备、成型烧结、器件制备与测试、材料表征等技术,展开以下相关技术基础研究,主要内容如下:
     采用适合于工业生产的化学共沉淀方法制备了掺杂8mol% Y_2O_3全稳定氧化锆超细粉(8YSZ),应用激光粒度分析仪、热重-差热分析(TG-DTG)、X射线衍射分析(XRD)、扫描电镜(SEM)等手段对粉体进行了表征,研究了粉体制备过程中团聚形成的机理,讨论了溶液浓度、pH值、沉淀方式、沉淀温度、洗涤方式、表面改性和煅烧温度等工艺参数对粉体粒度分布的影响,并总结出各工艺参数的合理值。
     基于球形气孔模型建立了烧结中期和后期的显微结构模型,推导出了固相烧结中期和后期的致密化方程。选择粉体粒度与团聚程度不同的8YSZ粉体,对其进行干压成型、无压烧结实验。结合致密化方程,改变烧结工艺参数,测试烧结瓷体微观形貌、密度及收缩率等性能指标,阐述了烧结温度、粉体粒度、素坯密度和团聚等因素对瓷体致密度的影响。利用晶粒生长动力学,结合实验结果研究了陶瓷单相系统晶粒正常生长的规律,以及烧结温度、掺杂第二相Al_2O_3和素坯中气孔尺寸分布对8YSZ瓷体晶粒尺寸的影响,得到了获得致密8YSZ瓷体的合理烧结工艺。
     以La_2O_3, MnO_2和SrCO_3为原料,通过固相反应合成制备了混合导体材料La1-xSrxMnO_3(LSM)。通过分析得到LSM反应合成机理为:反应过程先是La_2O_3+SrCO_3→La2SrOx+CO_2,然后为La_2O_3+MnO_2→LaMnO_3,最后发生La2SrOx和LaMnO_3向La1-xSrxMnO_3转化,获得要求的产物。采用铂浆粘结法,制备了致密扩散障极限电流氧传感器,解决了小孔和多孔型极限电流型氧传感器长期使用时容易造成小孔堵塞,变形等问题。研制了测试系统,测试结果显示:这种传感器在0~21%的全氧浓度范围内都能得到很好的极限电流平台,而且电流与氧浓度有很好的线性关系,所制得的传感器内阻低,输出电流大,氧测量范围宽。
     研究了利用氧化铈的储氧特性来制备氧浓差型氧传感器,克服了传统浓差型氧传感器制作工艺复杂、成本高、不便于微型化的缺点。并利用添加锆和钇形成铈锆复合固溶体氧化物(CZO)和铈锆钇复合固溶体氧化物(CZYO)来改善其氧储能力(OSC),采用共沉淀法制备了CZO和CZYO体系储氧材料,研究了老化温度对其相结构、比表面积及氧储能力的影响。利用事先配制好的不同空燃比的混合气体模拟尾气对制作的传感器进行测试,结果显示:输出电势不像传统氧浓差型氧传感器为1000~100mv,贫燃时,输出电势为负,富燃时,输出电势为正。
     设计了一种带致密扩散障的厚膜极限电流氧传感器结构,采用有限元方法对加热器进行了优化设计,并进行热传导分析和热应力分析,设计结果显示:设计的传感器响应快、热应力低以及温度分布均匀,该设计、建模方法可以应用于同类电子产品的设计。
At present, due to their small size, short response time, low power consumption, easy to integrate and operating stability in the rough environment, planar zirconia automotive oxygen sensors have been the dominating products in the market. According to the manufacturing process flow of oxygen sensors, issues such as the powder preparation technology, the sintering techniques, the component manufacturing and testing technology, the characterization of materials, etc. were investigated in this PhD dissertation.
     Firstly, the chemical co-precipitation was employed to prepare the ultra fine powders of 8mol% Yttria-Stabilized Zirconia (8YSZ) in this study. The characteristics of the powders were analyzed by laser granulometer, TG-DTG, XRD and SEM. The mechanism and influential factors of agglomeration of ultra fine 8YSZ powder prepared by co-precipitation method have been analyzed. The effects of the process parameters including solution concentration, pH value, precipitation method and temperature, type of washing liquid, calcination temperature and surfactant on particle size of 8YSZ were investigated. The optimum process parameters were obtained.
     Secondly, on the basis of the spherical pore model, pore micro structure models for the intermediate and final stages of sintering have been set up while densification equations are derived for the above stages of sintering. The 8YSZ powders with different grain size and agglomeration degree were first pressed under various pressure then pressureless sintered under various sintering process. The microstructure, density and line shrinkage were measured. Combining the models with the densification equations derived in this study, the effects of the sintering temperature, the size of powder particle, green density and agglomeration degree of powder on the densification were discussed. The rule of the normal grain growth for single-phase system and the effect of the doped second phase (Al_2O_3) and pore size distribution on the grain growth were analyzed by combining the grain growth kinetics and experiment. The optimum sintering process of the ultra fine 8YSZ powders were obtained.
     Thirdly, the mixed electronic and oxygen ion-conduction materials, La_(1-x)Sr_xMnO_3 (LSM) powders were prepared from La_2O_3, MnO_2, and SrCO_3 by the method of solid state reaction synthesis. The reaction steps were described as follows. First, La_2O_3+SrCO_3→La_2SrO_x+CO_2, and then, La_2O_3+MnO_2→LaMnO_3, finally we obtained La_(1-x)Sr_xMnO_3. A type of limiting current oxygen sensor with dense diffusion barrier was fabricated with the platinum paste bonding method. It was helpful to solve these questions that the sensor was easy to be occluded, change the dimension, suffer from a drift during long term operation and relatively expensive for traditional sensor with a small diffusion hole or porous ceramic layer. The testing system for the sensor was developed. The test results showed that the sensors have good oxygen-sensitiveness in whole range of air-file ratio while there was a good linear relationship between the limiting current and oxygen concentration. Moreover, the sensor had many good performances such as low resistance, high output current, and wide measure range.
     Fourthly, a novel potentiometric oxygen sensor employing the oxygen storage material CeO_2 as a solid-state reference was developed. It overcame the problems of the traditional oxygen sensor such as complex fabrication process, high cost, trouble to miniaturize, etc. To improve the Oxygen Storage Capacity (OSC) of solid-state reference, the CeO_2-ZrO_2 and CeO_2-ZrO_2-Y_2O_3 compounds were prepared by chemical co-precipitation. The effects of high temperature on phase structure, BET surface area and OSC was studied. Tests on the sensor have been performed with various A/F value mixture gas at various operating temperature. The experimental result showed that the output voltage of the sensor was negative at lean-burn and was positive at rich-burn, different from the traditional oxygen sensor with 1000~100mv.
     Finally, the structure of a thick-film amperometric sensor with dense diffusion barrier was designed. The structure of heater was optimized by the method of finite element analysis. Transient heat transfer analysis and thermal stress analysis were performed. The design results showed that the designed sensor had fast response, even temperature distribution and acceptable thermal stress. It was believed that the modeling techniques and computational approaches incorporated in this study were useful and can be applied for the development of similar products.
引文
[1]李兴虎编.汽车排放污染与控制.北京:机械工业出版社,1999
    [2]杨妙梁编.汽车发动机与环境保护.北京:中国物资出版社,2001
    [3]卓斌,刘启华.车用发动机燃料喷射与电子控制.北京:机械工业出版社,1999
    [4]王务林,赵航,王继先编.汽车催化转化器系统概论.北京:人民交通出版社,1999
    [5] M.P.Walsh. Motor Vehicle Pollution:A Global Overview. Technical Paper, 945112
    [6]冯明星.欧Ⅰ、欧Ⅱ、欧Ⅲ、欧Ⅳ、欧Ⅴ到底是怎么回事.车油关系,2004,7:34
    [7]汪卫东.国外三大汽车排放法规体系.柴油机设计与制造,2003,4:4~8
    [8] G T Engh. Development of the Volvo lambda-sensor system. USA , Int. Automotive Eng. Congress. SAE paper 770295, 1977
    [9]马玉芳,卢世魁.汽车发动机用氧传感器的研究.工矿自动化,2003,10:19~20
    [10] S Matsushita. Development of the Toyota lean combustion system. USA, Int. Automotive Eng. Congress. SAE paper 850044, 1985
    [11] Takashi Kamo. Lean Mixture Sensor, USA, Int. Automotive Eng. Congress. SAE paper 850380, Jule 16, 1985
    [12] Yamada, Hirokazu, Ozawa, Masato. Method of manufacturing a gas sensor. USA: 6792678, September 21, 2004
    [13] H.-M. Wiedenmann, G. Hotzel, H. Neumann, et al. Exhaust gas sensors, in: R.K. Jurgen(Ed.), Automotive Electronics Handbook, 2nd edn., McGraw-Hill, New York, 1999, Chapter 6
    [14] K. Mizusawa, K. Katoh, S. Hamaguchi, H. Hayashi, et al. Development of air fuel ratio sensor for 1997 modell year LEV vehicle, SAE paper 970843, Detroit (1997)
    [15] S. Sojima, S. Mase, Multi-layered zirconia oxygen sensor for lean burn engine application, SAE 850378, Detroit (1985)
    [16] L. Francioso, D.S. Presicce, A.M. Taurino, et al. Automotive application of sol–gel TiO2 thin film-based sensor for lambda measurement. Sensors and Actuators B, 2003, 95: 66~72
    [17]刘迎春,叶湘滨.传感器原理·设计与应用(第四版).湖南长沙:国防科技大学出版社, 2002. 291~298
    [18]田立强,潘国峰,赵彦晓. TiO2薄膜氧敏元件的研究与发展.传感器世界,2002,7:7~10
    [19]周伟,孙成文,杨芝洲. TiO2氧敏元件的研究与发展概况.无机材料学报,1998,13(3):275~281
    [20]方湘怡,吴文超,郑彦升.厚膜TiO2氧敏传感器研究.云南大学学报(自然科学版),1997,19 (2):135~138
    [21] J. G. Rivard. Closed-Loop Electronic Fuel Injection Control of the Internal Combustion Engine. SAE paper 730005,1973
    [22] H Dueker, K H Frise, W Haecker. Ceramic Aspects of the BOSCH Lambda-Sensor. SAE paper 750223,1975
    [23] Grunde T. Engh and Stephen Wallman. Development of the Volvo Lambda-Sensor System. SAE paper 770295,1977
    [24] H.-M. Wiedenmann, L. Raff, R. Noack. Heated zirconia oxygen sensor for stoichiometric and lean air–fuel ratios, SAE Paper 840141, Detroit (1984).
    [25] Fouts, Richard Eugene, Younkman, et al. Method for making a wide range sensor element. USA, 6572747, June 3, 2003
    [26] J.Riegel, H.Neumann, H.-M.Wiedenmann. Exhaust gas sensors for automotive emission control. Solid State Ionics, 2002, 152~153:783~800
    [27] http://www.pucheng.com.cn/
    [28] http://www.hongtak.com/
    [29]刘慧勇.氧化锆电流型氧传感器的研究:[硕士学位论文].北京市:北京科技大学图书馆,2000
    [30]夏晖.薄膜式极限电流型汽车尾气氧传感器的研究:[硕士学位论文].北京市:北京科技大学图书馆,2003
    [31]牛雅芳.二氧化锆基极限电流型宽范围空燃比氧传感器的研究:[硕士学位论文].北京市:北京科技大学图书馆,2002
    [32]夏风.非平衡态ZrO2电池相关基础研究:[博士学位论文].湖北省武汉市:华中科技大学图书馆,2000
    [33]罗志安.氧化锆氧传感器电极性能研究:[博士学位论文].湖北省武汉市:华中科技大学图书馆,2006
    [34]贺永宁.汽车空燃比控制用厚膜TiO2氧传感器的研究:[硕士学位论文].陕西西安市:西安交通大学图书馆,2000
    [35]李晖.施主型TiO2氧传感器用于空/燃比测量与控制的研究:[硕士学位论文].陕西西安市:西安交通大学图书馆,2003
    [36]简家文.钇稳定ZrO2固体电解质氧传感器的研究:[博士学位论文].四川省成都市:电子科技大学图书馆,2004
    [37]谢少桥.宽工作温度范围A/F控制用TiO2薄膜型氧传感器的研究:[硕士学位论文].天津市:天津大学图书馆,1999
    [38] David Te-yen Huang. An integrated computer model for simulating electrothermo mechanical interactions of an exhaust oxygen sensor. Finite Elements in Analysis and Design ,2001,37: 657~672
    [39] Gur, Turgut Mehmet, Huggins, et al. Oxygen sensor.USA:5827415,October 27, 1998
    [40] H. Kaneko, T. Okamura, H. Taimatsu. Characterization of zirconia oxygen sensors with a molten internal reference for low-temperature operation, Sensors and Actuators B, 2003,93:205~208
    [41] N. Rajabbeigi, B. Elyassi, A. Khodadadi, et al. A novel miniaturized oxygen sensor with solid-state ceria–zirconia reference, Sensors and Actuators B, 2004,100: 139~142
    [42] B. Elyassi, N. Rajabbeigi, A. Khodadadi, et al. An yttria-doped ceria-based oxygen sensor with solid-state reference, Sensors and Actuators B, 2004,103:178~183
    [43] Nafiseh Rajabbeigia, Bahman Elyassia, Abbas Ali Khodadadi, et al. Oxygen sensor with solid-state CeO2–ZrO2–TiO2 reference, Sensors and Actuators B, 2005,108: 341~345
    [44] R. Radhakrishnan, A.V. Virkar, S.C. Singhal, et al. Design, fabrication and characterization of a miniaturized series-connected potentiometric oxygen sensor, Sensors and Actuators B, 2005,105: 312~321.
    [45]利明,何莉萍,陈宗璋等. A12O3掺杂对YSZ固体电解质烧结及电性能的影响.无机材料学报,2004,19(3):686~690
    [46]纪媛,刘江,吕哲等.掺入A12O3对固体氧化物电解质材料YSZ性能影响的研究.功能材料,2000,31(增刊):53~54,61
    [47] A.J. Feighery, J.T.S. Irvine. Effect of alumina additions upon electrical properties of 8 mol% yttria-stabilised zirconia. Solid State Ionics, 1999,121: 209~216
    [48] Yuan Ji, Jiang Liu, Zhe Lue, et al. Study on the properties of Al2O3-doped (ZrO2) 0.92 (Y2O3)0.08 electrolyte. Solid State Ionics,1999,126:277~283
    [49] Binod Kumara, Christina Chen, Chakraphi Varanasi, et al. Electrical properties of heterogeneously doped yttria stabilized zirconia. Journal of Power Sources,2005,140: 12~20
    [50] Aya Yuzaki, Akira Kishimoto. Effects of alumina dispersion on ionic conduction of toughened zirconia base composite. Solid State Ionics, 1999,116:47~51
    [51]张立德,牟季美.纳米材料与纳米结构.北京:科学出版社,2001.485~488
    [52] W.Weppner. Tetragonal Zirconia Polycystals-A High Performance Solid Oxygen Ion Conductor. Solid State Ionics, 1992, 52: 15~21
    [53] Fernando Garzon, Ian Raistrick, Eric Brosha, et al. Dense diffusion barrier limitingcurrent oxygen sensors. Sensors and Actuators B, 1998, 50: 125~130
    [54] Periaswmi G. Low-temperature zirconia oxygen gauges based on RuO2 electrode. Solid State Ionics,1988,26:311~317
    [55] KleitzM,IharadaT. Electrode material for zirconia sensors working at temperature lower than 500K[J]. Sensors and Actuators B,1993,13~14:27~30
    [56]耿卫芹,钱晓良,孙尧卿等.汽车氧传感器的失效及预防.传感器技术,2002,21(10):8~10
    [57]张海礁,杨觉明,陈平等.共沉淀-超临界流体干燥法制备ZrO2(Y2O3)纳米粉.西安工业学院学报,2004,24(3):276~279
    [58]卢旭晨,徐廷献,李金有等. ZrO2粉料喷雾造粒颗粒的形貌、显微结构及其成型性能.硅酸盐学报, 1997,25(3):364~367
    [59]赵青,常爱民,简家文等.改性溶胶-凝胶法制备ZrO2纳米粉及其团聚控制.材料科学与工程学报,2003,21(5):683~686
    [60]酒金婷,葛钥,张沫戎等.无团聚纳米氧化锆的制备及应用.无机材料学报,2001,16(5):867~871
    [61]方小龙,杨传芳,陈家镛.湿化学工艺条件对ZrO2(Y2O3)超细颗粒团聚的影响.硅酸盐学报,1998,26(6):732~739
    [62]陈少贞,林小莲.湿法制备ZrO2超细粉的团聚机理、表征及控制.佛山陶瓷, 1995,4:1~5
    [63] Pimenoy,Ullrichj,Lunkenheimerp,et al. Enhanced specific grain boundary conductivity in nano crystalline Y2O3-stabilized zirconia.Solid State Ionics,1998,108:111~118
    [64] S. Tekeli, M. Erdogan, B. Aktas. Influence ofα-Al2O3 addition on sintering and grain growth behaviour of 8 mol% Y2O3-stabilised cubic zirconia (c-ZrO2), Ceramics International, 2004,30: 2203~2209
    [65] Heinz Geler,Helmut Weyl, et al. Measuring Sensor And Method For Its Fabrication. USA,6347543, Feb. 19,2002
    [66] Richard Eugene Fouts, Lora B. Younkman, et al. Method For Making a Wide Range Sensor Element.USA,6572747, June. 3,2003
    [67] Syunzo Mase, Shigeo Soejima. Electrochemical Sensing Element and Device Incoprorating the Same. USA,4755274, Jul. 5,1988
    [68]孔祥华. ZrO2固体电解质的制备、结构和性能研究:[博士学位论文].北京市:北京科技大学图书馆,2001
    [69]冯江涛.氧化锆陶瓷注射成型工艺研究:[硕士学位论文].湖北省武汉市:华中科技大学图书馆,2003
    [70]韩敏芳,彭苏萍,杨翠柏等. YSZ纳米粉料流延成型电解质薄膜性能研究.功能材料,2003,34 (5):540~542
    [71] Brian,Riley,Szreders, et al. Fabrication of solid oxide fuel cell by electrochemical vapour deposition. USA: 4831965, May 23, 1989
    [72] Jankowski, Alan F., Makowiecki, et al. Hybird deposition of thin film solid oxide cells and electrolyzes. USA: 5753385, May 19, 1998
    [73] Minh N Q, Takahashi T. Science and technology of ceramic fuel cells, Elsevier B.V., ISBN:0-444-895668-X, U.S.A. 1995,11:289~291
    [74] Romero C, Wright J. The value and manufacturing costs of planar SOFC stacks. Gas research institute. Contract No. 5987-260~1543
    [75] Fanglin Chen, Meilin Liu. Preparation of yttria-stabilized zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ substrates using an electrophoretic deposition (EPD) process, Journal of the European Ceramic Society, 2001,21: 127~134
    [76]卢立柱,赁泓巍,谢慧琴.用电泳沉积-电沉积联合法制备二氧化锆(YSZ)薄膜,材料研究学报,2001,15(5):525~529
    [77] Weimin Liu, Yunxia Chen, Chengfeng Ye, et al. Preparation and characterization of doped sol-gel zirconia films, Ceramics International, 2002,28:349~354
    [78] Xia Changrong, Cao Huaqiang, Wang Hong, et al. Sol-gel synthesis of yttria stabilized zirconia membranes through controlled hydrolysis of zirconium alkoxide, Journal of Membrane Science, 1999,162: 181~188
    [79] M.Nakao, K. Kamimura, J.Yabuzaki, et al. Preparation of tetragonal zirconia films for oxygen sensor by sputtering. Trans. IEE of Japan, 1995,115-A(9):886~889
    [80] Bor Yann Liaw, Richard E.Rocheleau, Qing-hua Gao. Thin-film yttria-stabilized tetragonal zirconia. Solid state ionics, 1996,92: 85~89
    [81]王岭,潘礼庆,孙加林等.平面射频磁控溅射法制备YSZ薄膜及性能.功能材料,1999, 30(6):641~643
    [82]马景廷,王岭.溅射法制备的YSZ薄膜电性能.河北理工学院学,1999,21(4) :58~61
    [83]潘礼庆,王岭,孙加林等.YSZ薄膜的制备及应用.功能材料与器件学报,2000,6(4):372~376
    [84]韩敏芳,王玉倩,李伯涛等.流延成型制备8YSZ电解质薄片及其性能研究.北京科技大学学报,2005,27(2):209~212
    [85] Mistler R E. Tape casting engineered material handbook. Ceramics and glasses, 1991,4:161~165
    [86] Nelson, Charles Scott (Clio, MI), Chen, et al. Planar exhaust sensor element with enhanced geometry. USA: 6562215, May 13, 2003
    [87] Schneider, Gerhard, Bayha, et al. Planar polarographic sensor for determining the lambda value of gas mixtures. USA: 5529677, June 25, 1996
    [88]史美仑.固态电解质.重庆:科学技术文献出版社重庆分社,1987
    [89]王零森.二氧化锆陶瓷(一).陶瓷工程,1997, 31 (2):40~44
    [90]王常珍.固体电解质与化学传感器.北京:冶金工业出版社,2000
    [91]曹婉真,夏又新编.电解质.西安:西安交通大学出版社,1991
    [92] W. D. Kingery, J. Pappis, M. E.Doty,et al. Oxygen ion mobility in cubic Zr0.85Cd0.15O1.85, J. Am. Ceram. Soc., 1959,42:393~398
    [93]工藤辙一,笛木和雄.固体离子学,董治长译,北京:北京工业大学出版社,1992
    [94] Galasso F S. Structure and Properties of Inorganic Solids. Oxford: Pergamon Press, 1970
    [95]周健儿,朱志刚,梁健等.钙钛矿型混合导体透氧膜的研究.中国陶瓷工业,2001,8 ( 4):41~45
    [96] Sossina M. Haile. Fuel cell materials and components. Acta Materialia, 2003, 51(19): 5981~6000
    [97] Alessandro Trovarellik. Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews-Science and Engineering, 1996,38(4):439
    [98]肖莉,林培琰,杨志柏等. Ce-Zr固溶体的纯度及其在三效催化剂中的作用.分子催化,2000,14(2):81~85
    [99] A. Laachir, V. Perrichen, A. Badri, et al. The CO–CeO interaction and its role in the CeO reactivity. J. Chem. Soc., 1991, 87: 299~306
    [100] J. Soria, A. Martínez-Arias, J. C. Conesa, et al. Effect of chlorine impurities on the properties of CeO2. Surface Science Letter,1991, 251~252:372
    [101] Tsutomu Yamaguchi, Norimasa Ikeda, Hideshi Hattori et al. Surface and catalytic properties of cerium oxide. J. Catal. 1981,67: 324~330
    [102] P. Fornasiero, T. Montini, M. Graziani, et al. Effects of thermal pretreatment on the redox behaviour of Ce0.5Zr0.5O2: isotopic and spectroscopic studies. Chem. Phys., 2002, 4:149~159
    [103] Juan R. González-Velasco, Miguel A., et al. Effects of redox thermal treatments and feedstream composition on the activity of Ce/Zr mixed oxides for TWC applications. Appl. Catal. B: Environ., 2001, 25: 19~25
    [104] Christine Bozo, Francois Gaillard, Nolven Guilhaume. Characterisation of ceria–zirconia solid solutions after hydrothermal ageing. Appl. Catal. A:Genral, 2001, 220 : 69~77
    [105] P. Fornasiero, G. Balducci, R. Di Monte. Modification of the Redox Behaviour of CeO2 Induced by Structural Doping with ZrO2. J. Catal., 1996,164: 173~183
    [106] Fornasiero P., Dimonte R., Rao G. R., et al. Rh-Loaded CeO2-ZrO2 Solid-Solutions as Highly Efficient Oxygen Exchangers: Dependence of the Reduction Behavior and the Oxygen Storage Capacity on the Structural-Properties. J. Catal., 1995, 151: 168~177
    [107] M. Ozawa, K. Matuda and S. Suzuki Microstructure and oxygen release properties of catalytic alumina-supported CeO2–ZrO2 powders. J. Alloys. Compounds. 2000, 303-304: 56~69
    [108] H. Vidalk, J. Kaspar, M. Pijolat et al. Redox behavior of CeO2–ZrO2 mixed oxides: I. Influence of redox treatments on high surface area catalysts. Appl. Catal. B: Environ., 2000, 27: 49~63
    [109] Jiang Y, Bhide S V, Virkar A V. Synthesis of nanosize yttria-stabilized zirconia by a molecular decomposition process. J. Solid State Chemistry, 2001,157:149~159
    [110]黄传勇,唐子龙,张中太. ZrO2超细粉合成方法初探.硅酸盐学报,2000,28(5): 465~467
    [111] Dodd A C, Raviprasad K, Mccormick P G. Synthesis of ultrafine zircoma powders by mechanochemical processing. Scripta Mater, 2001, 44:689~694
    [112] Venkatachari K R, Huang D, Ostrander S P, et al. A combustion synthesis process for synthesizing nanocrystalline zirconia powders. Journal of Materials Research, 1995,10(3): 748~755
    [113]王世敏,许祖勋,傅晶.纳米材料制备技术.北京:化学工业出版社,2002
    [114] Nubian K,Saruhan B,Kanka B,et al. Chemical vapor deposition of ZrO2 and C/ZrO2 on mullite fibers for interfaces in mullite/aluminosilicate fiber-reinforced composite. J Eur Ceram Soc,2000,20(5):534~544
    [115] Vladimir V S, Markus W, Horst H. Sintering behavior of nanocrystalline zirconia prepaned by chemical vapor synthesis. J Am Ceram Soc, 2000,83(4):729~736
    [116] Xhang W, Skandan G, Danforth S C, et al. Chemical vapor processing and applications for nanostructured ceramic powers and whiskers.Nanostruct mater, 1994,4(5):507~515
    [117] Matsui K, Ohgai M. Formation mechanism of hydrous-zirconia particles produced by hydrolysis of ZrOCl2 Solutions. J Am Ceram Soc, 1997, 80(8):1949~1956
    [118] Matsui K, Ohgai M. Formation mechanism of hydrous-zirconia particles produced by hydrolysis of ZrOCl2 Solutions: II. J Am Ceram Soc, 2Q01,83(6):1386~1392
    [119] Matsui K, Ohgai M. Formation mechanism of hydrous-zirconia particles produced by hydrolysis of ZrOCl2 Solutions: III, Kinetics study for the nucleation and crystal-growth process of primary particles. J Am Ceram Soc, 2001,84(10):2303~2312
    [120] HuT, Michael Z C. Nanocrystallization and phase transformation in monodispersedultrafine zirconia particles from various homogeneous precipitation methods. J Am Ceram Soc, 1999, 82(9):2313~2320
    [121] Weihua Yao, Zilong Tang, Zhongtai Zhang, et al. Preparation of 8 mol% yttria-stabilized zirconia by an oil flotation-assisted chemical coprecipitation route. Materials Letters, 2002, 57(2):502~506
    [122] Michael Z, Andrew Payzant E, Charles Byers H. Sol-Gel and Ultrafine Particle Formation Via Dielectric Luning of Inorganic Salt-Alcohol-Waters solutions. Journal of Col-loid and Interface Science 2000,222:20~36
    [123] Chih-Wei Kuo, Yueh-Hsun Lee, Kuan-Zong Fung, et al. Effect of Y2O3 addition on the phase transition and growth of YSZ nanocrystallites prepared by a sol–gel process. Journal of Non-Crystalline Solids, 2005,351( 4),: 304~311
    [124] Robert Piticescu, Claude Monty, Donats Millers. Hydrothermal synthesis of nanostructured zirconia materials: Present state and future prospects.Sensors and Actuators B: Chemical, 2005,109(1): 102~106
    [125] Hee-Jin Noh, Dong-Seok Seo, Hwan Kim, et al. Synthesis and crystallization of anisotropic shaped ZrO2 nanocrystalline powders by hydrothermal process. Materials Letters, 2003, 57(16-17): 2425~2431
    [126]彭冉冉,夏长荣,杨蔚光等.纳米级钇稳定氧化锆的制备与电性能表征.中国科学技术大学学报,2001,31(2):218~222
    [127]马天,黄勇,杨金龙等.纳米微乳液法制备球形氧化锆粉体及其致密化行为.稀有金属材料与工程,2004,33(11):1127~1131
    [128]尧巍华,唐子龙,罗绍华等.相转移分离法制备氧化钇稳定的氧化锆超细粉末.稀有金属材料与工程,2003,32(8):666~669
    [129]方小龙,杨传芳,陈家铺.湿化学工艺条件对ZrO2(Y2O3)超细颗粒团聚的影响.硅酸盐学报,1998,26(6): 733~741
    [130]杨刚,罗军明,袁永瑞等.共沉淀法制备ZrO2超细复合粉过程中团聚现象的研究.南昌航空工业学院学报,2001, 15(2):15~18
    [131]李玲.表面活性剂与纳米技术.北京:化学工业出版社,2004年02月
    [132] M S Kalszewskl, A H Heuer. Alcohol interaction with Zirconia powders. J Am Ceram Soc. 1990,73(6):1504~1509
    [133]酒金婷,葛钥,张沫戎等.无团聚纳米氧化锆的制备及应用.无机材料学报,2001,16(5):867~871
    [134] Liu A, Nyavor K. Effects of composition and calcination temperature on morpholopy and structure of barium modified zirconia nanoparticles. Mate Sci Engin. 2004. A366(1):66~73
    [135]刘源,钟炳,彭少逸等.超细二氧化锆的制备和表征.物理化学学报,1995, 9(9): 781~784
    [136]刘继富,吴厚政.冷冻干燥法制备MgO-ZrO2超细粉末.硅酸盐学报,1996, 24(1): 105~108
    [137]林振汉,张玲秀,吴亮.喷雾干燥法处理水合氧化锆.中国有色金属学报,2005, 15(7): 1118~1123
    [138]仇海波,高廉,冯楚德等.纳米氧化锆粉体的共沸蒸馏法制备及研究.无机材料学报,1994,9(3):365~370
    [139]蔺玉胜,朱海涛.用不同表面活性剂制备纳米粉体的分析.山东陶瓷,2004, 27(3): 17~20
    [140]张继光.催化剂制备过程技术.北京:中国石化出版社,2004.31
    [141]林健凉,王零森,尹邦跃等. ZrO2纳米复合粉末的制备及表征.硬质合金,2000, 17(1): 13~17
    [142] M S Kalszewskl, A H Heuer. Alcohol interaction with Zirconia powders. J Am Ceram Soc. 1990,73(6):504~509
    [143]余忠民,成晓玲,周立清等.制备条件对纳米二氧化锆粉体粒度影响的探讨.硬质合金,2002, 6(2): 74~77
    [144] R. L. Coble. Sintering crystalline solids. I. intermediate and final state diffusion models, J. Appl. Phys, 1961, 32:787~793
    [145] R. L. Coble. Sintering crystalline solids. II. experimental test of diffusion models in powder compacts, J. Appl. Phys, 1961, 32:793~801
    [146]崔国文,缺陷、扩散与烧结.北京:清华大学出版社,1990年11月
    [147] M. P. Harmei. Use of solid solution additives in ceramic processing, In: W. D. Klngery, ed., Advances in Ceramics. ColumLus, OH, American Ceramic Society, 1985, 10:679
    [148] Man F. Yan. Microstructural control in the processing of electronic ceramics. Materials Science and Engineering, 1981,48(1): 53~72
    [149]果世驹.粉末烧结理论.北京:冶金工业出版社,1998年
    [150]李秀华,袁启明,杨正方等.添加Al2O3的Y-TZP基陶瓷材料研究及其应用前景.硅酸盐通报,2002,21(3):35~39
    [151] Fernando Garzon, Ian Raistrick, Eric Brosha, et al. Dense diffusion barrier limiting current oxygen sensors. Sensors and Actuators B 1998,50:125~130
    [152]刘晓梅,李坤,刘江等.阴极材料的制备及性能.吉林大学自然科学学报,1999,(4):44~46
    [153] Yaguchi, Osamu. Circuit for measuring oxygen concentration. USA, 6290828,September 18, 2001
    [154] Fukaya. Oxygen sensor. USA, Int Automotive Eng. Congress. SAE paper 5393397. 1998.2 8
    [155]李兴虎,张博彦,韩爱民等.加热式氧传感器在点燃式发动机空燃比测量中的应用研究.内燃机学报,2002,2 0( 3):217~220
    [156] Dietz H. Gas-diffusion-controlled solid-electrolyte oxygen sensors. Solid State Ionics, 1982,6(2):175~183
    [157] M. Kleitz, T. Iharade, F. Abraham, et al. Electrode materials for zirconia sensors working at temperatures lower than 500 K. Sensors & Actuators B,1993,13(1-3):27-30
    [158] W.J. Kaiser, E.M. Logothetis, Exhaust gas oxygen sensor based on TiO2 films, SAE Paper 830167, Detroit (1983)
    [159] E. Gibbons, A. Meitzler, L. Foote, et al. Automotive exhaust sensors using titania ceramic, SAE Paper 750224 (1975)
    [160] M.J. Esper, E.M. Logothetis, J.C. Chu. Titania exhaust gas sensor for automotive applications, SAE Spec. Publ. SP-441 (1979) 19–27, Automot. Sens.
    [161] N.Guillet, R.Lalauze, J.P. Viricelle, et al. Development of a gas sensor by thick film technology for automotive applications:choice of materials—realization of a prototype, Mater.Sci.Eng. C 2002(21): 97~103
    [162] G. Hoetzel, H. Neumann, J. Riegel, et al. Exhaust gas sensors with catalytic electrodes, German patent DE 4408504 A1 950921,1995
    [163] Z. Lukacs, M. Sinz, G. Staikov, et al. Electrochemical investigations of a carbon monoxide-oxygen sensor, Solid State Ionics, 1994,68: 93~98
    [164] S. Matsumoto, H. Miura, K. Uchida, et al. Oxygen sensor and manufacturing method thereof, US Patent 4,096,048 ,1978
    [165] T.M. Gur, R.A. Huggins, Oxygen sensor, US Patent 5,827,415, 1998
    [166] H. Kaneko, T. Okamura, H. Taimatsu. Characterization of zirconia oxygen sensors with a molten internal reference for low-temperature operation, Sens. Actuators B, 2003(93):205~208
    [167] Kaspar J, Fornasiero P. Structural properties and thermal stability of ceria-zirconia and related materials. Catalytic Science Series, 2002,2:217~223
    [168]胡玉才,冯长根,王丽琼等.新一代三效催化剂的关键材料CexZr1-xO2固溶体研究进展.环境科学与技术,2002,25(4):42~45
    [169] Tanaka, Mari Yamamoto. Improvement in oxygen storage capacity. SAE Technical Paper 960794
    [170]何洪,戴宏兴,李佩恒等. Ce0.6Zr0.35Y0.05O2和Pr0.6Zr0.035Y0.05O2固溶体的氧存能力及氧化还原性能和研究.中国稀土学报,2002,20(专辑):43~46
    [171] Suda A, Sobukaw a H, Suzuki T, et al. Synthesis of Ceria-Zirconia solid solution and its performance as catalytic promoter. R&D Review of Toyota CRDL(inJap.), 1998,33(37):3~9
    [172]李黎明. ANSYS有限元分析实用教程.北京:清华大学出版社,2005. 297~321
    [173]张朝晖. ANSYS 8.0热分析教程与实例解析.北京:中国铁道出版社,2005. 9~15
    [174] Richard Eugene Fouts, Grand Blanc, et al. Method for making a wide range sensor element. US Patent 6,572,747 , Jun.3,2003
    [175] Pike A C, Gardner J W. Thermal Modeling of Micro power Chemo resistive Silicon Sensors. Sensors and Actuators B,1997 (45):19~26
    [176] R.M. Jones. Mechanics of Composite Materials, Scripta Book Company, Washington DC, 1975
    [177] J.R. Vinson, R.L. Sierakowski. The Behavior of Structures Composed of Composite Materials, Martinus Nijhoff Publishers, Boston, MA, 1987
    [178] W.A. La Pierre, B.M. Jones. Electrical and Electronics Engineering, 8th edition, in: T. Baumeister, E.A. Avallone,T. III Baumeister (Eds.), Mark's Standard Handbook for Mechanical Engineers, Section 15, McGraw-Hills, New York, 1982

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700