玉溪大红山铁选矿厂尾矿再选试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国铁矿“贫、细、杂”的这一特点,使得开采出来的绝大多数铁矿石需要细磨选别。但应用传统工艺很难回收部分粒度过细的矿石,导致大量细粒级的有用矿物流失于尾矿。另一方面,随着多年来铁矿资源的开发利用,可供开采的铁矿石日趋减少且难以分选,因此,铁尾矿再选具有非常重要的现实意义。
     本论文以玉溪大红山铁选矿厂铁尾矿为研究对象,该尾矿有价元素为铁,其含量为14.56%,有用矿物以赤铁矿为主,其占矿物总量的10.06%;其次为磁铁矿、磁赤铁矿及菱铁矿,累计占矿物量的2.96%。脉石矿物主要是以石英、长石为主,占矿物总量的48.47%,其次为云母、伊利石、绿泥石、方解石、白云石,累计占矿物总量的11.35%。
     研究结果显示该铁尾矿中细粒含量高,Fe主要是富集于+0.037mm~-0.074 mm、+0.010 mm~-0.019mm、-0.010mm三个级别中,其分布率分别为24.96%、14.14%、36.96%,累计达76.06%。Fe的主要载体矿物粗粒级的单体解离度较低,在+0.074mm级别中,其粒级单体解离率仅为38.00%;至-0.037mm级别,其粒级单体解离率可达到80%以上。
     针对该尾矿性质,本论文对单一磁选流程、单一重选流程、磁-重联合流程进行了试验方案对比,结果表明磁-重联合流程选别指标最好。
     在确定磁-重联合流程的基础上,进行了磁选强度和悬振锥面选矿机参数条件试验,并确定了适合磁选抛尾的磁场强度,磁粗选的磁场强度为0.91T,磁扫选的磁场强度为0.97T;适合处理磁抛尾精矿的悬振锥面选矿机最佳运行参数为:回旋振动频率为385转/分,盘面转动周期为227.5秒/转。在条件试验的基础上进行开路试验,矿石经一粗一扫磁选抛尾后,再分别对磁粗选精矿和磁扫选精矿进行一次重选,获得品位为54.15%、回收率为28.99%的铁精矿和品位为57.31%、回收率为1.00%的铁中矿。
     为进一步提高该细粒铁尾矿的回收率,本试验还进行了磁扫选精矿再选试验研究,把磁扫选精矿与磁粗选精矿重选产出尾矿合并后再进行重选试验,获得了品位为53.38%,回收率为5.69%的铁精矿。在此基础上进行了闭路试验,获得了令人满意的效果,在给矿品位为14.56%时,达到了:铁精矿含铁54.02%,铁回收率34.68%,铁尾矿含铁降至10.45%的技术指标。
Because the characteristics of iron ore in China is "poor, fine and miscellaneous", the vast majority of iron ore need to be fine-grounded in order to acquire high-quality concentrate. However, it is difficult to be recovered the part of the ore that the particle size too small by using the traditional craft, and a large number of fine-grained that useful minerals are discharged into the tailings. On the other hand,, the iron ore that can be exploied are less and less with the use of iron ore resources long time. So, the recycle of iron tailings has important realism meaning.
     In this paper, the iron tailings that Dahongshan plant were taken as the research object. The valuable elements of these tailings are iron. The Fe content was 14.56%, the main iron mineral were hematitered and accounts for 10.06%. Then there are magnetite and siderite and accounts for 2.96%. The primarily gangue mineral were quartz and feldspar, whose content was 48.47%,then there are mica, illite, chlorite, calcite, dolomite and they are bout 11.35% of the total minerals.
     The findings showed that the find grain content is hing in the iron tailing. Fe is mainly concentrates in+0.037mm~-0.074 mm,+0.010 mm~-0.019mm and-0.010mm,the iron distribution rates were 24.96%,14.14% and 36.96%,total 76.06%. There is a low liberation degree of the iron minerals, in the level of +0.074mm, the liberation degree only is 38%.To the level of-0.037mm, the liberation degree above 80%.
     According to the properties of tailings, several flowsheets were explored in this paper, such as single magnetic separation flowsheet,single gravity separation flowsheet, the joint of magnetic separation and gravity seperation The experimental study showed that the joint of magnetic separation and gravity seperation were the best of all.
     On the basis of the joint of magnetic separation and gravity, magnetic intensity and the Hang and Vibrate of Cone Concentrator conditional tests were carried out. It is determined that the magnetic intensity by using the process of discarding tailings with magnetic separation. the magnetic intensity is 0.91T and 0.97T of magnetic roughing and magnetic scavenging. the most suitable operating parameters for the magnetic concentrate were determined:vibration frequency was 385 rev/min; rotation period of the vibrate was 227.5 sec/turn. Then on this basis, open circuit tests were carried out. After ore by using the process of discarding tailings with magnetic separation,after one rouging and one scavenging, the concentrate of magnetic roughing and the concentrate of magnetic scavenging was process by gravity separation, the grade of Fe concentrate was 54.15% and the recovery was 28.99%, and the grade of middling was 57.13%. and the recovery was 1.00%.
     To improve the recovery of fine iron tailings, recleaning tests of magnetic scavenging were carried out, ain at the joint of the concentrate of magnetic roughing and the concentrate of magnetic scavenging, gravity separation was carried out, and obtain the grade of Fe concentrate was 53.38% and the recovery was 5.69%. Then on this basis, closed circuit tests were carried out and obtained a satisfactory result, When the grade of run of mine was 14.52%, the grade of Fe concentrate reached to54.02% and the recovery was 34.68%, the grade of tailings was 10.452%.
引文
[1]侯宗林.中国铁矿资源现状与潜力[J].地质找矿论丛,2005.12(第20卷第4期):242-227.
    [2]陈甲斌.中国铁矿资源未来供需态势与国外供矿前景[J].矿产保护与利用,2005.4(第2期):5-8.
    [3]贾文龙、陈甲斌、李洪嫔.铁尾矿资源开发利用经济评价研究[J].中国矿业,2008.5(第17卷第5期):45-51.
    [4]骆华宝、王永基、胡达骧等.我国铁矿资源状况[J].地质论评,2009.11:885-891.
    [5]焦玉书、周伟.世界铁矿资源开发利用和我国进口铁矿石的发展态势[J].中国冶金,2004.11(第11期):13-18.
    [6]Magnus Ericsson. World Iron Ore [J]. Skillings mining review,2004
    [7]胡岳华,冯其明.矿物资源加工技术与设备[M].北京:科学出版社,2006.
    [8]不详.中国铁矿资源分布[J].兰格钢铁,2004(第1期):9.
    [9]张泾生.我国铁矿资源开发利用现状及发展趋势[J].钢铁,2007.2(第42卷第2期):1-6.
    [10]谢承祥、李厚民、王瑞江。中国已查明的铁矿资源的结构特征[J].地质通告,2009.1(第28卷第1期):80-84.
    [11]邱俊、吕宪俊.铁矿选矿技术[M].化学工业出版社,2009.
    [12]谢承祥、李厚民。我国钢铁发展对铁矿石选矿科技发展的影响[J].中国矿业,2007.1(第28卷第1期):1-6.
    [13]胡永平、孔令坛.推广高效选矿技术合理利用铁矿资源[J].金属矿山(增刊):2006.8:18-19.
    [14]Jamie Wade. Tailings-from concept to closure [J]. Australian Mining, 2008(1).
    [15]《选矿手册》编委会.选矿手册(第八卷第四分册)[M].北京:冶金工 业出版社,1991.
    [16]Jeannet A. Meima, Simona Regenspurg. Geochemical modelling of hardpan formation in an iron slag dump [J]. Minerals Engineering,20 (2007):16~25.
    [17]支全.铁矿石选矿新技术的研究与应用概况[J].矿业快报,2006.7(第7期):13-15.
    [18]L.Y.Li. a study iron minerl transformation to reduce red mud taiings [J]. Waste management,21(2001):525~534.
    [19]孙炳泉.近年我国复杂难选铁矿石选矿技术进展[J].金属矿山,2006.3(总第357期):11-13.
    [20]陈禄政、熊大和.采用连续离心分离技术回收细铁尾矿中铁[J].中南大学学报(自然科学版),2008.12(总第471期):1257-1267.
    [21]张淑会、薛向欣、金在峰.我国铁尾矿的资源现状及其综合利用[J].材料与冶金学报,2004.12(第3卷第4期):241-245.
    [22]Dahe xiong,Shuyi Liu,Jin Chen. New technology of pulsating high gradient magnetic separation [J]. Int. J. Mine. Process,1998,54:111~127.
    [23]杨久流、程新朝.细粒分选[M].选矿专题评述,北京矿冶研究总院.
    [24]尚旭、张文彬、刘殿文等.微细粒矿物的分选技术及设备探讨[J].矿产保护与利用,2007.2(第1期):31-35.
    [25]张斌、林月琼.选矿过程的细粒回收问题[J].国外金属矿选矿,1993.9:6-23.
    [26]鲁军、陈庆根、孔晓薇等.微细粒弱磁性铁矿选矿研究现状[J].国外金属矿选矿,2006.7:13-16.
    [27]杨波.旋振锥面选矿机组处理昆明钢铁集团公司玉溪大红山细粒铁尾矿工程化试验研究.内部资料.
    [28]K. Barani, S.M. Javad Koleini. Magnetic properties of an iron ore sample after microwave heating [J]. Separation and Purification Technology,76 (2011):331~336.
    [29]Burt, R. O. Development of the Bart-les Crossbeit Concentrat or for t he Gravity Concentration of Fines [J]. Miner Proc,1975.2:219~234.
    [30]孙玉波.重力选矿[M].北京:冶金工业出版社,1982.7.
    [31]周晓四.重力选矿技术[M].北京:冶金工业出版社,2006.8.
    [32]Napler-Munn. TJ, Invention and Innovation in Mineral Processing. Minerals Engineering,1997.10.
    [33]周泰来.细粒锡石选矿的研究与生产实践[J].国外金属矿选矿1998.7:18-21.
    [34]魏镜弢、杨波.微细粒重选技术研究[J].昆明理工大学学报,2001.2:46-47.
    [35]许德明、华进仓、常红霞.细粒矿物在高频垂直振动中的分层和分选[J].金属矿山,1992.2:45-47.
    [36]Jagdish Krishnaswamy, mpact of iron ore mining on suspended sediment response in a tropical catchment in Kudremukh, Western Ghats, India [J]. Forest Ecology and Management,224(2006):187~198.
    [37]A.K. Mukherjee, D. Bhattacharjee. Role of water velocity for efficient jigging of iron ore [J]. Minerals Engineering,19(2006):952~959.
    [38]吴金龙、吴金龙.SLon离心机分选赤铁尾矿的试验研究[J].现代矿业,2009.12(总第488期):36-37.
    [39]伍喜庆、黄志华.磁力螺旋溜槽及其对细粒磁性物料的回收[J].中南大学学报(自然科学版),2007.12(第38卷第6期):1086-1087.
    [40]凌竞宏、A.Laplant、胡熙庚.国外离心选矿机的发展与应用[J].国外金属扩选扩,1998.5:2-4.
    [41]彭会清、李广.螺旋溜槽的研究现状及展望[J].江西有色金属,2009.9(第23卷第3期):26-29.
    [42]陈甲斌、贾文龙、范继涛.铁尾矿利用经济分析模型与应用[J].资源科学,2009.1(第31卷第1期):29-32.
    [43]金家康、孙宝臣.浅谈铁尾矿综合利用的现状和问题[J].山西建筑,2008.5(第34卷第14期):23-26.
    [44]闫满志、白丽梅.我国铁尾矿综合利用现状问题及对策[J].矿业快报,2008.7(总第471期):53-58.
    [45]程坤、张宗华、杨琳琳.微细粒嵌布难选赤褐铁矿尾矿的选矿试验研究[J].有色金属(选矿部分),2006(第2期):30-32.
    [46]朱敏聪、朱申红、李京芳.从低品位铁尾矿中磁选回收铁的试验研究[J].矿冶,2008.6(第17卷第2期):27-29.
    [47]China's iron ore imports increase by 31.7 percent. Mining Engineering, 2005.11.
    [48]Iron ore production, prices set new records. Mining Engineering,2005.7.
    [49]方启学、卢寿慈、谢珉等.极弱磁场中微细粒赤铁矿的磁性研究[J].矿冶,1997.3:25-28.
    [50]Jae-Kyeong Kima, Han-Sang Oh. Recovery of iron as a form of ferrous acetate precipitates from low-grade magnetite ore[J]. Chemical Engineering Research and Design,88(2010):1467~1473.
    [51]于开平.开发高效细粒重选设备的对策[J].铜业工程,2000.2:25-28.
    [52]云南昆钢大红山铁选矿厂铁尾矿回收铁试验研究报告.内部资料.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700