球磨机滑履轴承的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球磨机是一种固体物料制粉设备,其重载低速的工况条件对轴承性能提出很高的要求。液体静压轴承具有工作速度范围宽、承载力大、抗冲击性能良好、寿命长等优点,因此常被用作球磨机的支承部件。滑履轴承是一种由若干块轴瓦组成的可倾瓦液体静压轴承,其油腔采用主油腔和平衡油腔相结合的形式,可通过调节两种油腔间润滑油的流量来调整瓦块姿态,从而满足承载要求。
     论文介绍了滑履轴承的结构,以流体润滑理论为基础建立了滑履轴承的求解理论模型。采用有限差分法和松弛迭代法求解简化的Reynolds方程,得到了滑履轴承的油膜承载特性,并利用多重网格法加速解的收敛。采用商业有限元软件ANSYS对球磨机进行了弹性变形分析,并将弹性变形计算与油膜分析进行了耦合。结果表明:考虑弹性变形后的最小膜厚值小于未考虑变形时的值,且油膜厚度和压力的分布也发生了变化。
     为分析轴承相关结构参数对轴承性能的影响,对轴承的结构参数进行了简单的优化比较,影响参数包括节流器结构参数、油腔形状和油腔面积比。得到了结构参数与油腔压力、润滑油温升等轴承性能之间的关系,为滑履轴承的设计提供参考。
     为验证理论计算的合理性,实验测试了三种不同油腔面积比的轴瓦的油膜压力、油膜厚度及润滑油流量等。将实验测试值与油膜计算结果做了比较,验证了油膜理论计算的合理性,并分析了实验中轴瓦四个平衡油腔油膜压力不同的原因。
The ball mill is one kind of grinding machine which can refine solid minerals. Its work condition of low speed and heavy load puts forward the requirement to the bearing performance. The liquid hydrostatic bearing has the advantages of a wide range of working speed, high load capability, good impact resistance and long life span. Therefore the liquid hydrostatic bearing is often used as the supporting equipment of ball mil. The hydrostatic shoe bearing is one type of hydrostatic Htilting pad bearingH, which is composed of several bearing pads. Its central oil pocket is surrounded by several corner oil pockets. In order to satisfy the carrying capacity, the position of pad can be adjusted by coordinating the flow of lubricating oil between central oil pocket and corner oil pocket.
     The paper begins with an introduction of the hydrostatic shoe bearing structure, and after the theoretical model of the hydrostatic shoe bearing is established according to the theory of fluid lubrication. The Reynolds equation is solved simply by using finite difference method and relaxation iteration method, and the solution convergence speed is accelerated by using multi-grid method. Then the load-carrying characteristics of the hydrostatic shoe bearing are obtained. The elastic deformation of ball mill is analyzed by using commercial finite element software ANSYS. The hydrostatic shoe bearing is designed by coupling calculation of oil film and elastic deformation. The results show that the minimum oil film thickness considering the elastic deformation is less than that of ignoring the elastic deformation, and the distribution of oil film thickness and pressure also changes.
     In order to discuss the influence of the bearing related structure parameters on the bearing performance, the bearing related structure parameters, including restrictor structure parameter, oil pocket geometric shape and oil pocket area ratios, are compared and optimized simply. The relationship between structure parameters and oil film pressure or the temperature rising of lubricating oil is calculated, so the results can give reference for the design of the hydrostatic shoe bearing.
     The feasibility of the theoretical calculation model is proved by the bearing pad experiment of three different oil pocket area ratios. The oil film bearing pressure, the oil film thickness and the lube oil amount are tested in the experiment. After that, compare the experiment value to the value of oil film theoretical calculation. Finally, the reason of the four corner oil pockets film pressure difference is explained.
引文
[1]王继杰.球磨机的研究进展及实用技术综述[J].中国陶瓷工业, 2007, 14(5): 32~34.
    [2]张宁.球磨机CAE技术应用研究[D].吉林大学, 2006.
    [3]李文亮,杨涛,于向军等.国外大型球磨机发展现状[J].矿山机械,2007, 35(1): 13~15.
    [4]瞿铁.大型球磨机的研制与开发[J].中国矿山工程, 2004, 33(1): 31~34.
    [5] J·哈德威等.大型球磨机的设计思想[J].国外金属矿选矿, 2004, 4: 6~10.
    [6]胡德成,张忠文.磨机主轴承结构浅析及展望[J].矿山机械, 2002, 10: 29~30.
    [7]司奎壮,蒋润科,刘俊凤.球磨机的三种滑动轴承比较[J].矿山机械, 2004, (8): 149~150.
    [8]姜洪滨.直线振动台上液体静压轴承的优化设计及实验研究[D].鞍山科技大学, 2006.
    [9]丁振乾.流体静压支承设计[M].上海科学技术出版社, 1987.
    [10]常翠平.锥形静压轴承流场的数值模拟及性能分析[D].哈尔滨工业大学, 2008.
    [11]丁振乾.我国机床静压技术的发展历史及现况[J].精密制造与自动化, 2003, (03): 19~21.
    [12]邵俊鹏,张艳芹,李鹏程.基于FLUENT的静压轴承椭圆腔和扇形腔静止状态流场仿真[J].润滑与密封,2007, 32(1): 93~95.
    [13]陈燕生等.液体静压支承原理和设计[M].国防工业出版社,1980.
    [14] Satish C. Sharma, S. C. Jain, D. K. Bharuka. Influence of recess shape on the performance of a capillary compensated circular thrust pad hydrostatic bearing [J]. Tribology International, 2002, 35: 347~356.
    [15] Satish C. Sharma, Satish C. Jain, Ram Sinhasan and Rajiv Shalia. Comparative study of the performance of six-pocket and four-pocket hydrostatic/hybrid flexible journal bearings [J]. Tribology International, 1995, 28: 531~539.
    [16] Vijay Kumar, Satish C. Sharma, S. C. Jain. On the restrictor design parameter of hybrid journal bearing for optimum rotordynamic coefficients [J]. Tribology International, 2006, 39: 356~368.
    [17] Cheng Hsien Chen, Yuan Kang, Yeon-Pun Chang,etc. Influence of restrictor on stability of the rigid rotor–hybrid bearing system [J]. Journal of Sound and Vibration. 2006, 297: 635-648.
    [18] Jaw-Ren Lin. Surface roughness effect on the dynamic stiffness and damping characteristics of compensated hydrostatic thrust bearings [J]. International Journal of Machine Tools & Manufacture, 2000, 40: 1671~1689.
    [19] T. Nagaraju, Satish C. Sharma, S. C. Jain. Study of orifice compensated hole-entry hybrid journalbearing considering surface roughness and flexibility effects [J]. Tribology International, 2006, 39: 715~725.
    [20] Ahmad W. Yacout, Ashraf S. Ismaeel, Sadek Z. Kassab. The combined effects of the centripetal inertia and the surface roughness on the hydrostatic thrust spherical bearings performance [J]. Tribology International, 2007, 40: 522~532.
    [21] Giridhar S. Test results for shaft tracking behavior of pads in a spherical pivot type tilting pad journal bearing [D]. Thesis,Virginia Polytechnic, 2005.
    [22] Seong Heon Yang, Chaesil Kim, Yong-Bok Lee. Experimental study on the characteristics of pad fluttering in a tilting pad journal bearing [J]. Tribology International, 2006, 39: 686~694.
    [23] D. J. Hargreaves, M Fillon. Analysis of a tilting pad journal bearing to avoid pad fluttering compensated circular thrust pad hydrostatic bearing [J]. Tribology International, 2007, 40: 607~612.
    [24] Sung-Gi Kim, Kyung-Woong Kim. Influence of pad–pivot friction on tilting pad journal bearing [J]. Tribology International, 2008, 41: 694~703.
    [25] A. M. El-Butch, N. M. Ashour. Analysis of heavy duty tilting-pad journal bearing taking into account pad distortion and possible adoption of rubber pad segments [J]. Tribology International, 1999, 32: 285~293.
    [26] A. van Beek, A. Segalt. Numerical solution for tilted hydrostatic multi-pad thrust bearings of finite length [J]. Tribology International, 1997, 30: 41~46.
    [27] Satish C. Sharma, Vijay Kumar, S. C. Jain, R.Sinhasan, M. Subramanian. A study of slot-entry hydrostatic/hybrid journal bearing using the finite element method [J]. Tribology International, 1999, 32: 185~196.
    [28] Venner, C. H. Multilevel solution of EHL line and point contact problems [D]. Enschede: Univ. of Twente, 1991.
    [29]蒋依仁.高速液体静压轴承结构参数对摩擦功率损失的影响[J].西北轻工业学院学报, 1988, (1): 91~97.
    [30]岑少起,郭红,张少林等.多种节流形式的动静压轴承有限元——优化分析[J].机械科学与技术, 2002, 21(2): 237~239.
    [31]李磊,李浙昆,张昊晗等.毛细管混压轴承节流参数与承载力性能研究[J].轴承, 2007, (09): 28~30.
    [32]邵俊鹏,张艳芹,韩桂华等.重型静压轴承油腔结构优化与流场仿真[J].系统仿真学报, 2010, 22: 1093~1096.
    [33]陈淑红,路长厚.新型螺旋油楔动静压滑动轴承的油腔结构研究[J].润滑与密封, 2006, (10):15-17.
    [34]江桂云,王勇勤,严兴春等.毛细管节流的油膜轴承结构参数设计分析[J].重庆大学学报, 2009, 32(4): 420~424.
    [35]张艳芹,邵俊鹏,倪世钱.大尺寸轴承温度场数值模拟[J].中国机械工程, 2008, 19(5): 563~565.
    [36]朱希玲.静压轴承压力场的有限元数值模拟[J].上海工程技术大学, 2002, 16(2): 92~95.
    [37]朱希玲.静压轴承在球磨机中的应用研究及数值模拟[D].鞍山钢铁学院, 2002.
    [38]刘刚.大型球磨机静压轴承CAE技术应用研究[D].吉林大学, 2007.
    [39]朱礼进,张可喜.推力可倾瓦轴承支点的优化设计[J].润滑与密封, 2004, (6): 57~61.
    [40]王熙哲,袁小阳,朱均等.动静压可倾瓦轴承支点结构的研究[J].制造技术与机床. 1997, (6): 24~26.
    [41] Qiuying Chang, Peiran Yang, Yonggang Meng, Shizhu Wen. Thermoelastohydrodynamic analysis of the static performance of tilting-pad journal bearings with the Newton–Raphson method [J]. Tribology International, 2002, 35: 225~234.
    [42]段芳莉,韦云隆.弹性变形对径向轴承弹流润滑性能的影响[J].润滑与密封, 2006, (6): 9~10.
    [43]欧阳洁.自适应多重网格法与超松弛法的比较[J].应用数学与计算数学学报,1994, 8(1): 27~33.
    [44] Jing W., Shiyue Q., Peiran Y.. Simplified multigrid technique for the numerical solution to the steady-state and transient EHL line contacts and the arbitrary entertainment EHL point contacts [J]. Tribology International, 2002, 34: 191~202.
    [45]刘建寿,宋郁琴.球磨机滑履轴承支撑滑瓦摩擦功耗与机械传动效率的计算[J].矿山机械, 2005, 33(10): 46~47.
    [46]张小虎,孙冠枫.谈大型球磨机中空轴的断裂及处理[J].中国建材装备, 1996, (11): 22~24.
    [47]朱均,虞烈.流体润滑理论:上册[M].西安交通大学润滑理论及轴承研究所, 1991.
    [48]张直明,张言羊,谢友柏等.滑动轴承的流体动力润滑理论[M].高等教育出版社, 1986.
    [49] HE. Rajasekhar NicodemusH, Satish C. Sharma. HA Study of Worn Hybrid Journal Bearing System with Different Recess Shapes under Turbulent RegimeH [J]. Journal of Tribology, 2010, 132: 1-12.
    [50]斯坦斯菲尔德(F.M.Stansfield)著,险峰机床厂译.静压支承在机床上的应用[M].机械工业出版社, 1978.
    [51]钟洪,张冠坤.液体静压动静压轴承设计使用手册[M].电子工业出版社, 2007.
    [52] Brant A. Multilevel Adaptive Solutions to Boundary Value Problems [J].Math.Comput, 1977, 31: 333~390.
    [53]杨沛然.流体润滑数值分析[M].国防工业出版社, 1998.
    [54]周振红,郭恒亮,张君静等. HFortran 90/95高级程序设计H[M].黄河水利出版社, 2005.
    [55]彭国伦. Fortran95程序设计[M].中国电力出版社, 2002.
    [56]唐章宏,薛赛男,冯峰等. Visual Fortran程序设计[M].人民邮电出版社, 2000.
    [57]胡国良,任继文. ANSYS 11.0有限元分析入门与提高[M].国防工业出版社, 2009.
    [58]博弈创作室. HANSYS 9.0经典产品高级分析技术与实例详解H[M].中国水利水电出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700