北方设施菜地重金属的累积特征及防控对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以北方典型区域(山东寿光、河南商丘、吉林四平、甘肃武威)的设施菜地为研究对象,通过田间调查、室内分析和定位试验,系统研究了重金属在设施菜地中的累积特征、剖面分布与迁移规律,进行了设施菜地系统中重金属的平衡估算,并针对设施菜地重金属累积问题,提出了重金属累积及污染防控的对策,通过研究得到的主要结果如下:
     1.山东寿光设施菜地中As、Cd、Cu、Zn、Cr、Ni、Pb的平均含量分别为9.63、0.52、33.91、124.20、53.04、29.04、17.96 mg·kg~(-1);河南商丘分别为11.08、0.30、25.03、73.53、51.06、26.68、14.53 mg·kg~(-1),吉林四平分别为12.47、0.467、37.20、87.68、67.50、25.17、17.98 mg·kg~(-1),甘肃武威分别为13.33、0.42、33.85、85.31、53.12、28.59、20.76 mg·kg~(-1),各区域设施菜地重金属均出现了不同程度的累积。
     2.将设施菜地重金属含量与国家土壤环境质量II级标准比较,除Cd、Zn、Ni存在少量样本超标外,上述4个区域设施菜地其它重金属含量均在国家允许范围内,土壤质量整体状况尚可,在所有重金属中,四个区域以Cd超标问题最为突出,Cd在各区域的样本超标比例顺序为:吉林四平(39.8%)>山东寿光(27.4%)>河南商丘(6.1%)>甘肃武威(1.0%)。
     3.根据各区域重金属含量随着设施年限的变化规律看,4个区域设施土壤重金属含量随着年限的延长呈现不同程度的累积趋势,据初步估计,As、Cd、Cu、Zn、Cr、Ni、Pb在山东寿光设施菜地累积速率分别为0.105、0.033、0.923、2.010、0.370、0.281、0.324 mg·kg~(-1)·a~(-1),在河南商丘则分别为0.116、0.001、0.517、1.628、0.225、0.122、0.203 mg·kg~(-1)·a~(-1),在吉林四平分别为0.164、0.035、1.223、2.629、1.076、0.248、0.143 mg·kg~(-1)·a~(-1),在甘肃武威分别为0.194、0.025、1.022、2.691、0.156、0.481 mg·kg~(-1)·a~(-1),整体来说,Cu和Zn的累积速率最快。高毒元素Cd尽管累积速率最低,但其达到国家土壤II级标准值的时间最短,风险相对较高。
     4.山东寿光和甘肃武威的设施菜地土壤剖面重金属存在一定程度的累积趋势,表层土壤重金属含量普遍较高,随着土层深度的增加,重金属含量多呈现出不断降低的趋势。山东寿光表层土壤重金属Cd、Cu、Zn的含量随种植年限的增加呈现显著升高的趋势(P<0.05),甘肃武威的设施菜地重金属含量随着设施年限的增加而不断累积的趋势明显;与小麦地及新建大棚相比较,相同土层设施菜地土壤中重金属含量明显较高。
     5.通过在甘肃武威两年的田间定位试验,结果表明设施菜地进行蔬菜种植过程中重金属的输入途径主要来自于化肥和有机肥,其中,有机肥对设施菜地重金属的输入通量远远超过化肥。在不同的施肥处理下,重金属输入速率均以有机和无机配施(MNPK)处理最高,其最大输入通量分别为0.043 kg·ha~(-1)·a~(-1)、Cu16.910 kg·ha~(-1)·a~(-1)、Zn45.617 kg·ha~(-1)·a~(-1)、Cr1.668 kg·ha~(-1)·a~(-1)、Ni1.297 kg·ha~(-1)·a~(-1)、Pb1.431kg·ha~(-1)·a~(-1)。同时发现蔬菜植物秸秆和果实收获物是设施菜地重金属输出的主要渠道,通过作物果实收获带走的重金属量远远超过植物秸秆的重金属输出量。
     6.根据对设施菜地重金属输入输出平衡估算的结果,除个别元素外,不同施肥处理下重金属均有不同程度的盈余,其中MNPK、1/2MNPK、M处理的重金属盈余量相对较高,NPK处理较低;从平衡通量看,重金属累积速率最高的为MNPK处理,Cd、Cu、Zn、Cr、Ni、Pb的累积速率分别为0.042 kg·ha~(-1)·a~(-1)、16.750kg·ha~(-1)·a~(-1)、44.849 kg·ha~(-1)·a~(-1)、1.653 kg·ha~(-1)·a~(-1)、1.271 kg·ha~(-1)·a~(-1)、1.419 kg·ha~(-1)·a~(-1)。
     7.通过对北方4个典型区域设施菜地重金属累积的成因分析表明,设施菜地重金属的累积与肥料用量、质量密切相关。山东寿光土壤重金属Cd、Cr、Cu、Pb、Zn的含量与有机肥施用量间呈显著对数正相关关系(P<0.05),化肥施用量与土壤Cd、Zn含量间呈显著对数正相关;河南商丘有机肥施用量与土壤Cd含量间极显著对数正相关(P<0.01);甘肃武威菜地有机肥施用水平与砷含量间显著正相关(P<0.05),多年化肥累积施用量与土壤Zn含量间呈显著对数正相关。含重金属有机肥和化肥的施用是导致设施菜地重金属累积的主要原因。
     8.对重金属含量超标的设施菜地,可从设施菜地生产基地选址、投入品源头监控、低吸收作物种植、农艺措施调整等角度进行调控,减少重金属进入农田,降低土壤中重金属的生物有效性及作物对重金属的吸收;对重金属污染土壤,则应采取物理、化学、生物以及生物-化学的方法进行修复。在采取源头监控、过程阻断和污染修复等措施的同时,应加大对重金属超标农田安全利用与调控、重金属污染农田修复技术等的科技投入,加强环境立法并严格执法。
Through the investigation of typical soils of protected vegetable cultivation in Shouguang of Shandong Province, Shangqiu of Henan Province, Siping of Jilin Province, Wuwei of Gansu Province in the North China, the characteristics of heavy metal accumulation and their distributions in the soil profiles and the mobility of heavy metals were studied systematically via laboratory analysis and field experiments. The balance of heavy metals between inputs and outputs in the soils of the protected vegetable cultivation was calculated. The strategies for regulation of the accumulation and contamination of heavy metals in the soils of the protected vegetable cultivation were also highlighted. The obtained results were as follows:
     1. The contents of As, Cd, Cu, Zn, Cr, Ni, and Pb in the soils of the protected vegetable cultivation in Shouguang of Shandong Province was with 9.63, 0.52, 33.91, 124.20, 53.04, 29.04, and 17.96 mg·kg~(-1), respectively, while it was with 11.08, 0.30, 25.03, 73.53, 51.06, 26.68, and 14.53 mg·kg~(-1) respectively in Shangqiu of Henan Province. It was with 12.47, 0.47, 37.20, 87.68, 67.50, 25.17, and 17.98 mg·kg~(-1) respectively in Siping of Jilin Province, and with 13.33, 0.42, 33.85, 85.31, 53.12, 28.59, and 20.76 mg·kg~(-1) respectively in Wuwei of Gansu Province. Heavy metal accumulation occurred in soils of the protected vegetable cultivation for these areas in the North China.
     2. Compared to the second grade standard values of National Soil Quality, heavy metal contents in most samples did not exceed the recommended value with the exception of Cd, Zn and Ni in some soil samples. Generally speaking, the accumulation of heavy metals had relatively small environmental risk. Among all investigated heavy metals, the most serious accumulation was observed for cadmium. The percentage of soil samples exceeding the national standard from high to low was in order of Siping (39.8%), Shouguang (27.4%), Shangqiu (6.1%), and Wuwei (1.0%).
     3. The heavy metal accumulation in the soils of the protected vegetable cultivation generally increased with the cultivation time prolonging in all studied regions. It was estimated that the accumulating rate of As, Cd, Cu, Zn, Cr, Ni, and Pb in the soils of the protected vegetable cultivation in Shouguang was with 0.105, 0.033, 0.923, 2.010, 0.370, 0.281, and 0.324 mg·kg~(-1)·a~(-1), respectively, while it was with 0.116, 0.001, 0.517, 1.628, 0.225, 0.122, and 0.203 mg·kg~(-1)·a~(-1) respectively in Shangqiu, and with 0.164, 0.035, 1.223, 2.629, 1.076, 0.248, and 0.143 mg·kg~(-1)·a~(-1) respectively in Siping. It was with 0.194, 0.025, 1.022, 2.691, 0.156, and 0.481 mg·kg~(-1)·a~(-1) respectively in Wuwei. Generally speaking, the highest accumulation rate occurred for Cu and Zn, and the lowest rate for highly toxic element of Cd.
     4. The distribution of heavy metal contents in the soil profiles showed that the heavy metal accumulated in the different soil layers and the highest concentration of heavy metals appeared in the surface soil layer. With the increase of the soil depth, most heavy metal content continuously decreased in Shouguang and Wuwei. In contrast with that of wheat field and vegetable field (0 year), heavy metal contents increased in the same soil layer in protected cultivation, which indicated some environmental risk to local groundwater.
     5. According to the field experiments for two years in Wuwei, Gansu Province, the main input sources were from chemical fertilizer and organic fertilizer, and the input amount from organic fertilizer was much more than that from chemical fertilizer. For different fertilization treatments, the highest input rate into the soils of the protected vegetable cultivation was with 0.043 kg·ha~(-1)·a~(-1)for Cd, 16.910 kg·ha~(-1)·a~(-1) for Cu, 45.617 kg·ha~(-1)·a~(-1) for Zn, 1.668 kg·ha~(-1)·a~(-1) for Cr, 1.297 kg·ha~(-1)·a~(-1) for Ni, and 1.431 kg·ha~(-1)·a~(-1) for Pb, respectively, and all of them appeared in MNPK (manure plus chemical fertilizers) treatment. Meanwhile, the most important output channel for heavy metals from soils of the protected vegetable cultivation was through vegetable plant straws and fruits. The heavy metal amount removed by fruits was much more than that by straws.
     6. Balancing the inputs and outputs of heavy metals in soils of the protected vegetable cultivation, it was indicated that heavy metals under different treatments had different levels of surplus except few elements. The rather high surplus occurred in MNPK, 1/2MNPK, and M (manure) treatments, while much less surplus was for NPK (Chemical fertilizers) treatment. The highest accumulating rate occurred for MNPK treatment, which was with 0.042, 16.750, 44.849, 1.653, 1.271and 1.419 kg·ha~(-1)·a~(-1) for Cd, Cu, Zn, Cr, Ni, and Pb respectively.
     7. By analyzing the sources of heavy metal accumulation in the soils of the protected vegetable cultivation in the four typical regions, it showed that the heavy metal accumulation was closely related to the amount and quality of fertilizer applied to the soil. In Shouguang, Shandong Province, logarithmic significant positive correlations were found between the content of Cd, Cr, Cu, Pb, and Zn in soils and the organic fertilizer application amount (P<0.05), as well as those between the chemical fertilizer application amount and the contents of Cd and Zn in soils. In Shangqiu of Henan Province, Logarithmic positive correlation was also found between the application amount of organic fertilizer and soil Cd content at 0.01 significant levels. The arsenic content was significantly correlated with the organic fertilizer application level (P<0.05), while logarithmic positive correlation was found between soil Zn and the chemical fertilizer application amount. Application of chemical and organic fertilizer was one of the main reasons for heavy metal accumulation in the surveyed soils of the protected vegetable cultivation.
     8. In order to reduce the amount of the heavy metals entering into soils of the protected vegetable cultivation, the availability of heavy metals in soils and uptake amount of heavy metals by vegetables, several methods were recommended including the base selection for vegetable production under protected cultivation, detection and control of heavy metals of input source, plantation of crops with low adsorption for heavy metals. For seriously contaminated soils with heavy metals, such techniques as physical, chemical and biological approaches can be adopted. Therefore, measures like source control, process block and soil remediation should be taken on one hand, investment addition for research on science and technology of safe utilization and regulation technique for farmland polluted by heavy metals, environmental legislation and strict law enforcement were also necessary on the other hand.
引文
1.白玲玉,曾希柏,李莲芳,等.不同农业利用方式对土壤重金属累积的影响及原因分析[J].中国农业科学,2010,43(1):96-104
    2.曹仁林,霍文瑞,何宗兰,等.不同改良剂抑制水稻吸收镉的研究:在酸性土壤上[J].农业环境保护,1992, 11(5):195-198
    3.柴世伟,温琰茂,张云霓,等.广州郊区农业土壤重金属含量与土壤性质的关系[J].农村生态环境,2004,20(2):55-58
    4.陈芳,董元华,安琼,等.长期肥料定位试验条件下土壤中重金属的含量变化[J].土壤,2005,37(3):308-311
    5.陈继兰,赵玲,候水生,等.砷制剂对肉仔鸡的促生长效果试验[J].中国饲料,1994,(9):23-24
    6.陈同斌,陈志军.水溶性有机质对土壤中镉吸附行为的影响[J].应用生态学报,2002,13(2):183-186
    7.陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(3): 207-210
    8.党菊香,郭文龙,郭俊炜,等.不同种植年限蔬菜大棚土壤盐分累积及硝态氮迁移规律[J].中国农学通报,2004,20(6):189-191
    9.杜慧玲,冯两蕊,郭平毅,等.土壤重金属元素含量与大棚使用年限的相关性研究[J].山西农业学报,2006,34(3):56-59
    10.段永蕙,史静,张乃明,等.设施土壤重金属污染物累积的影响因素分析[J].土壤,2008,40(3): 469-473
    11.俄胜哲,杨思存,崔云玲,等.我国土壤重金属污染现状及生物修复技术研究进展[J].安徽农业科学,2009,37(19):9104-9106
    12.范秀山,彭国胜.分子、离子对及离子状态在固液吸附中的作用浅析[J].土壤,2002,34(1):36-41
    13.冯春霞.合理调制饲料降低畜禽粪便中氮、磷、铜排出量[J].饲料技术,2006,3:14-15
    14.冯恭衍,张炬,吴建平.宝山区菜区土壤重金属污染的环境质量评价[J].上海农学院学报,1993, 11(1):35-42
    15.甘吉元.武威市温室斑潜蝇无害化防治技术[J].植物医生,2008,21(2):39
    16.高砚芳,段增强,郇恒福.太湖地区温室土壤重金属污染状况调查及评价[J].土壤,2007,39(6): 910-914
    17.郭朝晖,肖细元,陈同斌,等.湘江中下游农田土壤和蔬菜的重金属污染[J].地理学报,2008, 63(1):3-1 1
    18.郭文忠,刘声锋,李丁仁,等.设施蔬菜土壤次生盐渍化发生机理的研究现状与展望[J].土壤, 2004,36(1):25-29
    19.韩杰,杨群辉.家禽饲料中重金属和微生物污染的危害及防治[J].养禽与禽病防治,2010,1:32-34
    20.何振立.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社. 1998,129-130
    21.黄霞,李廷轩,余海英.典型设施栽培土壤重金属含量变化及其风险评价[J].植物营养与肥料学报,2010,16(4):833-839
    22.黄治平,徐斌,涂德浴,等.规模化猪场废水灌溉农田土壤Pb, Cd和As空间变异及影响因子分析[J].农业工程学报,2008,24(2):77-83
    23.贾利元.商丘市设施蔬菜的现状与发展趋势[J].商丘职业技术学院学报,2006,5(5):104-106
    24.姜萍,金盛杨,郝秀珍,等.重金属在猪饲料-粪便-土壤-蔬菜中的分布特征研究[J].农业环境科学学报,2010,29(5):942-947
    25.姜勇,张玉革,梁文举.温室蔬菜栽培对土壤交换性盐基离子组成的影响[J].水土保持学报,2005,19(6):78-81
    26.金圣爱,王恒,刘庆花,等.山东寿光设施菜地富磷土壤磷素淋溶特征研究[J].土壤通报,2010, 41(3):577-581
    27.寇长林,巨晓棠,高强,等.两种农作体系施肥对土壤质量的影响[J].生态学报,2004,24(11): 2548-2555
    28.李德成,李忠佩,周祥,等.不同使用年限蔬菜大棚土壤重金属含量变化[J].农村生态环境,2003,19(3):38-41
    29.李见云,侯彦林,王新民,等.温室土壤剖面养分特征及重金属含量演变趋势研究[J].中国生态农业学报,2006,14(3):43-45
    30.李见云,侯彦林,化全县,等.大棚设施土壤养分和重金属状况研究[J].土壤,2005,37(6):626-629
    31.李莲芳,曾希柏,白玲玉,等.山东寿光不同农业利用方式下土壤铅的累积特征[J].农业环境科学学报,2010,29(10):1960-1965
    32.李莲芳,曾希柏,白玲玉,等.石门雄黄矿周边地区土壤砷分布及农产品健康风险评估[J].应用生态学报,2010,21( 11):2946-2951
    33.李萍萍.设施农业的现状与发展趋势[J].农业装备技术,2002,103(1):4-5
    34.李茜.世界设施农业发展现状[J].合作经济与科技,2002,4:36
    35.李树辉,李莲芳,曾希柏,等.山东寿光不同农业利用方式下土壤铬的累积特征[J].农业环境科学学报,2011,30(6): (in press)
    36.李树辉,曾希柏,李莲芳,等.设施菜地重金属的剖面分布特征[J].应用生态学报,2010,21( 11): 2397- 2402
    37.李文庆,昝林生.大棚土壤硝酸盐状况分析[J].土壤学报,2002,39(2):283-287
    38.林匡飞,项雅玲,刘雪峰,等.钙镁磷肥和硅肥对水稻产量及镉吸收的影响[J].土壤肥料,1994,6:26-29
    39.林匡飞,徐小清,项雅玲,等.湖北江汉平原农田生态系统铜的循环与平衡[J].应用生态学报, 2003,14(1):71-74
    40.林玉锁,李波,张孝飞.我国土壤环境安全面临的突出问题[J].环境保护,2004,10:39-42
    41.林忠辉,陈同斌.磷肥杂质对土壤生态环境的影响[J].生态农业研究,2000,8(2):47-50.
    42.刘德,吴风芝,栾非时.不同连作年限土壤对大棚黄瓜根系活力及光合速率的影响[J].东北农业大学学报,1998,29(3):219-223
    43.刘定发,王治平,曹迎春.铬用作饲料添加剂的开发与应用[J].饲料工业,1999,20(7):15-16
    44.刘芬.清水塘地区土壤重金属污染现状及土地利用设想[J].农业环境保护,1998,17(4):162-164
    45.刘荣乐,李书田,王秀斌,等.我国商品有机肥料和有机废弃物中重金属的含量状况与分析[J].农业环境科学学报,2005,24(2):395-397
    46.刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis)——一种新的镉超富集植物[J].科学通报,2003,48(19):2046-204
    47.龙安华,刘建军,倪才英,等.贵溪冶炼厂周边农田土壤重金属污染特性及评价[J].土壤通报,2006,37(6):1212-1217
    48.卢东,宗良纲,肖兴基,等.华东典型地区有机与常规农业土壤重金属含量的比较研究[J].农业环境科学学报,2005,24(1):143-147
    49.鲁如坤,时正元,熊礼明.我国磷矿磷肥中镐的含量及其对生态环境影响的评价[J].土壤学报,1992,29(2):150-155
    50.吕福堂,司东霞.日光温室土壤盐分积累及离子组成变化的研究[J].土壤,2004,36(2):208-210
    51.牟子平,吴文良,雷红梅.寿光农业结构类型与资源可持续利用的技术对策[J].资源科学,2004b,26(6):152-157
    52.牟子平,吴文良,雷红梅.寿光蔬菜产业化历程及其支撑体系研究[J]. 2004a,9:152-154
    53.牛之欣,孙丽娜,孙铁珩.重金属污染土壤的植物-微生物联合修复研究进展[J].生态学杂志,2009,2(11):2366-2373
    54.屈冉,孟伟,李俊生,等.土壤重金属污染的植物修复[J].生态学杂志,2008,27(4):626-631
    55.施积炎,陈英旭,田光明,等.海州香薷和鸭跖草铜吸收机理[J].植物营养与肥料学报,2004,
    10(6):642-646
    56.史春余,张夫道,张俊清,等.长期施肥条件下设施蔬菜地土壤养分变化研究[J].植物营养与肥料学报,2003,9(4):437-441
    57.苏振旺,刘保丰.邢台污灌区土壤中重金属污染评价[J].环境监测管理与技术,1996,8(4):25-27
    58.孙建光,高俊莲,徐晶,等.微生物分子生态学方法预警农田重金属污染的研究进展[J].植物营养与肥料学报,2007,13(2):338-343
    59.王果,谷勋刚,高树芳,等.三种有机肥水溶性分解产物对铜、镉吸附的影响[J].土壤学报,1999,36(2):179-188
    60.王珊,李廷轩,张锡州,等.设施土壤中微生物数量及其生物量碳的变化研究[J].中国农学通报,2005,21(4):198-201
    61.王新,吴燕玉.改性措施对复合污染土壤重金属行为影响的研究[J].应用生态学报,1995,6(4):440-444
    62.王艳,杨丽娟,周崇峻,等.长期施肥对设施蔬菜栽培土壤易氧化有机碳含量及其剖面分布的影响[J].水土保持通报,2010,30(4):32-35
    63.韦朝阳,陈同斌,黄泽春,等.大叶井口边草———一种新发现的富集砷的植物[J].生态学报, 2002,22(5):777-778
    64.韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7): 1196-1203
    65.吴启堂,陈卢,王广寿,等.水稻不同品种对Cd吸收累积的差异和机理研究[J].生态学报,1999,19(1):104-107
    66.吴堑虹,戴塔根,方建武,等.长沙、株洲、湘潭三市土壤中重金属元素的来源[J].地质通报, 2007,26(11):1453-1458
    67.吴瑞娟,金卫根,邱峰芳.土壤重金属污染的生物修复[J].安徽农业科学,2008,36(7):2916–2918
    68.吴双桃,吴晓芙,胡曰利,等.铅锌冶炼厂土壤污染及重金属富集植物的研究[J].生态环境,2004,13(2):156-160
    69.夏立忠,李忠佩,杨林章.大棚栽培番茄不同施肥条件下土壤养分和盐分组成与含量的变化[J].土壤,2005,37(6):620-625
    70.夏增禄,李森照,穆从如.北京地区重金属在土壤中的纵向分布和迁移[J].环境科学学报,1985,5(1):105-112
    71.项稚玲,林匡飞,胡球兰,等.苎麻吸镉特性及镉污染农田的改良[J].中国麻作,1994,16(2):39-42
    72.肖细元,陈同斌,廖晓勇,等.中国主要含砷矿产资源的区域分布与砷污染问题[J].地理研究, 2008,27(1):201-212
    73.肖振林,李延.几种改良剂对蔬菜镉吸收的影响[J].闽西职业大学学报,2003,4:64-66
    74.徐昕,陶思源,郝林.用转基因植物修复重金属污染的土壤[J].植物学通报,2004,21(5):595-60
    75.徐勇贤,王洪杰,黄标,等.长三角工业型城乡交错区蔬菜生产系统重金属平衡及健康风险[J].土壤,2009,41(4):548-555
    76.徐勇贤,黄标,史学正,等.典型农业型城乡交错区小型蔬菜生产系统重金属平衡的研究[J].土壤,2008,40(2):249-256
    77.闫立梅,王丽华.不同龄温室土壤微形态结构与特征[J].山东农业科学,2004,3:60-61
    78.杨科璧.中国农田土壤重金属污染与其植物修复研究[J].世界农业,2007,(8):58-61.
    79.杨肖娥,傅承新.东南景天(Sedum alfreiiH)—一种新的锌超积累植物[J].科学通报,2002,47(13):1003-1006.
    80.余海英,李廷轩,周健民.典型设施栽培土壤盐分变化规律及潜在的环境效应研究[J].土壤学报,2006,43(4):572-576.
    81.盂飞,刘敏,史同广.上海农田土壤重金属的环境质量评价[J].环境科学,2008,29(2):428-433
    82.喻龙,龙江平,李建军,等.生物修复技术研究进展及在滨海湿地中的应用[J].海洋科学进展,2002,20(4):99-108
    83.曾希柏,白玲玉,苏世鸣,等.山东寿光不同种植年限设施土壤的酸化与盐渍化[J].生态学报,2010,30(7):1853-1856
    84.曾希柏,李莲芳,白玲玉,等.山东寿光农业利用方式对土壤砷累积的影响[J].应用生态学报,2007a,18(2):310-316
    85.曾希柏,李莲芳,梅旭荣.中国蔬菜土壤重金属含量及来源分析[J].中国农业科学,2007b, 40(11):2507-2517
    86.曾希柏,苏世鸣,马世铭,等.我国农田生态系统重金属的循环与调控[J].应用生态学报,2010,21(9):2418-2426
    87.张国印,王丽英,孙世友,等.土壤的重金属污染及其防治[J].河北农业科学,2003,9(7):59-63
    88.张树清,张夫道,刘秀梅,等.规模化养殖畜禽粪主要有害成分测定分析研究[J].植物营养与肥料学报,2005,11(6):822-829
    89.张素芹.重金属在根圈环境的迁移动态及根际效应[J].北京师范大学学报(自然科学版),1992,28 (增刊):120-125
    90.张亚丽,沈其荣,姜洋.有机肥料对镉污染土壤的改良效应[J].土壤学报,2001,38(2):212-218
    91.张永志,郑纪慈,徐明飞,等.重金属低积累蔬菜品种筛选的探讨[J].浙江农业科学,2009,5:872-874
    92.张勇.沈阳郊区土壤及农产品重金属污染的现状评价[J].土壤通报,2001,32(4):182-186
    93.张志斌.关于我国设施蔬菜生产可持续发展的探讨[J].沈阳农业大学学报,2000,31(l):15-17
    94.章永松,林成永,罗安程,等.有机肥(物)对土壤中磷的活化作用及机理研究[J].植物营养与肥料学报),1998,4(2):145-150
    95.中国环境监测总站.中国元素土壤背景值[M].中国环境科学出版社,1990
    96.中华人民工共和国民政部、中华人民共和国建设部.中国县情大全(东北卷)[M],1993,pp. 223-227
    97.中华人民共和国卫生部、中国国家标准化管理委员会. GB2762-2005. www.foodmate.net
    98.周建斌,翟丙年,陈竹君,等.设施栽培菜地土壤养分的空间累积及其潜在的环境效应[J].农业环境科学学报,2004,23(2):332-335
    99.周立祥,胡霭堂,戈乃芬.城市生活污泥中锌及病原物对作物及土壤环境的影响[J].农业环境保护,1994,13(4):158-162
    100.周青,黄晓华,屠昆岗,等. La对Cd伤害大豆幼苗的生态生理作用[J].中国环境科学,1998,18(5):442-445
    101. Adriano D. C., Wenzel W. W., Vangronsveld J., et al. Role of assisted remediation in environmental cleanup [J]. Geoderma., 2004, 122, 121-142
    102. Alam M. G. M., Snow E. T., Tanaka A. Arsenic and heavy metal contamination of vegetables grown in Samta Village, Bangladesh [J]. Sci. Total Environ., 2003, 308: 83-96
    103. Alexander P. D., Alloway B. J., Dourado A. M. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables [J]. Environ. Pollut., 2006, 144: 736-745
    104. Alkorta I., Hernández-Allica J., Becerril J. M.,et al. Chelate-enhanced phytoremediation of soils polluted with heavy metals [J]. Environ. Sci. Bio/Technol., 2004, 3: 55-7
    105.álvarez-Ayuso. & García-Sánchez. Palygorskite as a feasible amendment to stabilize heavy metal polluted soils [J]. Environ Pollut, 2003, 125: 337-344.
    106. Arthur E., Crews H., Morgan C. Optimizing plant genetic strategies for minimizing environmental contamination in the food chain [J]. Interna. J. Phtoremedi., 2000, 2(1): l-2l
    107. Baille A., Lòpez J. C., Bonachela S., et al. Night energy balance in a heated low-cost plastic greenhouse. Agr. Forest [J]. Meteorol., 2006, 137: 107-118.
    108. Bartzanas T., Tchamitchian M., Kittas C. Influence of the Heating Method on Greenhouse Microclimate and Energy Consumption [J]. Biosystems Eng., 2005, 91(4): 487-499
    109. Berti W. R., Jacobs L. W. Chemistry and phytotoxicity of soil trace elements from repeated sewage sludge applications [J]. J Environ. Qual., 1996, 25: 1025-1032
    110. Boulard T., Papadakis G., Kittas C., et al. Air flow and associated sensible heat exchanges in a naturally ventilated greenhouse [J]. Agr. Forest. Meteorol., 1997, 88: 111-119
    111. Brewer E. P., Saunders J. A., Angle J. S.,et al. Somatic hybridization between the zinc accumulator Thlaspi caerulescensandBrassica napus [J].Theor. Appl. Genet., 1999, 99: 761-777
    112. Camobreco V. J., Richard B. K., Steenhuis T. S., et al. Movement of heavy metals through undisturbed and homogenized soil columns [J]. Soil Sci., 1996, 161: 740-750
    113. Chojnacha K., Chojnacki A., Gorecka H., et al. Bioavailability of heavy metals from polluted soils to plants [J]. Sci. Total Environ., 2005, 337(1-3): 175-182
    114. Christ M. J., David M. B. Temperature and moisture effects on the production of dissolved organic carbon in spodosol [J]. Soil Bio. Biochem., 1996, 28: 1191-1199
    115. Critten D. L., Bailey B. J. A review of greenhouse engineering developments during the 1990s [J]. Agr. Forest. Meteorol., 2002, 112: 1-22.
    116. Culbard E. B., Thornton I., Watt J., et al. Metal contamination in British suburban dusts and soils [J]. J. Environ. Quality., 1988, 17: 226-234
    117. Darwish T., Atallah T., Moujabber M. E., et al. Salinity evolution and crop response to secondary soil salinity in two agro-climatic zones in Lebanon [J]. Agricultural Water Management., 2005, 78: 152-164
    118. David R. O., Kari A. G., Michael J. L. Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils [J]. Environ. Pollut., 2005, 136(2): 315-321
    119. FAO. Water: Precious and finite resource. Published by FAO multimedia group, October 2002. Available from:
    120. Florijn. P. J. & Beusichem M. L. Uptake and distribution of cadmiunl in maize inbred llines [J]. Plant. Cell. Envir., 1993, 10: 25-32
    121. George K. A. & Singh B. Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia [J]. Water, Air, Soil Pollut., 2006, 169: 101-123
    122. Gerritse R. G. Column and catchment-scale transport of cadmium: Effect of dissolved organic matter [J]. J. Contami Hydrol., 1996, 22: 145-163
    123. Grelle C., Fabre M. C., Leprêtre A., et al. Myriapod and isopod communities in soils contaminatedby heavy metals in northern France [J]. Eur. J. Soil Sci., 2000, 51: 425-433
    124. Guggenberger G., Glaser B., Zech W. Heavy metal binding by hydrophobic and hydrophilic dissolved organic carbon fractions in a spodosol A and B horizon [J]. Water, Air, Soil Pollut., 1994, 72: 111-127
    125. Hanafi A. & Papasolomontos A. Integrated production and protection under protected cultivation in the Mediterranean region [J]. Biotechnol. Adv., 1999, 17: 183-203.
    126. Harada Y., Haga K., Osada T., et al. Quality of compost produced from animal wastes [J]. Japan. Agr Res. Quarterly., 1993, 26: 238-246
    127. Haynes R. J. & Tregurtha R. Effects of increasing periods under intensive arable vegetable production on biological, chemical and physical indices of soil quality [J]. Biol. Fert. Soils., 1999, 28: 259-266
    128. He Z. L., Yang X. E., Stoffella P. J. Trace elements in agroecosystems and impacts on the environment [J]. J. Trace Elem. Med. Bio., 2005, 19: 125-140
    129. Hemisaar H. S., Makkonen K., Olsson M., et al. Fine—root growth,mortality and heavy metal concentrations in limed and fertilized Pinus silvestris(L.) stands in the icinity of a Cu—Ni smelter in SW Finland [J]. Plant Soi., 1999, 29: 193-200
    130. Küpper H., Lombi E., Zhao F. J., et al. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri [J]. Planta., 2000, 212: 75-84
    131. Huang B., Shi X., Yu D., et al., Environmental assessment of small-scale vegetable farming systems in peri-urban areas of the Yangtze River Delta Region, China [J]. Agri. Ecosyst. Environ., 2006, 112: 391-402
    132. Ju X. T., Kou C. L., Zhang F. S. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain [J]. Environ. Pollut., 2006, 143(1): 117-25
    133. Kalbitz K. & Wennrich R. Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter [J]. Sci. Total Environ., 1998, 209: 27-39
    134. Khairiah T., Zalifah M. K., Yin Y. H., et al. The uptake of heavy metals by fruit type vegetables grown in selected agricultural areas [J]. Pakistan Journal of Biological Sciences, 2004, 7(8): 1438-1442.
    135. Krishan C. & Joergensen G. R. Decomposition of 14C labelled glucose in a Pb-contaminated soil remediated with synthetic zeolite and other amendments [J]. Soil Bio. Biochem., 2002, 34(5): 643-649
    136. Lafleur B., Hooper-Bùi L. M., Mumma E. P., et al. Soil fertility and plant growth in soils from pine forests and plantations: Effect of invasive red imported fire ants Solenopsis invicta (Buren) [J]. Pedobiologia, 2005, 49: 415-423
    137. Lakshmi K. Ramakrishna P., Clements L. D. Pyrolysis as a technique for separating heavy metals from hyperaccumulators.PartIII: pilot-scale pyrolysis of synthetichyperaccumulator biomass [J]. Biomass & Bioenergy, 2004, 26(5): 463-472
    138. Landner L.,& Reuther R.Heavy metals in society and in the invironment: A critical review of current knowledge on fluxes, speciation, bioavailability and risk for adverse: Effects of coppeg chromium, nickel and zinc [M]. Kluwer Academic Dordrecht, The Netherland, 2004.
    139. Liechty H. O., Kuuseoks E., Mroz G. D. Dissolved organic carbon in northern hardwood stands with differing acidic inputs and temperature regimes [J]. J. Environ. Quality., 1995, 24: 927-933
    140. Liu Y., Hua J., Jiang Y., et al. Nematode communities in greenhouse soil of different ages from Shenyang Suburb [J]. Helminthologia, 2006, 43(1): 51-55
    141. Lynsey R. P., Victoria T., Alan J. M. B., et al. Spread of metals through an invertebrate food chain as influenced by a plant that hyperaccumulates nickel [J]. Chemoecology, 2002, 13(2): 103-108
    142. MacLeod A., Head J., Gaunt A. An assessment of the potential economic impact of Thrips palmi on horticulture in England and the significance of a successful eradication campaign [J]. Crop Prot., 2004, 3: 601-610.
    143. Mapanda F., Mangwayana E. N., Nyamangara J., et al. The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe [J]. Agri. Ecosyst. Environ., 2005, 107: 151-165
    144. Merckx R., Brans K., Smolders E. Decomposition of dissolved organic carbon after soil drying and rewetting as an indicator of metal toxicity in soils [J]. Soil Bio. Biochem., 2001, 33(2): 235-240
    145. Michael V. R. Mercury cleans up: the commercial application of a new mercury removal [J]. Remediation, 1995, 5(3): 89-101
    146. MicóC., RecataláL., Peris M., et al. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis [J]. Chemosphere, 2006, 65: 863-872
    147. Moolenaar S. W., Lexmond T. M. Heavy metal balances of agro-ecosystems in the Netherlands [J]. Neth Agric. Sci., 1998, 46: l7l-l92
    148. Moreno D. A., Víllora G., Hernandez J., et al. Accumulation of Zn, Cd, Cu, and Pb in Chinese cabbage as influenced by climatic conditions under protected cultivation [J]. J Agr. Food Chem., 2002, 50: 1964-1969.
    149. Mortvedt J. J. & Beaton J. D. Heavy metal and radionuclice contaminants in phosphate fertilizers. In: Tiessen H, editor. Phosphorus in the global environment: transfer, cycles and management [M]. New York: Wiley, 1995: 93-106
    150. Nabulo G., Oryem O. H., Diamond M. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda [J]. Environ. Res., 2006, 101: 42-52
    151. Nenesi N. & Loffredo E. Trace element inputs to soils by anthropogenic activities and implications for human health: A review. In: Iskandar IK, Hardy SE, Chang AC, Pierzynski GM (eds), Fourth International Conference on the Biogeochemistry of Trace Elements.Clark Kerr Campus [M], Berkeley, California, USA, 1997, pp 215-216
    152. Noort R. B. J. C. & Egmond N. D. Dutch Environmental Data Compendium [M]. Kluwer Alphen Ann den Rijn. 200l
    153. Nriagu J. O., Pzcyna J. M. Quantitative assessment of worldwide contamination of air, water, and soil by trace metals [J]. Nature, 1988, 333: 134-139
    154. Oliver D. P., Hannam R., Tiller K. G., et al. The effect of zinc fertilization on cadmium concentration in wheat grain [J]. J Envir., 1994, 23: 705-7Il
    155. Pardossi A., Tognoni F., Incrocci L. Mediterranean greenhouse technology [J]. Chron. Horticult., 2004, 44(2): 28-34.
    156. Pérez P. J., Baeza E., Montero J. I., et al. Natural ventilation of parral greenhouses [J]. Biosyst. Eng., 2004, 87, 355-366
    157. Polat A. A., Durgac C., Caliskan O. Effect of protected cultivation on the precocity, yield and fruit quality in loquat [J]. Sci. Hortic., 2005, 104: 189-198
    158. Pulgar G., Moreno D. A., Víllora G., et al. Production and composition of Chinese cabbage under plastic rowcovers in southern Spain [J]. J Hortic. Sci. Biotech., 2001, 76: 608-611
    159. Qualls R. G., Hainens B. L. Geochemistry of dissolved organic nutrients in water percolating through forest ecosystems [J]. Soil Sci. Soc. Am. J., 1991, 55: 1112-1123
    160. Richards B. K., Steenhuis T. S., Deverly J. H., et al. Metal mobility at an old, heavily loaded sludge application site [J]. Environ. Pollut., 1998, 99: 365-377
    161. Riffaldi R., Saviozzi A., Levi-Minzi., et al. Organically And Conventionally Managed Soils: Characterization Of Composition [J]. Archives of Agronomy and Soil Science, 2003, 49: 349-355
    162. Robert S. B. & Scott N. M. Aphids are unaf-fected by the elemental defence of the nickel hyperaccumulator Streptanthus polygaloides (Brassicaceae) [J]. Chemoecology, 1999, 9: 1-7
    163. Spalding B. P. Fixation of radionuclides in soil and minerals by heating [J]. Environ. Sci. Technol., 2001, 35(21): 4327-4333
    164. Su S. M., Zeng X. B., Jiang X. L., et al. Bioaccumulation and biovolatilisation of pentavalent arsenic by Penicillin janthinellum, Fusarium oxysporum and Trichoderma asperellum under laboratory conditions [J]. Curr.Microbiol., 2010, 61(4): 261-266
    165. Taylor S. I., & Macnair M. R. Within and between population variation for zinc and nickel accumulation in two species of Thlaspi (Brassicaceae) [J]. New Phytol., 2006, 169(3): 502-513
    166. Thornton I. Geochemical aspects of the distribution and forms of heavy metals in soils. In: Lepp NW, editor. Effect of heavy metal pollution on plants: metals in the environment [M], vol. II. London and New Jersey: Applied Sci Publ: 1981.1-34
    167. Tiller K. G., OLIVER D. P., Mclanghin M.J., et al. Managing cadmium contamination of agricultural land, remediation of soils contaminated with metals [M]. Proceedings of a conference on the biogeochemistry of trace elements. Taipei, Taiwan, 1997, 225-255
    168. Urrutia M. M. & Beveridge T. J. Formation of fine-grained metal and silicate precipitates on a bacterial surface (Bacillus subtilis) [J]. Chem. Geol., 1994, 116(3-4): 261-280
    169. Vinterhalter B. & Vinterhalter D. Nickel hyperaccumulation in shoot cultures of Alyssum markgrafii [J]. Biol. Plantarum., 2005, 49(1): 121-112
    170. Wei Y., Yang Y., Cheng N. Study of thermally immobilized Cu in analogue minerals ofcontaminated soils [J]. Environ. Sci. Technol., 2001, 35(2): 416-421
    171. Wei Y., & Liu, Y. Effects of sewage sludge compost application on crops and cropland in a 3-year field study [J]. Chemosphere, 2005, 50: 1257-1263
    172. Wong J. W. C. & Mak N. K. Heavy metal pollution in children playgrounds in Hong Kong and its health implications [J]. Environ. Technol., 1997, 18: 109-115
    173. Yusuf A. A., Arowolo T. A. A., Bamgbose O. Cadmium, copper and nickel levels in vegetables from industrial and residential areas of Lagos City, Nigeria [J]. Food Chem. Toxicol., 2003, 41: 375-378
    174. Zeng X. B., Su S. M.,, Jiang X. L., et al., Capability of pentavalent arsenic bioaccumulation and biovolatiliation of three fungal strains under laboratory conditions [J]. ClEAN-SOIL, AIR, WATER. 2010, 38(3): 238-241
    175. Zhang G. P., Fukami M., Sekimoto H., et al. Genotypic diferences in effects of cadmium on growth and nutrient compositionsinwheat [J]. J. Plant. Nutri., 2000, 3(9): 1337-1350
    176. Zhang Y. L. & Wang Y. S. Soil enzyme activities with greenhouse subsurface irrigation [J]. Pedosphere., 2006, 16: 512-518

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700