低温烧结BST陶瓷的粉体制备及介电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛酸锶钡(Ba1-xSrxTiO_3,BST)铁电陶瓷具有优异的电学性能,但是其过高的烧结温度(>1300℃)限制了该材料的实际应用。针对该问题,本课题采用改进的草酸盐共沉淀工艺制备了具有高化学活性的BST粉体,并开发了Bi_2O_3-ZnO-Nb_2O_5 (BZN)、B_2O_3-Li_2CO_3 (BL)、B_2O_3-SiO_2–Li_2CO_3 (BSL)三个体系的烧结助剂,研究了三个材料体系的烧结行为和介电特性。探明了作为草酸盐共沉淀方法制备钛酸锶钡粉体前躯体之一的草酸氧钛酸(HTO)溶液的稳定和失稳机理,提出了制备稳定澄清的草酸氧钛酸(HTO)溶液的条件是既要控制pH的波动又要添加定比例的去离子水以抑制[TiO(C_2O_4)_2]_2-的聚合作用。在此基础上通过向锶钡盐溶液中预先添加固定量的氨水以调控pH值,实现了对整个共沉淀反应过程中pH的精确控制,大幅简化了制备工艺,避免了由于反应体系各处的不均匀性带来的扰动,制备出性能优良的BST粉体。该粉体具有微米级的粒径、高的比表面积和规则的类球状软团聚形貌,因而具有良好的流动性和较高的烧结活性,与传统方法制备的BST粉体相比具有较低的烧结温度和较宽的烧结温区。BST-BZN的烧结温度降低到1050℃以下,在烧结后期BZN与BST发生了固溶反应,BST-BZN的居里峰被压低展宽,因而有良好的介电常数-温度稳定性,其αTin为2.93%,αTde为3.78%。但是由于少量Bi~(3+)对Ba~(2+)/Sr~(2+)的取代、晶粒的细化、晶界相比例增多等原因导致了BST-BZN可调率降低,1kV/mm的偏场作用下其可调率只有0.15%。B_2O_3-Li2O烧结助剂能够显著降低BST的烧结温度,与所制备的BST粉体匹配性良好,当添加2.32wt%Li_2CO_3-0.68wt%B_2O_3时,BST的烧结温度降低到850℃。部分B~(3+)和Li+进入BST的晶格导致BST的XRD衍射峰向高角度略微偏移。由于B_2O_3-Li2O的添加量少,BST-BL具有较高的偏场可调性,在1kV/mm的外加偏场下,样品的可调率在15%以上。相对于BST-BL体系,添加SiO_2后,BST-BSL的烧结温度升高。B_2O_3-SiO_2–Li_2CO_3在烧结过程中与BST主晶相发生了复杂的化学反应,因此造成了液相性质的改变,在不同温度保温,残留于晶界的第二相种类不同。由于该BST粉体的显著优点, BST-BSL可以在较宽的温区内实现致密烧结,从而实现对BST晶粒尺寸的控制。B_2O_3-SiO_2–Li_2CO_3的添加大幅改善了BST的介电常数温度稳定性,但是非铁电第二相对BST铁电性的‘稀释作用’使BST-BSL的可调率降低,BST-BSL样品在1kV/mm外加偏场下的可调率在5%以上。
Barium Strontium Titanate (Ba1-xSrxTiO_3,BST) ferroelectric materials have excellent electrical properties. Pure BST and BST-based materials are commonly sintered at >1350°C, which is too high for using silver electrodes and co-firing with LTCC multilayer modules (850-900°C). In this paper, Ba0.6Sr0.4TiO_3 powders with high activity by modified oxalate co-precipitation method were chosen as a basic ferroelectric BST ceramic. The different combination of Bi2O3-ZnO-Nb2O5, B_2O_3-Li_2CO_3 and B_2O_3-SiO_2–Li_2CO_3 were tested as sintering aids. The stabilization mechanism of [H2TiO(C2O4)2] (HTO) was studied. In order to obtain clear HTO solution, the disturbance of pH value must be avoided and proper quantities of H2O must be added to inhibit the polymerization of [TiO(C2O4)2]2-. Through adding quantitative ammonia into a precursor solution containing stoichiometric quantities of Ba and Sr ions before the co-precipitation procedure, a simple oxalate co-precipitation method based one-step cation-exchange reaction between the stoichiometric solutions of oxalotitanic acid (H2TiO(C2O4)2:HTO) and barium+strontium nitrate is investigated successfully for the quantitative precipitation of barium–strontium titanyl oxalate (Ba0.6Sr0.4TiO(C2O4)2·4H2O:BSTO) precursor powders. The pyrolysis of BSTO produced the homogeneous barium–strontium titanate (Ba0.6Sr0.4TiO_3: BST) powders. The BST powders were micron-sized with regular near-spherical aggregate structure. The BST powders possess high fluidity as well as high specific surface area of 18.52g/m2 and thus can be sintered at rather lower sintering temperature and broader temperature range. The BST-BZN samples can be sintered at 1050℃. Also the Curie peak was suppressed and broadened withαTin of 2.93% andαTde of 3.78% in the range of -40-80℃. However, the tunability was only 0.15% when a DC field of 1kV/mm was installed (measured at 1MHz). It can be explained considering the substitution of Bi~(3+) to Ba~(2+)/Sr~(2+), the decrease of BST grain size and the increase of grain boundary. B_2O_3-Li_2CO_3 effectively decreased the sintering temperature of BST. The BST with 2.32wt%Li_2CO_3-0.68wt%B_2O_3 can be sintered at as low as 850°C. Some B~(3+) and Li+ enter the BST crystal lattice. The tunability of BST-BL samples was over 15% when a DC field of 1kV/mm was installed (measured at 1MHz). BST-BSL can be sintered at relatively higher temperature and broader temperature range. And thus the grain size of BST can be adjusted easily by altering the sintering temperature. The change of liquid property during the sintering process was due to the complex chemical reaction between B_2O_3-SiO_2–Li_2CO_3 and BST. The permittivity-temperature character of BST-BSL was improved while the tunability was decreased. The tunability of BST-BSL samples was over 5% when a DC field of 1kV/mm was installed (measured at 1MHz).
引文
[1]钟维烈.铁电体物理学,北京:科学出版社, 1996: 1-5.
    [2]肖定全,王民.晶体物理学,成都:四川大学出版社, 1989: 61-65.
    [3] R. P?zik, D. Hreniak, W. Str?k, A. Speghini, M. Bettinelli. Structural and luminescence properties of Eu~(3+) doped BaxSr1?xTiO_3 (BST) nanocrystalline powders prepared by different methods. Optical Materials, 2006, 28(11): 1284-1288.
    [4] I.S. Zheludev. Solid State Physics, edited by H.Ehrenreich, F.Seitz, and D.Turnbull, Academic Press, New York, 1971, 26: 429-464.
    [5] J.Valasek. Piezo-electric and allied phenomena inrochelle salt, Phys.Rev., 1920, 15: 537-539.
    [6] G.Busch. New dielectrics of the Rochelle salt type, Helv. Phys. Acta, 1938, 11: 269-298.
    [7] B.Wul and I .M. Goldman.,Dielectric constant of barium titanate as a function of strength of an alternating field, C.R. Acad. Sci. URSS.,1945,46:139-142.
    [8] L.D. Landau, E.M. Lifshitz. Statistical Physics, 3rded. Part1, Peprtan Press, Oxford 1980: 42-66.
    [9] V.Dvorak, Improper ferroelectrics, Ferroelectrics, 1974, 7(1-4): 1-9.
    [10] K.Aizu. Possible Species of Ferromagnetic, Ferroelectric, and Ferroelastic Crystals, Phys. Rev.,B2, 1970, 3(2):754-772.
    [11] T.Mitsui, I.Tatsuzaki, E.Nakamura. An Introduction to the Physics of Ferroelectrics, Gordon and Breach, New York, 1976
    [12] W.Cochran. Crystal stability and the theory of ferroelectricity: Piezoelectric crystals, Adv.Phys, 1960, 9: 387-423.
    [13] N.S. Gills.Phase transitions in a simple model ferroelectric. I I. Comments on the self-consistent phonon approximationv, Phys. Rev.B,1975, 11: 309-317
    [14] S.J.Aubry. A unified approach to the interpretation of displacive and Order - disorder systems. I. Thermodynamical aspect, J.Chem.Phys.,1975, 62 (8): 3217- 3229.
    [15] S.Stamenkovic, N.M. Plakide, V.L. Aksienov, T .Siklos.Toward Description of Universal Critical Behaviour of Structural Phase Transition,F erroelectrics,1981,35: 258-259.
    [16] J.B. Bersuker, B .G. Ve khter. Ferroelectrics, 1978, 19: 137-140.
    [17] Zhang L, Zhong W L. Order-disorder model in ferroelectrics [J]. Phys. Lett., 1999: A260-279.
    [18] I.A. Souza, M.F.C. Gurgel, L.P.S. Santos, M.S. Góes, S. Cava, M. Cilense, I.L.V. Rosa, C.O. Paiva-Santos, E. Longo. Theoretical and experimental study of disordered Ba0.45Sr0.55TiO_3 photoluminescence at room temperature. Chemical Physics, 2006, 322(3): 343-348.
    [19] R.Resta, M.Postemak, A.Baldereschi. Towards a quantum theory of polarization in ferroelectrics: The case of KNbO3, Phys.Rev.Lett, 1993, 70 (7-15): 1010-1013.
    [20] K.Parlinski. First-principle calculations of structure, lattice dynamics and phase transitions, ferroelectrics, 2002, 267: 175-179.
    [21] K.Uchino, E.Sadanaga, T.Hirose. Dependence of the Crystal Structure on Particle Size in BariumTitanate, J .Am.Ceram.Soc.,1989, 72(8):1555-1558.
    [22] W .L. Zhong, P .L. Zhang, Y.G.Wang, T .L. Ren. Phenomenological study of the size effect on phase transitions in ferroelectric particles, Ferroelectrics, 1994, 50(2): 698-703.
    [23] S.B. Ren, C.J.Lu, H.M. Shen, Y.N. Wang. In situ study of the evolution of domain Structure in free-standing polycrystalline PbTiO_3 thin films under external stress, Phys. Rev. Lett, 1997, 55: 3485-3489.
    [24] H.Z .Jin,J .Zhu. Size effect and fatigue mechanism in ferroelectric thin films, J. Appl. Phys., 2002, 92(8): 4594-4599.
    [25] E.P.Pozhidaev, D.Ganzke, V.Y.Zyryanov, et al. Comparative analysis of basic physical properties of a ferroelectric liquid crystal and a polymer dispersed ferroelectric liquid crystal, Liq. Cryst, 2002, 29(10): 1305-1310.
    [26] H.Fujikake, T.Murashige, H.Sato, et al. Anchoring strength of thin aligned-polymer films formed by liquid crystalline monomer, Jpn. J. Appl. Phys., 2003, 42: 1614-1617.
    [27] T.J.Reece, S.Ducharme, A.V.Sorokin, et al. Nonvolatile memory element based on a ferroelectric polymer Langmuir-Blodgett film, Appl. Phys.Lett., 2003, 82(1): 142-144.
    [28] J.F.Scott, C.A. Paz de Araujo. Ferroelectric memories, Science, 1989, 246(4936): 1400-1405.
    [29] C.A.Paz de Araujo. Ferroelectricity News Letter, 1994, 2(1):2-6.
    [30] S.Abadei. Microwave Dielectric Properties of Metal-Ferroelectric-Oxide-Semiconductor Structure, Integr. Ferroelectr., 2002, 49: 133-140.
    [31]柯林.微波工程基础.北京:人民邮电出版社,1981: 2-7.
    [32]张绪礼,王筱珍,汤清华.微波介质陶瓷材料与器件.电子科技导报, 1997, 6: 23-29.
    [33]李言荣,恽正中.电子材料导论.北京:清华大学出版社, 2001: 75-89.
    [34]顾瑞龙.微波技术与天线.北京:国防工业出版社, 1980: 10-21.
    [35]何进,杨传仁.微波介质陶瓷材料综述.电子元件与材料, 1995, 2: 7-13.
    [36]姚中兴,黄立伟.微波技术与天线.西安:西安电子科技大学出版社, 1993: 46-48.
    [37] A. Babcock, S. G .Balster, A. Pinto, C. Dirnecker,P. Steinmann,R. Jumpertz, B. El-Kareh, IEEE Electron Device Lett., 2001, 22: 230-234.
    [38] R. Ubic, I.M.Reaney, W. E.Lee, International materials Reviews, 1998, 43:205-209.
    [39] J.Takahashi, H.Nakano, K.Kageyama. Fabrication and dielectric properties of barium titanate-based glass ceramics for tunable microwave LTCC application Journal of the European Ceramic Society, 2006, 26: 2123-2127.
    [40] V. K. Varadan, K. A. Jose, V. V. Varadan, R. Hughes, F. J. Relly, A novel microwave planar phase shifter, Microwave J. 1995: 244-254.
    [41] J.Kwo, M.Hong, A.R Kortan, K.T.Queeney, Y.J.Chabal, J. P Mannaerts,T Boone, J.Krajewski, A.M .Sergent, J.M .Rosamilia, Appl.Phys.Lett., 2000, 77: 130-135.
    [42] P.C.Joshi, S.B.Krupanidhi, J. Appl.Phys., 1993, 73: 7627-7633.
    [43] A.E.Rakhshani, J. Appl.Phys, 1991, 69: 2365-2370.
    [44] P.K.Davies, J. Tong, T. Negas, J. Am. Ceram. Soc., 1997, 80: 1727-1733.
    [45] Hirotaka Ogawa, Atsushi Yokoi, Ryosuke Umemura, Akinori Kan. Microwave dielectric properties of Mg3(VO4)2–xBa3(VO4)2 ceramics for LTCC with near zero temperature coefficient of resonant frequency, Journal of the European Ceramic Society, 2007, 27: 3099-3104.
    [46] Sharpe C B, Brockus G G, Investigations of Microwave Properties of Ferroelectric Materials. University of Michigan Research Institute, Report No.2732-4-F, 1959.
    [47] D.A. Johnson. Microwave Properties of Ceramic Nonlinear Dielectrics. ML Report, No.825, Microwave Laboratory, Standford University, Standford, CA,1961.
    [48] G. Harrison, L. Lavedan, M. Denaldson. Microwave Ferroelectric Phase Shifters and Switches. Final Report, Army Contract No. DA 36-039-AMC-0240(E), 1965.
    [49] V.K. Varadan, D.K. Ghodgaonkar, V.V. Varadan. Ceramic phase shifter for electronically steerable antenna system. Microwave Journal, 1992, 34(1): 116-125.
    [50] Babbit R.W., Koscica T.E., Darch W.C. Planar Microwave electro-optic phase shifters. Microwave J., 1992, (6): 63-79.
    [51] Zhao Chen, Huang Xinyou, Guan Hao, Gao Chunhua. Effect of Y2O3 and Dy2O3 on Dielectric Properties of Ba0.7 Sr0.3 TiO_3 Series Capacitor Ceramics. Journal of Rare Earths, 2007, 25(s2): 197-200.
    [52] Sung-Gap Lee,Chang Kim, Jeong-Phil Kim, Dielectric Properties of BSCT Thick Films for Microwave Device Applications,Journal of the Korean Physical Society, 2003, 42(4): 532-537.
    [53] Rong Wu, Piyi Du, Wenjian Weng, Gaorong Han,The structures and dielectric properties of Ba0.80Sr0.20TiO_3/Pb0.82La0.18TiO_3 composite thick films with addition of PbO-B_2O_3 glass, Journal of the European Ceramic Society 2006, 26: 1611-1617.
    [54] J.Takahashi, K.Kageyama, H.Nakano. Cation Substitution for BaTiO_3 Phase in Low-Fired Glass-Ceramics for Tunable Microwave Applications, Japanese Journal of Applied Physics, 2005, 44(9B): 7089-7093.
    [55] J.S. Park, T.S. Oh, Y.H. Kim, Effects of A-site Sr and B-site Ca substitu-tion on the dielectric properties of BaTiO_3 ceramics, J. Kor. Ceram. Soc. 1991, 38: 689-695.
    [56] Wei Qin, Wenbiao Wu, Jinrong Cheng, Calcium-doping for enhanced temperature stability of (Ba0.6Sr0.4)1?xCaxTiO_3 thin film dielectric properties. Materials Letters. 2007, 61: 5161-5163.
    [57] Sining Yuna, Xiaoli Wang. Dielectric properties Ca-substituted barium strontium titanate ferroelectric ceramics. Solid State Communications. 2007, 143: 461-465.
    [58] A. Ioachim, H.V. Alexandru, C. Berbecaru, S. Antohe, F. Stanculescu, M.G. Banciu, M.I. Toacsen, L. Nedelcu, D. Ghetu, A. Dutu, G. Stoica. Dopant influence on BST ferroelectric solid solutions family. Materials Science and Engineering: C, 2006, 26(5-7): 1156-1161.
    [59] Shanming Ke, Huiqing Fan, Wei Wang, Gangcheng Jiao, Haitao Huang, H.L.W. Chan. MgTiO_3 doping effect on dielectric properties of Ba0.6Sr0.4TiO_3 ceramics viaa molten salt process. Composites Part A: Applied Science and Manufacturing, 2008, 39(4): 597-601.
    [60] A. Ioachim, R. Ramer, M.I. Toacsan, M.G. Banciu, L. Nedelcu, C.A. Dutu, F. Vasiliu, H.V. Alexandru, C. Berbecaru, G. Stoica, P. Nita. Ferroelectric ceramics based on the BaO-SrO-TiO2 ternary system for microwave applications. Journal of the European Ceramic Society, 2007, 27(2-3): 1177-1180.
    [61] Jeong-Ryeol Kim, Dong-Wan Kim, In-Sun Cho, Byoung Soo Kim, Jae-sul An, Kug Sun Hong. Low temperature sintering and microwave dielectric properties of Ba3Ti5Nb6O28 with ZnO-B_2O_3 glass additions for LTCC applications. Journal of the European Ceramic Society, 2007, 27: 3075-3079.
    [62] E.A. Nenasheva, N.F. Kartenko, O.N. Trubitsina, V.F. Matveichuk, S.N. Sibirtsev, I.M. Gaidamaka. Tunability and microwave dielectric properties of BaO-SrO-Nd2O3-TiO2 ceramics. Journal of the European Ceramic Society, 2007, 27: 2845-2848.
    [63] Di Wu, Aidong Li, Huiqin Ling, et al.Preparation of (Ba0.5Sr0.5)TiO_3 thin films by sol-gel method with rapid thermal annealing[J]. Applied Surface Sci. 2000,165: 309-331.
    [64]薛卫东,李言荣.钛酸锶钡精细结构的理论计算.原子与分子物理学报, 2000, 4(sup): 383-385.
    [65] Mingli Li, Mingxia Xu, Hui Liang, Xiaolei Li, Tingxian Xu. Preparation and Dielectric Properties of Mn-Doped Ba0.6Sr0.4TiO_3-MgTiO_3 Composite Ceramics. Acta Physico-Chimica Sinica, 2008, 24(8): 1405-1410.
    [66] C. Berbecaru, H.V. Alexandru, C. Porosnicu, A. Velea, A. Ioachim, L. Nedelcu, M. Toacsan. Ceramic materials Ba(1 ? x)SrxTiO_3 for electronics-Synthesis and characterization. Thin Solid Films, 2008, 516 (22): 8210-8214.
    [67] T. Tick, J. Per?ntie, H. Jantunen, A. Uusim?ki. Screen printed low-sintering-temperature barium strontium titanate (BST) thick films. Journal of the European Ceramic Society, 2008, 28(4): 837-842.
    [68] Tao Hu, Jari Juuti, Heli Jantunen, Taisto Vilkman. Dielectric properties of BST/polymer composite. Journal of the European Ceramic Society, 2007, 27(13-15): 3997-4001.
    [69] Wuxing Zhang, Lihong Xue, Xuecheng Zhou, Debao Sun, Sheng Yin. Fabrication of patterned Ba0.71Sr0.29TiO_3 thick film on Si substrate by tape casting method. Journal of the European Ceramic Society, 2006, 26(13): 2793-2798.
    [70] Yongping Ding, Zhongyan Meng. The orderd micro-domain in BaSrTiO_3 thin films and its effect on phase transition. Journal of Materials Science Letters, 2000, 19: 163-165.
    [71] Zhou Liqin, Vilarinho P M, Baptista J L. Dependence of the structural and dielectric properties of Ba1-xSrxTiO_3 ceramic solid solutions on raw material processing[J]. Journal of the European Ceramic Society, 1999, 19: 2015-2020.
    [72] Sengupta, et al. Ceramic ferroelectric composite material-BSTO-ZrO2[P]. US Patent: #5486491, 1996-1-23.
    [73]殷之文,电介质物理学[M].北京:科学出版社, 2003: 307-493.
    [74] A. F. Devonshire, Theory of Barium Titanate, Philosophical Magazine, 1949, 40: 1040-1063.
    [75] A. F. Devonshire, Thermodynamic Model of Ferroeletrics, Advances in Physics, 1954, 85: 3-8.
    [76] J. W. Liou, B. S. Chiou, Analysis of the dielectric characteristics for polycrystalline Ba0.65Sr0.35TiO_3 frequency dependence in the paraelectric state, J. Mater. Sci. Mater. Electron. 2000, 11: 637-644.
    [77] T. Hu, H. Jantunen, A. Uusimaki, S. Leppavuori, S. Gevorgian, Electric-Field-Controlled Permittivity Ferroelectric Composition for Microwave LTCC Modules. J. Ceram. Soc., 2004, 87(4): 578-583.
    [78] P Ayyub, V R Palkar, S Chattopadhyay. Effect of crystal size reduction on lattice symmetry and cooperative. Physical Review B: Condensed Matter, 1995, 51: 6135-6120.
    [79] S. Chattopadhyay, P. Ayyub, V. R. Palkar. Finite-size effects in antiferroelectric PbZrO3 nanoparticles. J. Phys.: Condens. Matter, 1997, 9: 8135-8140.
    [80] J. M. Siqueiros, J Portelles, S Garcia. Study by hysteresis measurements of the influence of grain size on the dielectric properties of ceramics of the Sr0.40Ba0.60TiO_3 type prepared under different sintering conditions. Solid State Communications, 1999, 112: 189-194.
    [81] L Zhang, W L Zhong, Y G Wang. Dielectric properties of Ba0.7Sr0.3TiO_3 ceramics with different grain size. Phys. Status Solidi (A), 1998, 168: 325~330.
    [82]杨文,常爱民,杨邦朝.晶粒尺寸对Ba0.80Sr0.20TiO_3陶瓷介电铁电特性的影响.硅酸盐学报, 2002, 30(3): 390-394.
    [83] J. W. Liou, B. S. Chiou, DC field dependence of the dielectric characteristics of doped Ba0.65Sr0.35TiO_3 with various grain sizes in the paraelectric state, Jpn. J.Appl. Phys. 1997, 36 (7A): 4359-4363.
    [84] Wilber, William D. Apparatus and method for reducing the temperature sensitivity of ferroelectric microwave devices. U.S. Patent , #6160524, 2000-12-12.
    [85]慧春,徐爱兰,高顺华.一种用于相控点阵天线的新型钛酸锶钡电光移相器.西安电子科技大学学报, 1999, 26(4): 514-519.
    [86] I.A. Souza, A.Z. Sim?es, E. Longo, J.A. Varela. Synthesis of Ba0.5Sr0.5(Ti0.80Sn0.20)O3 prepared by the soft chemical method. Materials Letters, 2007, 61(19-20): 4086-4089.
    [87] S. Kongtaweelert, D.C. Sinclair, S. Panichphant. Phase and morphology investigation of BaxSr1?xTiO_3 (x = 0.6, 0.7 and 0.8) powders. Current Applied Physics, 2006, 6(3): 474-477.
    [88] Khollam Y B,Deshpande S B,Potdar,H S,et al. Simple oxalate precursor route for the preparation of barium-strontium titanate:Ba1-xSrxTiO_3 powder. Material Characterization, 2005, 54(1): 63-74.
    [89]张红芳,姚熹,张良莹.改进的sol-gel工艺制备细晶Ba0.6Sr0.4TiO_3陶瓷及其介电性能的研究.功能材料, 2006, 2(37): 210-212.
    [90]苗鸿雁,周耀辉,朱刚强.钛酸锶钡压电陶瓷超细粉体的水热法合成.无机盐工业, 2005, 37(5): 15-17.
    [91] Brankovic G, Brankovic Z, Goes M S, et al. Barium strontium titanate powders prepared by spray pyrolysis. Materials Science and Engineering, 2005, 122(2): 140-144.
    [92]张五星,薛丽红,邹雪城,等.溶胶-沉淀法制备钛酸锶钡粉末及其水热处理.功能材料与器件学报, 2005, 11(1): 47-52.
    [93] Deshpande S B, Khollam Y B, Bhoraskar S V. Synthesis and characterization of microwave-hydrothermally derived Ba1-xSrxTiO_3 powders. Materials Letters, 2005, 59(2-3): 293-296.
    [94] F. Paul, J.R. Binder, H. Gesswein, H.-J. Ritzhaupt-Kleissl, J. Hausselt. Synthesis of doped Ba0.6Sr0.4TiO_3 ceramic powder via a sol-freeze-granulation and freeze-drying process. Ceramics International, 2008, In Press, Available online.
    [95] Chaoliang Mao, Genshui Wang, Xianlin Dong, Zhiyong Zhou, Yuanyuan Zhang. Low temperature synthesis of Ba0.70Sr0.30TiO_3 powders by the molten-salt method. Materials Chemistry and Physics, 2007, 106(2-3): 164-167.
    [96] Chaoliang Mao, Xianlin Dong, Tao Zeng, Genshui Wang, Si Chen. Formation andcontrol of mechanism for the preparation of ultra-fine barium strontium titanate powders by the citrate precursor method. Materials Research Bulletin, 2007, 42(9): 1602-1610.
    [97] Chaoliang Mao, Xianlin Dong, Tao Zeng. Synthesis and characterization of nanocrystalline barium strontium titanate powders prepared by citrate precursor method. Materials Letters, 2007, 61(8-9): 1633-1636.
    [98] Clabaugh W S, Swiggard E M, et al. Preparation of barium titanyl oxalate tetrahydrate for conversion to barium titanate of high purity. J. Res (NBS). 1956, 56: 289-291.
    [99]张立德,超微粉体制备与应用技术,中国石化出版社, 2001: 139-140.
    [100]曾瑞文,吴贵岚.高纯微细钛酸锶钡固溶体的研制.江西化工, 2003(3): 85-89.
    [101]沈志刚,陈建峰,刘方涛,等.直接沉淀法合成(Ba1-xSrx)TiO_3结构与介电特性.功能材料, 2003, 34: 556-558.
    [102] Selvam I P, Ashita P A.Novel Synthesis of Nanocrystalline (Ba1?xSrx)TiO_3. Ferroelectrics, 2005, 324: 31-35.
    [103] Selvam I P, Kumar V. Synthesis of nanopowders of (Ba1-xSrx)TiO_3. Materials Letters, 2002, 56 (6): 1089-1092.
    [104]许涛,黄志良,刘羽,等. Ba1-xSrxTiO_3固溶体粉的均相直接合成与表征.武汉化工学院学报, 2005, 27(5): 30-32.
    [105] Khollam Y B, Bhoraskar S V, Deshpande S B, et al. Simple chemical route for the quantitative precipitation of barium-strontium titanyl oxalate precursor leading to Ba1-xSrxTiO_3 powder. Materials Letters, 2003, 57(13-14): 1871-1879.
    [106] Khollam Y B, Potdar H S, Deshpande S B,et al. Synthesis of star shaped Ba1?xSrxTiO_3 (BST) powders. Materials Chemistry and Physics, 2006, 97(2-3): 295-300.
    [107] Suasmoro S, Pratapa S, Hartanto D, et al. The characterization of mixed titanate Ba1-xSrxTiO_3 phase formation from oxalate coprecipitated precursor. Journal of the European Ceramic Society, 2000, 20(3): 309 ~314.
    [108] Potdar HS, Deshpande SB, Deshpande AS, etal. Simplified chemical route for the synthesis of barium titanyl oxalate (BTO). Int. J. Inorg. Mater., 2001, 3: 613-623.
    [109]刘江华,章天金,张柏顺,等. Sol-Gel方法制备BST粉体的化学机理和晶化过程研究.湖北大学学报, 2004, 26(3): 222-225.
    [110]杨文,常爱民.纳米(Ba,Sr)TiO_3粉体材料的制备.中国粉体技术, 2002, 8(2): 22-24.
    [111]李桂英,余萍,莫言袆,等. Sol-Gel法制备钛酸锶钡(BST)粉体.化学研究与应用, 2003, 15(6): 819-820.
    [112]付兴华,侯宪钦,周丽玮,等. Sr1-xBaxTiO_3超细微粉的溶胶-凝胶制备与表征.硅酸盐通报, 2003, 22(1): 3-7.
    [113]刘茜,沈彩,刘庆峰.中国专利, #03150835.9, 2004-08-25.
    [114]王应民,陈志坚.溶胶凝胶法制备PTCR材料(Ba,Sr)TiO_3粉体.江西科学, 2003, 21(1): 34-36.
    [115] Bin Cui, Pengfei Yu, Xue Wang. Preparation and characterization of BaTiO_3 powders and ceramics by sol-gel process using decanedioic acid. Journal of Alloys and Compounds, 2008, 459(1-2): 589-593.
    [116] Huang Jiquan, Hong Maochun, Jiang Feilong, Cao Yongge. Synthesis of nanosized perovskite (Ba,Sr)TiO_3 powder via a PVA modified sol-precipitation process. Materials Letters, 2008, 62(15): 2304-2306.
    [117] Chaoliang Mao, Xianlin Dong, Tao Zeng, Heng Chen, Fei Cao. Nonhydrolytic sol-gel synthesis and dielectric properties of ultrafine-grained and homogenized Ba0.70Sr0.30TiO_3. Ceramics International, 2008, 34(1): 45-49.
    [118] James O, Eckert Jr, Catherine C, et a1. J Am Ceram Soc, 1996, 79(11): 2929-2939.
    [119]杨忠波,常爱民,赵青,等.纳米晶钛酸锶钡(Ba0.5Sr0.5TiO_3)粉体的微波水热合成.材料科学与工程学报, 2006, 24(4): 578-581.
    [120] K.A. Razak, A. Asadov, W. Gao. Properties of BST ceramics prepared by high temperature hydrothermal process. Ceramics International, 2007, 33(8): 1495-1502.
    [121] K.A. Razak, A. Asadov, J. Yoo, E. Haemmerle, W. Gao. Structural and dielectric properties of barium strontium titanate produced by high temperature hydrothermal method. Journal of Alloys and Compounds, 2008, 449(1-2): 19-23.
    [122] R. P?zik, D. Hreniak, W. Str?k. Microwave driven hydrothermal synthesis of Ba1?xSrxTiO_3 nanoparticles. Materials Research Bulletin, 2007, 42(7): 1188-1194.
    [123]贾永忠,景燕,金山.中国专利, #200510041841.8, 2005-10-19.
    [124] Yoshifumi Itoh,Kikuo Okuyama. Preparation of agglomerate-free and highly crystalline (Ba0.5Sr0.5)TiO_3 nanoparticles by salt-assisted spray pyrolysis. Journal of the Ceramic Society of Japan, 2003, 111(11): 815-820.
    [125] D.S. Jung, S.K. Hong, J.S. Cho, Y.C. Kang. Morphologies and crystal structures of nano-sized Ba1?xSrxTiO_3 primary particles prepared by flame spray pyrolysis. Materials Research Bulletin, 2008, 43(7): 1789-1799.
    [126]宿新泰,燕青芝,葛昌纯.低温燃烧合成超细陶瓷微粉的最新研究.化学进展, 2005, 17(3): 430-436.
    [127]罗绍华,唐子龙.粉体的燃烧合成技术及其在钛酸钡粉体制备中的应用.耐火材料, 2003, 37(4): 226-229.
    [128]罗绍华,唐子龙.低温燃烧合成钛酸钡及其陶瓷介电性能研究.硅酸盐学报, 2003, 31(6): 560-565.
    [129]罗绍华,唐子龙.工艺参数对低温燃烧合成钛酸钡粉体的影响.功能材料, 2003, 5(34): 564-568.
    [130] Shaohua Luo, Zilong Tang. Low-temperature combustion synthesis and characterization of nanosized tetragonal barium titanate powders. Microelectronic Engineering, 2003, 66(1-4): 147-152.
    [131]沈彩,刘庆峰,刘茜.柠檬酸-硝酸盐燃烧法制备Ban0.5Sr0.5TiO_3介电材料.无机材料学报, 2004, 19(3): 681-685.
    [132] Cai Shen, Qing-Feng Liu, Qian Liu. Sol-gel synthesis and spark plasma sintering of Ba0.5Sr0.5TiO_3. Materials Letters, 2004, 58 (17-18): 2302-2305.
    [133] A. Bailey, W. Foley, M. Hageman, C. Murry, A. Piloto, K. Zaki, Miniature LTCC filters for digital receivers, IEEE MMT-S Dig., 1997, 2: 999-1002.
    [134] Alex Beiley. Miniature filter for digital reciver. IEEE MTT-S Digest Part, 1992, 2: 999-1002.
    [135] T. Tick,J. Per?ntie, S. Rentsch, Co-sintering of barium strontium titanate (BST) thick films inside a LTCC substrate with pressure-assisted sintering, Journal of the European Ceramic Society, 2008, 28(14): 2765-2769.
    [136] M.R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Lagunac, et al. Overview of low temperature co-fired ceramics tape technology formeso-system technology. Sensors and Actuators, 2001, A89: 222-241.
    [137] A. Bittner, U. Schmid. The porosification of fired LTCC substrates by applying a wet chemical etching procedure. Journal of the European Ceramic Society, 2009, 29(1): 99-104.
    [138] Seong Jim Hwang. Glass (La2O3-B_2O_3-TiO2) and ceramic (BaNd2Ti5O14) matrix composites for low thmperature co-fired ceramics (LTCC). Journal of ceramics, 2005, 26(2): 87-90.
    [139] Matjaz Valant,Danlo Suvorov . Low-temperature sintering of (Ba0.6Sr0.4)TiO_3.J Am Ceram Soc, 2004, 87(7): l222-1226.
    [140] B. R. Priya Rani, M. T. Sebastian. The effect of glass addition on the dielectric properties of barium strontium titanate. J Mater Sci: Mater Electron, 2007, DOI 10.1007/s10854-007-9224-6.
    [141] J. Takahashi, H. Nakanoa, K. Kageyama. Fabrication and dielectric properties of barium titanate-based glass ceramics for tunable microwave LTCC application. Journal of the European Ceramic Society, 2006, 26: 2123-2127.
    [142] Glass composition for low temperature bake-processed substrate, contains complex oxides of aluminum, boron, silicon and specific element(s) as basic composition with preset ratio of silica and boric oxide [P]. JP Patent: #JP2004026529-A, 2004.
    [143] Zhai Jiwei, Yao Xi, Cheng xiaogang, Zhang liangying, Chen haydn. Direct-current field dependence of dielectric properties in B_2O_3-SiO_2 glass doped Ba0.6Sr0.4TiO_3 ceramics. Journal of Materials Science, 2002, 37: 3739-3745.
    [144] Bin Wu, Liangying Zhang, Xi Yao. Low temperature sintering of BaxSr1?xTiO_3 glass-ceramic. Ceramics International, 2004, 30: 1757-1761.
    [145] Bin Wu, Liangying Zhang, Xi Yao. The effect of Zn-B-Si-O addition on Ba0.7Sr0.3TiO_3 by sol-gel process. Ceramics International, 2004, 30: 1753-1756.
    [146] Jiangying Wang, Xi Yao, Liangying Zhang. Preparation and dielectric properties of barium strontium titanate glass-ceramics sintered from sol-gel-derived powders. Ceramics International, 2004, 30: 1749-1752.
    [147] Bin Zhang, Xi Yao, Liangying Zhang, Jiwei Zhai. Effect of sintering condition on the dielectric properties of (Ba,Sr)TiO_3 glass-ceramic. Ceramics International, 2004, 30: 1773-1776.
    [148] C.R.K. Mohan, P.K. Bajpai. Effect of sintering optimization on the electrical properties of bulk BaxSr1?xTiO_3 ceramics. Physica B: Condensed Matter, 2008, 403(13-16): 2173-2188.
    [149] Sining Yun, Xiaoli Wang, Delong Xu. Influence of processing parameters on the structure and properties of barium strontium titanate ceramics. Materials Research Bulletin, 2008, 43(8-9): 1989-1995.
    [150] Guo H L,Gao W,Yoo J. The effect of sintering on the properties of Ba0.7Sr0.3TiO_3 ferroelectric films produced by eleetrophoretic deposition. Mater Lett, 2004, 58(7/8): 1387-l 391.
    [151] Se-Ho Kim, Jung-Hyuk Koh,ZnBO-doped (Ba, Sr)TiO_3 ceramics for the low-temperature sintering process,Journal of the European Ceramic Society, 2008, 28(15): 2969-2973.
    [152] S. M. Rhim, S. Hong, H. Bak, O. K. Kim, Effects of B_2O_3 addition on the dielectric and ferroelectric properties of Ba0.7Sr0.3TiO_3 ceramics. J. Am. Ceram. Soc. 2000, 83 (5): 1145-1148.
    [153] Hu T,Jantunen H,Uusimaki A,et a1. Ba0.7Sr0.3TiO_3 powders with B_2O_3 additive prepared by the sol-gel method for use as microwave material. Mater Sci in Semi Proc, 2003, 5: 215-221.
    [154]程华容,朱景川,全在昊,来忠红.残余氧化硼对钛酸锶钡晶胞参数及相变温度的影响.无机材料学报. 2006, 21(3): 619-626.
    [155]姚春华,董显林,一种掺锂钛酸锶钡陶瓷的低温烧结制备方法[P].中国专利: #1587198A, 2005-03-02.
    [156] Hee-Wook You, Jung-Hyuk Koh, Structural and Electrical Properties of Low Temperature Sintered Li_2CO_3 Doped (Ba,Sr)TiO_3. Ceramics Japan Society of Applied Physics, 2006, 45(8A): 6362-6364.
    [157] Hee-Wook You, Sang-Mo Koo, Jae-Geun Ha, Jung-Hyuk Koh, Jae-Yeong Park. Microstructure and dielectric properties of Li_2CO_3 doped 0.7(Ba,Sr)TiO_3-0.3MgO ceramics. Current Applied Physics, 2008, In Press, Available online.
    [158] Tao Hu, Tim J. Price, David M. Iddles, Antti Uusimaki, Heli Jantunen. The effect of Mn on the microstructure and properties of BaSrTiO_3 with B_2O_3-Li_2CO_3. Journal of the European Ceramic Society, 2005, 25: 2531-2535.
    [159] H. Jantunen, T. Hu, A. Uusimaki, S. Leppavuori, Ferroelectric LTCC for multilayer devices. J. Ceram. Soc. Jpn., 112 (suppl. 5) (2004) 1552–1556.
    [160]丑修建,翟继卫,孙建英,姚熹. B_2O_3-Li2O掺杂低温烧结Ba0.6Sr0.4TiO_3陶瓷的介电性能.硅酸盐学报, 2007, 35(2): 149-153.
    [161] Xiujian Chou, Jiwei Zhai, Jianying Sun, Xi Yao. Preparation and dielectric properties of B_2O_3-Li2O doped BaZr0.35Ti0.65O3 ceramics sintered at a low temperature. Ceramics International, 2008, 34(4): 911-915.
    [162] Matjaz Valant, Danilo Suvorov, Robert C. Pullar. A mechanism for low-temperature sintering.Journal of the European Ceramic Society, 2006, 26: 2777-2783.
    [163] L.C.Sengupta, S.Sengupta, Novel ferroelectric materials for phased arrayantennas. IEEE Trans. Ultrasonics,Ferroelectric and Frequency Control., 1997, 44(4): 792-797.
    [164] K.Dongs, C. Yoonsu, G. A. Mark. A wide bandwidth monolithic BST reflection-type phase shifter using a coplanar waveguide lange coupler. IEEE MTT-S Int’MW Symp. Dig., 2002, 3: 1471-1474.
    [165] F.De.Flaviis, N.G. Alexoloulos, O.M.Stafsudd, Planar microwave integrated phase-shift design with high purity ferroelectric material. IEEE Tran. Microwave Theory Tech., 1997, 45(6): 963-969.
    [166] L. H. Chiu, X. B.Zhang, L. Sengupta. Electronically tunable ceramic materials inc1uding tunable dielectric and metal silicate phase [P]. US Patent, #6514895 B1, 2003-02-04.
    [167] I.Vendik, O.Vendik, V. Pleskachev., et al. Tunable microwave filters using ferroelectric materials. IEEE Trans. On Applied Superconductivity, 2003, 13(2): 716-719.
    [168] J.B.L.Rao, D.P Patel, V. Krichevsky. Voltage-Controlled Ferroelectric Lens Phased Arrays. IEEE Trans. Antennas and Propagation., 1999, 47(3): 458-468.
    [169] H. Saito, H. Chazono, H. Kishi, N. Yamaoka, X7R multilayer ceramic capacitors with nickel electrodes, Jpn. J. Appl. Phys. 1991, 30: 2307-2310.
    [170]何伟,焦斌斌,薛惠琼,等.非制冷红外焦平面阵列进展,电子工业专用设备, 2008, 37(5): 18-23.
    [171]邵式平,热释电效应及其应用,北京:兵器工业出版社, 1994: 1-7.
    [172]邵氏平,非制冷红外交平面阵列进展,红外技术,1982, 18(2):1-6.
    [173]曾华荣,瞿翠凤,姚春华,等.溶胶-凝胶法制备BaxSr1-xTiO_3热释电陶瓷材料.无机材料学报, 1999, 2(14): 101-107.
    [174]新田恒治等, National technical report, 1980, 26(3): 433-441.
    [175]郭演仪,郑玉芳,冯宝康.温湿度双功能陶瓷传感器.上海硅酸盐, 1995, 3: 29-32.
    [176] Schrey F. Effect of pH on the chemical preparation of Barium-Strontium titante. J Am Ceram Soc, 1965, 48(8): 401-405.
    [177] Babko A K, Dubovenko L I. Oxalate complexes of titanium (IV). Russ. J. Inorg. Chem. 1959, 4: 165-168.
    [178] M.Stockenhuber, H. Mayer, J.A. Lercher. Preparation of Barium Titanates from Oxalates. Journal of the American Ceramic Society. 1993, 76(5):1185-1190.
    [179] Gopalakrishnamurthy HS, Subba Rao M, Kutty TRN. Thermaldecomposition of titanyl oxalates: I. Barium titanyl oxalate. J. Inorg. Nucl. Chem. 1975, 37: 891-898.
    [180]沈钟,王果庭,胶体与表面化学[M],北京:化学工业出版社, 1991, 316-316.
    [181]沈兴.差热、热重分析与非等温固相反应动力学[M].北京:冶金工业出版社, 1995: 118-120; 131.
    [182] Coats A W, Redfern J P. Nature, 1964, 210: 68-69.
    [183] Arvanitidis I, Du Sichen, Seetharaman S. Metallurgical and Materials Transactions B, 1996, 27B: 409-412.
    [184]陆佩文,无机材料科学基础[M].武汉:武汉工业大学出版社, 1996: 89,287-290.
    [185] Wang X L, Wang H, Yao X. Structure phase transformations and dielectric properties of pyrochlores containing bismuth. Am Ceram Soc, 1997, 80(10): 2745-2748.
    [186] Liu D, Liu Y, Huang S Q, et al. Phase struture and dielectric properties of Bi2O3-ZnO-Nb2O5 based dielectric ceramics. J Am Ceram So, 1993, 76(8): 21-29.
    [187]汪宏,王晓莉,姚熹. Bi2O3-ZnO-Nb2O5三元系统中焦绿石立方结构的研究.硅酸盐学报,1995,23(3):241-246.
    [188] Wang H, Wang X L, Yao X. Phase.Transformation and Phase Distribution of Pyrochlore Structure in Bi2O3-ZnO-Nb2O5 system. IEEE, 1996, 787-790.
    [189]任庆利. Bi2O3-ZnO-Nb2O5系陶瓷介电常数及温度系数的优化.西安交通大学学报,2000,34(8):65-69.
    [190]徐清华,杨同青,乔宏伟.掺钇铌酸锌铋陶瓷的介电性能.硅酸盐学报,2007,35(4): 448-450.
    [191]刘璞凌,丁士华,杨同青等. La替代对Bi2O3-ZnO-Nb2O5陶瓷介电性能的影响.功能材料与器件学报, 2007, 13(1):78-81.
    [192]王茹玉,黄金亮,周焕福等. V2O5掺杂对ZnNb2O6介质陶瓷性能的影响.机械工程材料, 2006, 30(5): 66-68.
    [193]周宗辉,程新,杜丕一等.原位制备钛酸锶钡/铌酸锶钡复相陶瓷的研究.无机化学学报, 2005, 6: 873-878.
    [194]周洪庆,杨春霞,金宇龙,吴洪忠,蒋微波.铋掺杂对BST/MT复相铁电材料介电性能的影响.压电与声光, 2005, 27(6): 668-670.
    [195] Rao J B L, Patel D P. Voltage-controlled ferroelectric lens phased arrays. IEEE Trans on Ant and Propag, l999, 47(3): 458-468.
    [196] K.M.Johnson. Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices. J.Appl.Phys, 1962, 33: 2826-2831.
    [197]李标荣,莫以豪.无机介电材料[M].上海:上海科学技术出版社, 1986: 121-128.
    [198] E. M. Levin, C. R. Robbins, H. F. McMurdie, Phase diagrams for ceramists, Ed. by M. K. Reser, The Am. Ceram. Soc., Inc., Ohio, USA, 1964: 91; 170-170

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700