魔芋葡甘聚糖结构与其稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
魔芋葡甘聚糖(Konjac Glucomannan,简称KGM)是魔芋块茎中存在的一种水溶性的、高分子量多糖,具抗肿瘤、提高机体免疫力等功能。KGM的结构变化是其性能与生物活性变化的原因。国内外关于KGM结构的研究没有深入,更没有深入探讨不同外场条件下其结构的变化,对不同外界条件下KGM结构稳定性及溶液行为认识的缺乏是制约KGM深加工及生物活性调控的瓶劲。
     本文尝试通过多种结构分析方法研究KGM分子结构,以及在两种物理场:高压脉冲电场和超高静压场作用下KGM结构稳定性的变化规律,旨在为解决KGM生物功能活性调控提供理论基础。本论文主要研究内容和结论如下:
     一、KGM的结构表征
     (1)本章研究了未处理过的KGM的红外光谱图、拉曼光谱、χ-射线衍射图、扫描电镜图。实验显示KGM固体具有规律性的纤维链形貌。说明KGM之间存在大量的氢键,而χ-射线衍射图显示KGM固体并未形成稳定的结晶,而是以无定形态存在,这与一般的文献报道相一致。
     (2)KGM溶液的透射电镜图显示KGM在水的存在下,将在分子链间形成大量的氢键以维持溶液中胶粒的状态,且胶粒的大小在纳米级。
     (3)为了深入了解KGM的详细信息,我们将KGM进行了水解,但实验结果显示:KGM水解时不能实现定点水解,且KGM自身分子链大,重复单元的规律性不强,导致水解产物是一个混合物,难以实现液相分离。同时由于分子量太大,目前的液质联用技术难以对其进行分子量的精确测定。
     二、经高压脉冲电场处理后KGM的结构稳定性研究
     (1)研究了2种高压脉冲电场500V和1000V处理对KGM的红外光谱图、拉曼光谱、χ-射线衍射图、扫描电镜图的影响。实验显示高压脉冲电场处理对KGM固体状态原有的纤维链没有破坏。但是,KGM之间的氢键可能由于电场的作用出现了减弱的现象,导致红外光谱和拉曼光谱出现了一些变化。
     (2)KGM的DSC研究发现高压脉冲电场处理对KGM的热特性也没有明显的影响。
     (3)高压脉冲电场是目前发展较快的一种物理处理方式,本文研究了高压脉冲电场处理对KGM的结构和形貌的影响,这为深入研究KGM的结构与性能提供了有益的借鉴,特别是为与KGM相关的食品深加工中物理场作用影响提供理论基础。
     三、经超高静压处理后KGM的结构稳定性研究
     (1)研究了3种超高静压处理(100Mpa、300Mpa、500Mpa)对KGM的拉曼光谱、扫描电镜图、透射电镜图的影响。实验显示高压处理对KGM固体状态原有的规律性的纤维链有所破坏,在高压下,电镜图片显示规则的纤维链发生了不同程度的断裂。但由于KGM分子链足够长,因此在透射电镜图上可以看出,在水的体系中,KGM依然因分子内和分子间的氢键作用形成大小均一的凝胶颗粒。
     (2)KGM的DSC研究发现超高静压处理对KGM的热特性有影响。其中以100Mpa处理和500Mpa处理20分钟以上的影响最为显著。
     (3)KGM流变学性质研究发现超高静压处理对KGM的流变学性质有显著影响。其中压力大小的影响强于处理时间的影响,KGM在经100Mpa处理时,流变特性明显发生改变,粘度下降明显,抗剪切力变差。而随着压力的增加,上述参数指标反而有所回升。本文首次将宏观性质与微观结构研究相结合,研究了超高静压场对KGM的影响,这为深入研究KGM的结构与性能提供了有益的借鉴与启发,特别是为与KGM相关的食品深加工中物理场作用影响提供理论基础。
     四、荧光探针技术在KGM结构及其稳定性研究中的应用
     (1)首次提出在KGM体系中加入荧光探针,利用荧光法来研究KGM在溶液中的聚集态以及对荧光的猝灭作用,为其他多糖的结构及溶液性质研究提供新的思路。
     (2)用荧光探针技术研究经超高静压处理的KGM溶液中的形态,得出的结果与流变学相近。超高静压处理的压力较之处理时间对于KGM的结构影响更大,其中以100Mpa处理时,KGM分子链的变化最明显,在荧光强度上表现出回升的趋势。
     (3)实验结果证明将荧光探针引入到KGM的结构及稳定性研究可行,且因为荧光分析法具有快速、高灵敏、仪器投入成本低的特点,可以在多糖结构研究中进行推广。
Konjac Glucomannan (referred to KGM) is a water-soluble, high molecular weight polysaccharide, consisting in a kind of taro tube. It has many useful functions such as anti-tumor, improve the immunity et al. Changes in the structure of KGM is its performance reasons for its biological activity. Its formation mechanism and stability haven't been discussed deeply, and furthermore, the formation rule and stability mechanism under different environments also haven't been studied. It has become a barrier for deeply development and biological function regulation of Konjac glucomannan.
     In this thesis, we attempt to study the KGM for pure and KGM in two physical fields:high voltage pulsed electric fields and ultra-high static field. The structure and structural stability of KGM were studied, which was aimed at providing structural basis of theory for activity regulation of KGM designed to address the biological functions. In this thesis, the main results were as follows:
     1. Structural characterization of pure KGM Structural characterization
     (1) In this chapter, the untreated pure KGM were characteried by using infrared spectra, Raman spectra,χ-ray diffraction, scanning electron micrographs. The results were showed that KGM was solid fibers with a regular chain morphology in pure. There were a large number of hydrogen bonds in KGM, andχ-ray diffraction pattern showed the formation of KGM was not stable crystalline solid, but as there was no fixed form, which was consistent with the general literature;
     (2) TEM figure showed that KGM in solution formed a large number of molecular chains of hydrogen bonds in order to maintain the state of KGM gel in solution, and the size of KGM gel was hundreds nanometer;
     (3) In order to understand details of KGM, KGM were hydrolyzed byβ-mannase, but the results showed: pure short molecular chains of KGM were not achieved because of large molecular chain and unregularity of repeating unit. All the hydrolysis products were showed as a mixture. It was showed difficultly to achieve pure chain by using phase separation. At the same time because the molecular weight was too large, the current LC-MS technique was difficult to accurately determine its molecular weight.
     2. Study on the structural stability of KGM treated by high-voltage pulsed electric field
     (1) Two kinds of high voltage pulsed electric field treatment were used such as 500V and 1000V. KGM treated by PEF were characterized by using infrared spectra, Raman spectra, x-ray diffraction, scanning electron micrographs. Experiment results showed that high-voltage pulsed electric field on solid state KGM fiber chain was not destroyed from the original structure. However, hydrogen bonds might be due to be weakened for resulting in IR and Raman spectroscopy there had been some small changes.
     2) DSC study on KGM treated by PEF showed that pulsed electric field treatment on the thermal properties of KGM had no significant effect.
     (3) PEF is the rapid development of a physical approach, this study was providing a theoretical basis to in-depth study of the structure and properties of KGM providing a useful reference particularly associated with the food KGM processing physical fields.
     3. Study on the structural stability of KGM treated by ultra-high pressure
     (1) Three kinds of high static pressure processing (100Mpa,300Mpa,500Mpa) were used. KGM treated by UHP were characterized by using Raman spectra,χ-ray diffraction, scanning electron micrographs. Experiment results showed that high-voltage pulsed electric field on solid state KGM fiber chain was destroyed from the original structure. However, hydrogen bonds might be due to be weakened for resulting in IR and Raman spectroscopy there had been some small changes. Experiments showed that the solid state pressure on the existing laws of KGM fiber chain had been destroyed. Under high pressure, the rules of electron microscopy images showed different degrees of fiber chain fracture occurred. However, because KGM molecular chain was long enough, it was also showed as small gel particle with intra-molecular and the formation of hydrogen bonds in the TEM figure.
     (2) DSC studying on KGM treated by PEF showed that ultra-high pressure treatment on the thermal properties of KGM had some significant effect. Treating for 100Mpa and 500Mpa 20 minutes showed significant effect.
     (3) The rheological properties study of KGM treated by ultra-high pressure also had significant effects. The processing pressure showed a stronger effect than the processing time. When KGM was treated by 100Mpa processing, the rheological properties significantly changed, the viscosity was significantly decreased and the shear force variation showed the same. With the increase of pressure, the parameter indexes were all picked up. The macroscopic properties and microscopic structure of KGM were studied, which would provides a useful reference and inspiration to in-depth study of the structure and properties of KGM especially for food-related processing such as physical fields to provide a theoretical basis.
     4. Study on KGM Structure and Stability by using Fluorescent probe
     (1) This was firstly proposed in the KGM system by added fluorescent probes to study KGM aggregation states in solution and the fluorescence quenching. This study provided a new way of thinking for other polysaccharide structure and their solution properties.
     (2) KGM treated by high hydrostatic form of the solution was studied by fluorescence probe technique and the results were similar with rheological properties. When treated by 100Mpa, KGM molecular chain was changed obviously on the show that the fluorescence intensity tended to increase.
     (3) The experimental results showed that it was feasible for the fluorescent probe introduced into the structure and stability of KGM, and because the fluorescence analysis was rapid, highly sensitive, low cost. This new structure study could be conducted in the promotion of some other polysaccharide.
引文
[1]Lowe J B, Marth J D. A genetic approach to mammalian glycan function[J]. Annual Review of Biochemistry,2003,72(1):643-691.
    [2]谢明勇,聂少平.天然产物活性多糖结构与功能研究进展[J].中国食品学报.2010,10(2):1-11.
    [3]李尔春.天然植物多糖的结构及活性研究进展[J].食品工程,2007,(1):44-46.
    [4]高小荣,刘培勋.多糖结构分析研究进展[J].天津药学,2003,15(6):67-70.
    [5]张俊生,马志东,尤美云.红外光谱法在高分子科学中的应用[J].内蒙古农业科技2010(2):119-120.
    [6]田国辉,陈亚杰,冯清茂.拉曼光谱的发展及应用[J].化学工程师,2008,1:34-36.
    [7]张延会,吴良平,孙真荣.拉曼光谱技术应用进展[J].化学教学,2006,4:32-35.
    [8]吴国祯.拉曼谱学峰强中的信息[M].北京:科学出版社,2007.
    [9]何曼君,张红东,陈维孝,等.高分子物理(第三版)[M].复旦大学出版社,2006.
    [10]段金友,方积年.圆二色谱在糖类化合物结构研究中的应用[J].天然产物研究与开发,2004,16(1):71-75.
    [11]于海英,程秀民,王晓坤.圆二色光谱及其在药物研究方面的应用[J].光谱实验室,2007,24(5):877-885.
    [12]Galo T, Ester C, Alberto B, et al. Xanthan and glucomannan mixtures:synergisticint eractions and gelation[J]. Biomacromolecules,2002,3(3):489-504.
    [13]Mcreynolds K D, Gerva Y, Hague J. Examining the secondary structures of unnatural peptides and carbohydrate based compounds utilizing circular dichrosim[J]. Tetrahedron:Asymmetry, 2000,11:337-362.
    [14]Woody R W. Theory of circular dichroism of proteins [M]. New York:Plenum Press,1996:25-67.
    [15]许秀真.常温条件下魔芋葡甘聚糖复合膜对龙眼贮藏研究[J].食品科学,2007,28(2):338-342.
    [16]谭志鑫,李玉山.魔芋葡甘聚糖与氯胺酮对低氧/复氧小鼠的保护作用研究[J].中国病理生理杂志,2006,22(5):892,919.
    [17]李万芬,汪超,陈国锋,等.魔芋葡甘聚糖接枝丙烯酸共聚物超强吸湿剂的扩散吸湿特性研究[J].材料科学与工程学报,2007,25(2):276-279.
    [18]Li B, Xie B J. Gel formation mechanism of konjac glucomanan[J]. Agriculture Science in China, 2002,2:424-430.
    [19]Li B, Xie B J. Observation of the deacetylated konjac glucomannan by using AFM[J]. Journal of Functional Polymer,2002,4:447-450.
    [20]Okimasu, S. The science of konjac[M]. Keisuisha:Hiroshima,1993.
    [21]Gao S J, Nishinari K. Effect of degree of acetylation on gelation of konjac glucomannan[J]. Biomacromolecules,2004,5:175-185.
    [22]Katsuraya K, Okuyama K, Hatanaka K, et al. Constitution of konjac glucomannan:chemical analysis and 13C NMR spectroscopy[J]. Carbohydrate Polymers,2003,53:183-189.
    [23]Phillips G O, Williams P A. Handbook of hydrocolloids[M]. Cambridge:Woodhead Publishing, 2000,413-424.
    [24]Williams M A K, Foster T J, Martin D R, et al. A molecular description of the gelation mechanism of konjac mannan[J]. Biomacromolecules,2000,1:440-450.
    [25]Paola Cescutti, Cristiana Campa, Franco Delben, et al. Structure of the oligomers obtained by enzymatic hydrolysis of the glucomannan produced by the plant Amorphophallus konjac[J]. Carbohydr Res,2002,337:2505-2511.
    [26]Li B, xie B J. Study on Molecular Chain Morphology of Konjac Glucomannan[J], Carbohydrate Ploymers,2006,64(4):510-515.
    [27]Kozo Ogawa, Toshifumi Yui, Takashi Mizuno. X-Ray Diffraction Study of Glucomannans and Their Acetates[J].Agriculture Biology Chemistry,1991,55(8):2105-2111.
    [28]Li B, Xie B J. Single molecular chain geometry of konjac glucomannan as a high quality dietary fiber in East Asia[J]. Food Research International,2006,39:127-132.
    [29]Kok M S, Abdelhameed A S, Ang S, et al. A novel global hydrodynamic analysis of the molecular flexibility of the dietary fibre polysaccharide konjac glucomannan[J]. Food Hydrocolloids, 2009,23:1910-1917.
    [30]陈士勇,汪超,吕文平.GPC-LS联用法研究魔芋葡甘聚糖分子链形态[J].光谱实验室,2010,27(1):238-242.
    [31]PANG Jie, SUN Yu-Jing, GUAN Yong-Guang, et al. Studies on the Effect of Structure to Property Stability of Glucomannan[J]. Structure Chem.2005,24(9):1061-1065.
    [32]PANG Jie, SUN Yu-Jing, SUN Yuan-Ming. Studies on Single Chain Structure of Konjac Glucomannan[J]. Structure Chem,2006,25(12):1441-1448.
    [33]PANG Jie, SUN Yu-Jing, ZHUANG Yu, et al. Dynamics Study of the Influence of Temperature on Konjac Glucomannan Saline Solution's Viscosity[J]. Structure Chem, 2008,27(4):394-398.
    [34]PANG Jie, SUN Yu-Jing, YANG You-Hui, et al. Studies on Hydrogen Bonding Network Structures of Konjac Glucomannan[J]. Structure Chem,2008,27(4):431-436.
    [35]JIAN Wen-Jie, YAO Min-Na, WANG Meng. Formation Mechanism and Stability Study of Konjac Glucomannan Helical Structure[J]. Structure Chem,2010,29(4):543-550.
    [36]汪超,李斌,谢笔钧.脱乙酰基对魔芋葡甘聚糖羧甲基改性的影响及产物结构表征[J].中国农业科学,2005,38(10):2090-2095.
    [37]Yui T, Ogawa K, Sarko A. Molecular and crystal structure of konjac glucomannan in the mannan Ⅱ polymorphic form[J]. Carbohydrate Research,1992,229(1):41-55.
    [38]Ogawa Kozo, Yui Toshifumi, Mizuno Takashi. X-ray diffraction study of glucomannans and their acetates[J].Agricultural and Biological Chemistry,1991,55(8):5-11.
    [39]Dave V, Sheth M, Mccarthy S P, et al. Liquid crystalline, rheological and thermal properties of konjac glucomannan[J]. Polymer,1998,39(5):1139-1148.
    [40]李斌,谢笔钧.脱乙酰基对天然魔芋葡甘聚糖分子形貌的影响[J].功能高分子学报,2002,(4):445-450.
    [41]李斌,谢笔钧.魔芋葡甘聚糖中乙酰基对其链结构及膜性能的影响[J].粮食与饲料工业,2005,(10):21-22.
    [42]汪超,张艳,陈玫.魔芋葡甘聚糖粒度与分子尺度的相关性[J].湖北工业大学学报,2007,22(2):78-81.
    [43]陈士勇,汪超,钟晓玲.乙醇/水溶液中魔芋葡甘聚糖特性及结构研究[J].武汉理工大学学报,2009,31(13):41-44.
    [44]汪超,陈玫,舒敏,等.环境因素对魔芋葡甘聚糖分子尺度的影响[J].湖北工业大学学报,2007,22(2))82-85.
    [45]张艳,兰晶,汪超.环境温度对魔芋葡甘聚糖分子水溶液行为影响[J].食品研究与开发,2010,31(2):15-19.
    [46]张艳,兰晶,张敏燕,等.浓度对魔芋葡甘聚糖分子水溶液行为的影响研[J].食品科技,2009,34(9):83-87.
    [47]Panida Prawitwong, Shoji Takigami, Glyn O Phillips. Effects of y-irradiation on molar mass and properties of Konjac mannan[J]. Food Hydrocolloids,2007,21:1362-1367.
    [48]王平,张六通,邱幸凡,等.复方富硒魔芋对大鼠衰老模型血脂的影响[J].现代中西医结合杂志,2001,10(16):1524-1525.
    [49]刘红.魔芋葡甘聚糖对动脉粥样硬化家兔血清一氧化氮、血浆内皮素和脂质过氧化物的影响[J].2002,7(6):534-535.
    [50]张迎庆,干信,曾凡波,等.低聚魔芋葡甘聚糖醛酸丙酯硫酸酯钠盐抗凝血和抗血栓作用研究[J].中国生化药物杂志,2001,22(5):221-223.
    [51]林梦感,杨义芳,李永辉.多糖抗肿瘤活性构效关系的研究进展[J].中草药,2007,38(6):949-953.
    [52]李国熊,许敬尧,李英.魔芋葡甘聚糖对二甲肼诱发小鼠大肠癌的影响[J].中华消化杂志,2000,20(1):59-60.
    [53]黄琼,陈龙全.魔芋的保健功能及其加工[J].保健医学研究与实践,2008,5(2):155-56.
    [54]邓凡,赵玉凤,潘庆春,等.魔芋葡甘聚糖膜的制备及其血液相容性研究[J].化学和生物工程,2008,25(10):54-56.
    [55]余朝舟,李建科,吴晓霞,等.魔芋葡甘聚糖-水苏糖复合肠道制剂研究[J].食品与发酵工业,2008,34(4):90-93.
    [56]汤多山.高膳食纤维抗糖尿病作用及机制[J].安徽医药,2001,5(1):55-57.
    [57]刘红,魏文科,王平.魔芋葡甘聚糖对糖尿病大鼠脂质过氧化物和抗氧自由基酶类活性的影响[J].湖北民族学院学报(医学版),2001,18(4):1-3.
    [58]黄琼,陈龙全.魔芋葡甘聚糖的药理作用[J].湖北民族学院学报(医学版),2008,25(2):85-86.
    [59]刘雨桃,王子平.魔芋葡甘聚糖的应用及研究进展[J].华西药学杂志,2008,23(2):188-189.
    [60]谢建华,庞杰,朱国辉,等.魔芋葡甘聚糖功能研究进展[J].食品工业科技,2005,26(12):180-183.
    [61]江体乾.化工流变学[M].上海:华东理工大学出版社,2004:1-8.
    [62]Gebhard Schramm著,朱怀江译.实用流变测量学[M].北京:石油工业出版社,2009.
    [63]Brian M, McKenna著,李云飞译.食品质构学[M].北京:化学工业出版社,2007.
    [64]Costas G B, Marta S I著,王元凤等.功能性食品碳水化合物[M].北京:中国轻工业出版社,2009.
    [64]Arevalo P, Npadi M O, Bazhal M I, et al. Impact of pulsed electric fields on the dehydration and physical properties of apple and potato slices[J]. Drying Technology,2004,22(5):1233-1246.
    [65]Effect of partially replacing skim powder with whey protein concentrate on buffering capacity of yogurt [J]. Australia Journal Of Dairy Technology,1996,5(2):88-99.
    [66]El Zakhem H, Lanoiselle J L, Lebovka N I, et al. The early stages of Saccharomyces cerevisiae yeast suspensions damage in moderate pulsed electric fields [J]. Colloids and Surfaces B:Biointerfaces, 2006,47(2),189-197.
    [67]廖小军,钟葵,王黎明,等.高压脉冲电场对酵母和大肠杆菌的杀灭效果[J].食品与发酵工业,2003,29(10):19-22.
    [68]Humberto V M, Olga M B, Qin B L, et al. Nonthermal food preservation:pulsed electric fields [J]. Trends in Food Science and Technology,1997,8(5):151-157.
    [69]Toepfla, Heinzb V, Knorra D. High intensity pulsed electric fields applied for food preservation [J]. Chemical Engineering and Processing,2007,46(6):537-546.
    [70]Sehoenbach K H. Pmeeedinw of SPIE [J]. The International Society for optical engineering,1995, 2:199-205.
    [71]陈键.高强度脉冲电场用于液态食品的杀菌[J].物理,1997,26(11):688-689.
    [72]Bajgai T R, Hashinaga F, Isobe S. Application of high electric field (HEF)on the shelf-life extension of emblic fruit[J]. Journal of Food Engineering,2006,74(3):308-313.
    [73]孙静,孔繁东,祖国仁,等.高压脉冲电场对酵母菌和大肠杆菌存活率的影响[J].食品科学,2004,25(2):87-90.
    [74]赵瑾,杨瑞金,赵伟.高压脉冲电场对梨汁杀菌及钝化酶的研究[J].食品工业科技,2008,29(11):65-68.
    [75]房俊龙,张长利,李文哲.100 kV/cm高压脉冲电场杀菌系统设计与试验[J].中国乳品工业,2007,35(11):38-40.
    [76]Simpson M V, Barbosa-canovas G V, Swanson B G. The combined inhibitory effect of lysozyme and high voltage pulsed electric fields on the growth of Bacillus subtilis spores [M]. IFT Annual Meeting:Book of Abstracts,1995,267.
    [77]Sitzman N V. Gould G W. High voltage pulse techniques for food preservation [M]. London, UK. Blackie Academic and Professional,1995,236-252.
    [78]Morris C E. US developments in non-thermal juice processing[J].Food Engineering Ingredients,2000,(4):6-9.
    [79]Mcdonald C J, Lloyd S W, Vitale M A, et al. Effect of pulsed electric fields on microorganisms in orange juice using electric strengths of 30 and 50kV/cm[J].J Food Sei,2000,65(6):984-989.
    [80]Kui Zhong, Xiaosong Hu, Guanghua Zhao, et al. Inactivation and conformational change of horseradish pemxidase induced by pulsed electric field[J]. Food Chemistry,2005,92:473-479.
    [81]钟葵,孙志健,廖小军,等.高压脉冲电场对HRP活性及构象的影响效果[J].中国食品学报,2005,5(3):31-36.
    [82]钟葵,胡小松,陈芳,等.脉冲电场对果胶酯酶的活性及构象的影响[J].农业工程学报,2005,21(2):149-152.
    [83]Kui Zhong, Jihong Wu, Zhengfu Wang, et al. Inactivation kinetics and secondary structural change of PEF-treated HRP and PPO [J].Fod Chemistry,2006,104:483-491.
    [84]廖小军,钟葵,王黎明,史梓男高压脉冲电场对橙汁大肠杆菌和理化性质的影响效果[J].食品科学,2003,24(6):59-61.
    [85]丁宏伟,殷涌光,崔彦如.高压脉冲电场(PEF)对发酵乳的非热杀菌研究[J].乳业科学与技术,2005(3):100-102.
    [86]张铁华,殷涌光,刘静波.高压脉冲电场(PEF)对蛋清蛋白功能特性的影响[J].食品科学,2007,28(9)98-102.
    [87]Barsotti L, Dumay E, Mu T H, et al.Effects of high voltage electric pulses on protein-based food constituents and structures [J]. Food Science and Technology,2002, (12):136-144.
    [88]Fernandez-Diaz M D, Barsotti L, Dumay E, et al. Effects of pulsed electric fields on ovalbumin solutions and on liquid egg white [J]. Journal of Agricultural and Food Chemistry,2000, 48:2332-2339.
    [89]王春利,王婷.PEF辅助快速提取非特异性奶牛脾脏转移因子的实验研究[J].乳业科学与技术,2006(6):290-292.
    [90]陈玉江,殷涌光,刘瑜,等.利用高压脉冲电场提取蛋黄卵磷脂的研究[J].食品科学,2007,28(10):271-274.
    [91]殷涌光,金哲雄,王春利,等.茶叶中茶多糖茶多酚茶咖啡碱的高压脉冲电场快速提取[J],科研开发,2007,23(2):12-22.
    [92]张燕,李玉杰,胡小松,等.高压脉冲电场(PEF)处理对红莓花色苷提取过程的影响[J].食品与发酵工业,2006,32(6):129-132.
    [93]Fincan M, DeVito F, Dejmek P. Pulsed electric field treatment for solid-liquid extraction of red beetroot pigment [J].Journal of Food Engineering,2004,64:381-388.
    [94]Giner J, Gimeno V, Ortega M, et al. Inhibition of peach polyphenoloxidase by pulsed electric fields[J]. In Proceedings of European Conference on Emergent Food Science and Nutrition,1999,109:22-24.
    [95]Yeom H W, Zhang Q H, Dunne C P. Inactivation of papain by pulsed electric fields in a continuous system [J]. Food Chemistry,1999,67:53-59.
    [96]Yeom H W, Zhang Q H, Chism G W. Inactivation of pectin methyl esterase in orange juice by pulsed electric field[J]. Journal of Food Science,2002,67(6):2154-2159.
    [97]Vega-Mercado H, Powers J R, Barbosa-Canovas G V, et al. Plasmin inactivation with pulsed electric fields[J]. Journal of Food Science,1995,60:1143-1146.
    [98]Yang R J, Li S Q, Zhang Q H. Effects of pulsed electric fields on the activity and structure of pepsin [J]. Journal of Agricultural and Food Chemistry,2004,52(24):7400-7406.
    [99]Yang R J, Li S Q, Zhang Q H. Effects of pulsed electric fields on the activity of enzymes in aqueous solution [J]. Journal of Food Science,2004,69(4):241-248.
    [100]Ho S Y, Mittal G S, Cross J D. Effects of high field electric pulses on the activity of selected enzymes[J]. Journal of Food Engineering,1997,31:69-84.
    [101]李迎秋,陈正行.高压脉冲电场对大豆分离蛋白功能性质的影响[J].农业工程学报,2006,22(8):194-198.
    [102]李迎秋,陈正行.高压脉冲电场对大豆分离蛋白疏水性和巯基含量的影响[J],2007,27(5):40-43.
    [103]李迎秋,陈正行.高压脉冲电场对大豆胰蛋白酶抑制剂的钝化效果[J].安徽农业科学,2006,34(15):3800-3801,3807.
    [104]赵晋府.食品技术原理[M].北京:中国轻工业出版社,2002.
    [105]殷涌光.食品无菌加工技术与设备[M].北京:化学工业出版社,2006.
    [106]Cheftel J C. High pressure and biotechnology [M]. Paris,1992
    [107]Butz P, Tauscher B.Recent studies on pressure-induced chemical changes in food constituent [J]. High Pressure Research,2000,19:11-18.
    [108]潘科,孙远明,黄丽.超高压加工对食品品质酶的影响[J].食品科学,2003,24(3):142-146.
    [109]Lemos M A, Oliveria J C, Van L, et al. Influence of pH and high pressure on the thermal inactivation kinetics of horseradish peroxides[J]. Food Biotechnology,1999,13(1):13-32.
    [110]Perrentt S, Jum-Mei Z. Expanding the pressure technique:insights into protein folding from combined use of pressure and chemical denaturants [J]. Biochimicaet Biophysica Acta, 2002,1595(1-2):210-223.
    [111]Cioni P, et al. Tryptophan phosphorescence and pressure effects on protein structure[J]. Biochimicaet Biophysica Acta,2002,1595 (1-2):116-130.
    [112]马汉军,赵良,潘润淑,等.高压对肉类基木成分的影响[J].2006,22(3):150-153.
    [113]Ogawa H, Fukubisa K, Kubo Y. Pressure inactivation of yeasts, molds and pectinesterase in setsums mander in Juice:effects of juice concentration, pH and organic acids and cooperation with heat sanitation[J]. Agric Bid Chem,1990,54(5):1219-1225.
    [114]Meyer R S, Cooper K L, Knorr D, et al. High-Pressure sterilization of foods[J].Food Technology, 2000,54(11):67-72.
    [115]常耀光,李兆杰,薛长湖,等.超高压处理对南美白对虾在冷藏过程中贮藏特性的影响[J].农业工程学报,2008,28(12):230-232.
    [116]Chung Y C, Gebrehiwota, Farkasd F, et al. Gelation of surimi by high hydrostatic pressure[J]. Journal of Food Science,1994,59(3):523-524,543.
    [117]邵懿,薛长湖,董平,等.超高压技术在水产品加工中的应用[J].渔业现代化,2007,34(4):58-60.
    [118]陈瑞战,张守勤,刘志强.超高压提取技术在中药有效成分提取中的应用[J].中草药,2007,38(12):1905-1908.
    [119]陈瑞战,张守勤,王长征.正交试验优化超高压提取人参中人参苷的工艺研究[J].中草药,2005,36(3):365-368.
    [120]陈瑞战,张守勤,张永宏,等.超高压提取丹参素的研究[J].农业工程学报,2008,24(1):291-295.
    [121]陈瑞战,张守勤,王长征,等.超高压提取西洋参皂苷的工艺研究[J].农业工程学报,2005,21(5):150-154.
    [122]陈瑞战,孟繁磊,张守勤,等.超高压提取黄芪甲苷工艺研究[J].中国药学杂志,2008,43(7):519-523.
    [123]张建成,王夺元,现代光化学[M].北京:化学工业出版社,2006:35-39
    [124]许金钩,王尊本.荧光分析法(第三版)[M].北京:科学出版社,2006:35-39
    [125]王彦广,刘洋.化学标记与探针技术在分子生物学中的应用[M].北京:化学工业出版社,2007,1-3
    [126]Sadamoto R, Nitkura K., Sears P S, et al. Cell-Wall Engineering of Living Bacteria [J]. Am. Chem. Soe.,2002,124:9018-9019
    [127]刘欣,王红,张华山,生物分析中近红外荧光探针进展[J],分析科学学报,2001,17(4):346-351
    [128]赵瑜,李隆弟,罗丹明和荧光素类染料的固体基质室温嶙光研究[J],分析化学,1996,24(7):745-49
    [129]Gao J.X., Wang P., Giese R.W., Xanthamide Fluorescent Dyes [J]. Anal. Chem.2002,74: 6397-6401
    [130]Gordon G.W., Berry G., Liang X.H., et al., Quantitative fluorescence resonance energy Transfer measurements using fluorescence microscopy[J].Biophys J.1995,74:2702-2713.
    [131]张海容,武晓燕.荧光探针法研究10种中药多糖及黄酮对DNA的保护作用[J].光谱学与光谱分析,2007,27(2),346-349
    [1]Zhang Y.Q., Xie B.J., Gan X. Advance in the applications of konjac glucomannan and its derivatives [J]. Carbohydrate Polymers,2005,60:27-31.
    [2]龙德清,刘传银,朱圣平.魔芋的开发利用与研究进展[J].食品技术,2003,10(5):13-15.
    [3]高山俊.魔芋葡甘聚糖的化学与物理改性[D].武汉大学博士学位论文,2002,(4).
    [4]谢建华,庞杰,朱国辉.魔芋葡甘聚糖功能研究进展[J],食品工业科技,2005,Vol(12):180-183.
    [5]侯占伟.魔芋葡甘聚糖的化学改性及其性质研究[D].武汉理工大学硕士学位论文2008,(4).
    [6]Shanjun Gao, Katsuyoshi Nishinari. Effect of Degree of Acetylation on Gelation of Konjac Glucomannan[J]. Biomacromolecules,2004,5,175-185
    [7]吴立力,吴玮玲.魔芋葡甘聚糖及其凝胶的研究进展[J].湖北化工,2001,(4):3-5.
    [8]曹晖,魔芋葡甘聚糖的特性及其应用[J].扬州大学烹饪学报,2005,(4):61-64.
    [9]Xiao-Ling Chen, Wayne Huey-Herng Sheu, Tsai-Sung Tai, et al. Konjac Supplement Alleviated Hypercholesterolemia and Hyperglycemia in Type 2 Diabetic Subjects-A Randomized Double-Blind Trial[J]. Journal of the American College of Nutrition,2003,22 (l):36-42
    [10]C.B.Xiao, S.J.Gao, UN.Zheng. Blond films from KGM solutions and their preservative effect[J]. J.Appl. Polym. Scios 2007,77(3):617.
    [11]朱诚身.聚合物结构分析[M].北京:科学出版社,2010,31-32
    [1]Sitzmann V. High voltage pulse techniques for food preservation[M]. G. W. Gould. New methods for food preservation, UK. Blackie Academic and Professional,1995,236-252.
    [2]钟葵,胡小松,陈芳,等.脉冲电场对果胶酯酶的活性及构象的影响[J].农业工程学报,2005,21(2):149-152.
    [3]Han Z, Zeng X A, Zhang B S, Yu S J. Effects of pulsed electric fields(PEF)treatment on the properties of corn starch[J]. Journal of Food Engineering,2009,93:318-23.
    [4]Han Z, Zeng X A, Zhang B S, et al. Effects of pulsed electric fields(PEF)treatment on physicochemical proper—ties of potato starch[J]. Innovative Food Science and Emerging Technologies, 2009,10:481-485.
    [1]李汴生,阮征.非热杀菌技术与应用(第1版)[M].北京:化学工业出版社,2004.124.
    [2]Bull M K, Zerdin K, Howe E, et al.The effect of pressure processing on the microbial, physical and chemical properties of Valencia and Navel orange juice[J]. Innovative Food Science and Emerging Technologies,2004,5:135.
    [3]薛路舟,陈淑花,夏远景等.超高压处理对生物大分子的影响研究进展[J].食品工程,2009(1),19-22
    [4]叶怀义,杨素玲,徐倩.高压对淀粉粒结晶结构的影响[J].中国粮油学报,2000,15(6):24-28
    [1]庄会荣,冯尚彩,平梅.罗丹明类染料在分析化学中的应用进展[J].理化检验·化学分册,2001,373:143-145
    [2]R P Haugland. Hand book of Fluorescent Probes and Research Chemicals.6th ed., Eugene Oreg.: Molecular Probes Inc.,1996:22-25
    [3]R A Houghten, C TDooley, J R Appel. De novo identification of highly active fluorescent kappa opioid ligands from a rhodamine labeled tetrapeptide positional scanning library. [J]. Bioorg. Med.Chem. Lett., 2004,14(8):1947-1951.
    [4]P Mercier, R E Ferguson, M Irving et al., NMR structure of a bifunctional rhodamine labeled N-domain of troponin C complexed with the regulatory "switch" peptide from troponin I:implications for in situ fluorescence studies in muscle fibers[J]. Biochemistry,2003,4215:4333-4348.
    [5]O Julien, P Mercier, L Spyracopoulos et al., NMR studies of the dynamics of a bifunctional rhodamine probe attached to troponin C[J]. J. Am. Chem. Soc.,2008,1308:2602-2609
    [6]M Pires, J Chmielewski. Fluoresence Imaging of Cellular Glutathione Using a Latent Fluorophore[J]. Org. Lett.,2008,105:837-840.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700