知识表示与推理的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算机要对知识和信息有效地进行处理是离不开知识表示与推理(knowledge representation and reasoning)的,知识表示与推理是人工智能符号主义流派最主要的研究内容。在知识表示与推理的研究中,逻辑扮演着重要角色。用逻辑语言对各种知识类型进行公理刻画,构造公理系统并对系统的语义、计算复杂性等方面展开研究已成为知识推理的主要研究内容。为了有效地对人工智能中出现的各种不同类型的知识与信息进行推理,学术界先后提出并研究了模糊推理、不确定推理、非单调推理以及弗协调逻辑等推理模式及其系统。这些受人工智能中问题驱动的研究借鉴了数理逻辑的研究方法与成果,同时其研究范围已远远超出经典逻辑,成为现代非经典逻辑研究的重要组成部分。
     本文就知识表示与推理的若干问题进行了研究,主要研究内容包括如下方面:
     (Ⅰ)非充足理由推理的研究在经典逻辑中,Γ?α成立意味着Γ是α成立的充分条件,换言之,在Γ成立的前提下,α是必然成立的。在人工智能及实际应用领域,我们面临的信息往往是不完备的,此时,一味地追求经典逻辑意义上的逻辑后承是不现实的。我们更关心具有“合理”性的推理模式。本文将对一种非充足理由推理展开研究。
     我们基于有限的命题语言,定义了进行非充足理由推理的背景知识——认知体。直观上,认知体就是Agent有能力判断其真假的命题的集合。本文详细研究了认知体的结构,仿照线性空间中的基底概念引入认知体的认知基概念,并证明认知体可以完全由它的认知基决定。引入了刻画认知体间认知能力强弱的序关系,并给出了相应序关系下认知基的特征。研究了认知体认知能力发生变化时,推理关系相应的演变,并基于此给出非充足理由推理关系的三条逻辑规则和分类格语义模型并证明了相应的表示定理。
     为了将上述工作推广到一般语言情形,本文引入了无穷认知体及无穷认知体序列的极限,证明了几类无穷认知体序列的极限存在性,并给出一种极限的具体表达式。在有限语言非充足理由推理的三条推理规则基础上,引入一条极限推理规则用于刻画无穷语言下的非充足理由推理关系。构造了无穷认知体的分类格语义模型并证明了相应的表示定理。
     (Ⅱ)有缺指派下的迭代信念修正理论研究
     Agent所掌握的知识或信念不是一成不变的,而是随着外界环境或自身状态的变化而变化的。Agent理想化的认知状态是一种平衡状态。当有新的知识输入时,这种平衡状态就被破坏了,这时Agent应当调整自己的信念状态以达到一种新的平衡。这个调整的过程就是信念修正的过程。
     经典的AGM信念修正理论和以D-P系统为代表的迭代信念修正理论都是以完全指派为可能世界而进行的理论研究。但是由于技术水平和认识工具的限制,在特定的时期内,人类对事物的认知不可能面面俱到。在这种情况下,采用有缺指派(即,为每个原子命题符号赋予真、假和不知道三值之一的指派)作为可能世界来研究问题就是更为合理的选择。
     本文把D-P系统推广到有缺指派的情形。详细研究了有缺指派的性质并引入补充指派和补充指派间的契合度这两个概念。在此基础上对D-P系统进行了推广,建立了相应的表示定理。(Ⅲ)ES结构的相似性与等价性研究
     学术界普遍认为非单调推理与信念修正是同一个硬币的两面,它们之间存在着本质的联系。以色列学者Bochman提出的认知结构(即,ES结构)概念旨在为两者提供统一的语义框架。
     在逻辑系统的研究中,利用语义结构的结构性质刻画语义结构之间等价的充要条件是一个重要而且具有基础性的研究内容。Bochman提出了ES结构之间结构相似性概念,并通过ES结构的外在推理行为的一致性(即,产生相同的收缩后承)引入了刻画ES结构之间的语义等价的概念——怀疑等价。但遗憾的是,他并未就两者的内在联系进行进一步研究。本文将对此展开研究。可以验证,两相似的ES结构一定是怀疑等价的,但其逆命题不成立,即,两怀疑等价的ES结构不一定是相似的。为此,本文引入一个与怀疑等价类似的推理行为等价性概念——拟怀疑等价。进而,证明了对任意两个纯的有限ES结构M 1和M 2,它们是拟怀疑等价的当且仅当par( M 1)与par( M 2)相似,其中,par(.)是作用于ES结构的一个算子。
Knowledge representation and reasoning (KRR) are indispensable to the effective computer processing of knowledge and information. KRR is the main research area in symbolic artificial intelligence (AI). In the field of KRR, logic plays an important role. The study of KRR mainly includes the following: the formalization of all kinds of knowledge types by means of logic, the construction of an axiom system and the investigation of the system’s semantics and computational complexity. KRR has been widely studied from 1980’s. Several reasoning systems such as fuzzy reasoning, uncertain reasoning, non-monotonic reasoning, paraconsistent logic and so on, have been proposed to achieve effective reasoning for processing knowledge and information in artificial intelligence. All the above studies motivated by solving the challenges in artificial intelligence not only have made use of the results of mathematical logic, but also have extended the scope of classical logic and thus have become an important part of modern non-classical logic studies.
     This paper focuses on the following issues related to KRR:
     (I) Studies on Non-sufficient Reasoning In classical logic, the fact thatΓ?αis true meansΓis the sufficient condition ofα. In other words, ifΓis true, then so isα. In artificial intelligence and practical applications, the available information is usually incomplete. In this situation, the blind pursuit of the logical consequence in the sense of classical logic is impractical. We are more interested in the reasoning methods with“reasonableness”. This paper will discuss the study on non-sufficient reasoning.
     In the framework of finite proposition language, we define the background of the non-sufficient reasoning---epistemic structure. It is defined as the set of all the facts which the agent can judge true or false in a finite language. Inspired by the notion of basal in linear space, we introduce the basal of epistemic structure ---epistemic basal and prove that the epistemic structure can be completely determined by its epistemic basal. An epistemic system comprises epistemic structures and a partial order which can reflect the strength of the epistemic ability of the epistemic structure. On the basis of epistemic system, we propose three syntax rules of non-sufficient reasoning and its categories lattice semantic and establish the corresponding representation theorem.
     In order to generalize the above work, we introduce the notion of infinite epistemic structures and the limit of a sequence of infinite epistemic structures. We further prove the existence of the limit of some sequences of infinite epistemic structures. Based on the three syntax rules of non-sufficient reasoning in finite language, we add a limit reasoning rule to describe the non-sufficient reasoning relations under infinite language. Finally, we construct the categories lattice semantic model of infinite epistemic structure and show the corresponding representation theorem. (II) Studies on Iterated Belief Revision in Absent Valuation
     The knowledge or belief of the Agent is not unchangeable, but changes with the change of external environment or its own state. The ideal epistemic state of Agent is a state of equilibrium. When new knowledge is acquired, this state of equilibrium will be broken, and the Agent shall adjust its belief state to reach a new equilibrium. This adjustment process is exactly the process of belief revision.
     Classical AGM belief revision theories and iterated belief revision theories represented by D-P System are both developed in the framework of complete valuations. Due to the limitations of technology and learning tools, our understanding of the world during a particular period could also be partial and limited. In this case, it is more appropriate to use absent valuation, i.e. assigning one of the three possible values (true, false, or unknown) to an atomic proposition, to study problems.
     We extend the D-P System to absent valuation. Different from complete valuation, absent valuation may assign the unknown state to some atomic propositions. Adopting absent valuation as possible world, we define the especial relation between absent valuations---the supplementary valuation. Finally, we establish a model-based representation theorem which characterizes the proposed postulates and constraints.
     (III) Studies on Similarity and Equivalence of Epistemic States It is generally recognized that non-monotonic reasoning and belief revision is just like the two sides of a coin and that there exists a fundamental relation between the two. The concept of epistemic states (i.e., ES) introduced by Bochman aims to provide the two with a unified semantic framework.
     In logic system research, using the structural properties of semantic structure to describe the necessary and sufficient condition of equivalence among semantic structures is an important and fundamental research area. Bochman proposed the concept of similarity in ES, and introduced skeptical equivalence—a concept to describe the semantic equivalence among ES based on the consistency of external reasoning behavior of ES. Unfortunately, he did not further study the internal relations of the two. This paper will conduct study on this point. It can be shown that two similar ES must also be skeptically equivalent while the inverse proposition is not true, i.e., skeptically equivalent ES may not necessarily be similar. In order to explore the relationship between similarity and the reasoning behaviors of epistemic states, a new notation called quasi-skeptical equivalence and an operator par(.) over epistemic states are introduced. We conclude that any pair of pure finite epistemic states are quasi-skeptically equivalent if and only if par( M 1) is similar to par( M 2), where par (.) is an operator working on ES.
引文
[1] J.Hintikka. Knowledge and Belief. Cornell University Press, 1962.
    [2] Von Wright G.H, Norm and Action. A Logical Inquiry, Routledge &Kegan Paul, London. 1963.
    [3] Von Wright G.H.,The Logic of Preference, At the University Press, Edinburgh ,1962.
    [4] J.Y.Halpern and M.Y. Vard, The complexity of reasoning about knowledge and time. Proc. 18th ACM Symp. On Theory of Computing 1986:304-315.
    [5] Fagin.R. and J.Y. Halpern. Belief, awareness and limited reasoning. Artificial Intelligence 34(1988):39-76.
    [6] Fagin.R.,J.Y.Halpern, Y.Moses and M.Y.Vardi Reasoning About Knowledge. Cambridge, Mass MIT Press. A slightly revised paperback version was published in 2003.
    [7]Logic and Pynamics of Information. Minds and Machies. 13:4(2003),503-519.
    [8] Epistemic Logic and Epistemology: the state of their affairs. World Philosophy 6,(2006):73-83.
    [9] R.Reiter. ALogic for Default Reasoning. Artificial Intelligence, 1980,13: 81-132. Reprinted in (Ginsberg, 1987, 68-93).
    [10] R.Reiter. A logic of default reasoning. Artificial Intelligence 1980, 13:81-132.
    [11] R.C.Moore, Possible-world semantics for autoepistemic logic, in: Proceedings workshop on non-monotonic reasoning, New Paltz, NY, 1984:396-401.
    [12] J.Doyle, A truth maintenance system, Artificial Intelligencd 12(1979):231-272.
    [13] Chitta Baral. Answer set Programmaing. http://www.public.asu.edu/~cbaral/, 7.
    [14]陆汝钤.人工智能.北京,科学出版社1996:419.
    [15] D.McDermott and J.Doyle. Non-monotonic logic I. Artificial Intelligence1980, 3: 41-72.
    [16] Kurt Konolign, On the relation between antoeptemic logic and circumscription. International Joint Conference on Artificial Intelligence. Volume 2. (1989):1213-1218.
    [17] G.Priest. Reasoning about Truth. Artificial Intelligence, 1989, 39:231-244.
    [18] G.Priest. Minimally Inconsistent LP. Studia Logica 1991, 50:321-331.
    [19] D.Baten. Inconsistency-adaptive Logics, In Logic at Work, E.Orlowska, Ed. Physica Verlag, 1998:445-472.
    [20] D.Baten. A Survey on Inconsistency-adaptive Logics. In Frontiers of Paraconsistent Logic, D.Baten et al. Eds, Studies in Logic and Computation, Vol.8, Research Studies Press, Taunton, UK, 2000:69-73.
    [21] P.Besnard and T.Schaub, Circumscribing Inconsistency, In Proceedings of the 15thInternational Joint Conference on Artificial Intelligence (IJCAI), Morgan Kaufmann, San Francisco, CA, 1997:150-155.
    [22] J.McCarthy. Logic and formalizing common sense. Artificial intelligence, http://www. Formal.Stanford. Edu/jmchomepage/, 1990.
    [23] G.Brewka. Adding Priorities and Specificity to Default Logic, In Logics in Artificial Intelligence: Proceeding of the JELIA’94 Workshop, C.MacNish etal, Springer Verlag, Berlin, 1994:247-260.
    [24] Miroslaw Truszczynski. Strong and uniform equivalence of nonmonotonic theories-an algebraicapproach. Annals of Mathematics and Artificial Intelligenc, 2006, 48(3-4): 245-265.
    [25] Paolo Liberatore. Consistency Defaults. Studia Logica, 2007, 86(1): 89-110.
    [26] S.Kraus, K.Lehmann and M.Magidor. Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 1990, 44(1-2):167-207.
    [27] K.Schlechta: Coherent systems, Vol.2 of the Series: Studies in Logic and Practical Reasoning, Elsevier, Amsterdam, 2004.
    [28] A.Bochman. Belief contraction as nonmonotonic inference. Journal of Symbolic Logic, 2000, Vol.65, No.2:605-626.
    [29] S.O.Hansson, A textbook of Belief dynamics, Kluwer Academic Publishers, 1999.
    [30] H.Rott. Belief contraction in the general theory of rational choice. Journal of Symbolic Logic, 1993, Vol158 ,No.2:1429-1450.
    [31] Y.Shoham: A semantic approach to nonmonotonic logics. In Proc. Logics in Computer Science, Ithaca, N.Y 1987:275-279..
    [32] Y.Shoham: Reasoning about change. The MIT Press, 1988.
    [33] Y.Moinard and R.Rolland. Characterizations of Preferential Entailments. Logic Journal of the IGPL, 2002, Vol.10, Issue 3:245-272.
    [34] Y.Moinard, L.Makinson and K.Lehmann. Preferential Entailments. ECAI’2002, IOS Press, Amsterdam, Lyon, 2002:531-535.
    [35] L.Clark, Negation as failure, in: Gallaire and J.Minker, eds., Logics and Data Bases, 1978:293-322.
    [36] D.Makinson. How to Go Nonmonotonic. Handbook of Philosophical Logic, D.Gabbay and F.Guenthner eds., Springer. Printed in Netherland Vol.12, 2005:175-278..
    [37] D.Makinson. Screened Revision, Theoria, 1997, 63:14-23.
    [38] V.Lifschitz, Nonmonotonic databases and epistemic queries. IJCAI 1991:381-386.
    [39] A.Bochman. A Logical Theory of Nomonotonic inference and belief change. Springer, Verlag, June, 2001.
    [40] A. Bochman, A causal approach to nonmonotonic reasoning, Artificial Intelligence 2004,160, 105-143.
    [41] H. Turner, A logic of universal causation, Artificial Intelligence1999,113, 87-123.
    [42] Hans Rott, Change, Choice and Inference: A Study of Belief Revision and Nonmonotonic Reasoning. Oxford University Press, 2001.
    [43] H.Bezzazi, D.Makinson and R.Pino pérez, Beyond rational monotonicity: Some strong non-Horn rules for nonmonotonic inference. Journal of Logic and Computation, 7,1997: 605-631.
    [44] H. Herre,Generalized Compactness of Nonmonotonic Inference Operations, Journal of Applied Non-classical logic, 1995, S. 121-135
    [45] D.Lehmann, Nonmonotonic Logics and Semantics. Journal of Logic and Computation, 2001,11:229—256.
    [46] D.Dubois et al.. Qualitative decision theory: from Savage’s axioms to non-monotonic reasoning. Journal of the ACM, 2002, 49:455-495.
    [47] James P. Delgrande et al.. A General Framework for Expressing Preferences in Causal Reasoning and Planning. Journal of Logic and Computation 2007, 17:871-709.
    [48] N.Gorogiannis and M.Ryan. Minimal refinements of specifications in modal and temporal logics.Formal Aspects of Computing, 2007, Vol.19, Issue 2:35-62.
    [49] Pierangelo Dell’Acqua, Luis Moniz, Pereira. Preferential theory revision, Journal of Applied Logic 2007, 5:586-601,.
    [50] D.M.Gabby, Theoretical foundation for nonmonotonic reasoning in expert systems, in K.R.Apr eds, Proceeding NATO advane study institute on logics and models of concurrent systems, Lacolle-sur-loup, France Springer, Berlin, 1985: 439-457.
    [51] H.Bezzazi, D.Makinson and R.Pino Perez. Beyond rational monotonicity: Some strong non-Horn rules for nonmonotonic inference relations. Journal of Logic and Computation, 1997, 7:605-631.
    [52] M.Freund and D.Lehmann. On Negation Rationality. Journal of Logic and Computation, 1996, 6, No.2:263-269.
    [53] Zhaohui Zhu, Zhenghua Pan, Shifu Chen and Wujia Zhu. Valuation Structure. Journal of Symbolic Logic, 2002, Vol.67, Num.1:1-23.
    [54] D.Lehmann and M.Magidor. What does a conditional knowledge base entail? Artificial Intelligence1992, Vol 55:1-60.
    [55] Zhaohui Zhu, Bin Li and Xi’an Xiao. A representation theorem for recovering contraction relations satisfying WCI. Theoretical Computer Science, 2003, Vol. 290 No.1:545-564.
    [56] Zhaohui Zhu and Wenjie Xiao. Two Representation Theorems for Non-monotonic inference relations. Journal of Logical and Computation, 2007, Vol17, Num 4:727-747.
    [57] L.Giordano, V.Gliozzi, N.Olivetti and G.L.Pozzato, KLM Logics of Nonmonotonic Reasoning: Calculi and Implementations. In G.Fiumara, M.Marchi and A.Provetti, editors, Proceedings of CILC 2007(22nd Convegno Italiano di Logica Computazionale), S.Agata di Messina, Italy, June 2007.
    [58] Sujata Ghosh and Mihir Kr.Chakraborty, Nonmonotonic Proof Systems: Algebraic Foundations, Fundamenta Informaticae, 2004, Vol.59, Issue1: 39-65.
    [59] Lee Flax. An Algebraic Approach to Belief Contraction and Nonmonotonic Entailment. Journal of Applied Logic 2007, 5:478-491.
    [60] Zhaohui Zhu, Xi’an Xiao and Yong Zhou. Normal conditions for inference relations and jijective Models. Theoretical Computer Science, 2003, Vol.309: 287-311.
    [61] Zhaohui Zhu, Rong Zhang and Shan Lu. A characterization theorem for injuctive model classes axiomatized by general rules. Theoretical Computer Science. 2006, 360:147-171.
    [62] Zhaohui Zhu and Rong Zhang. An Algebraic characterization of equivalent preferential models. Journal of Symbolic Logic. 2007 ,Vol 72, Issue 3:803-833.
    [63] K.Schlechta: Coherent systems, Vol.2 of the Series: Studies in Logic and Practical Reasoning, Elsevier, Amsterdam, 2004.
    [64] C.Alchourron, P.Gardenfors and D.Makinson. On the logic of theory change: partial meet functions for contraction and revision. Journal of Symbolic Logic, 1985, 50:510-530.
    [65] C.Alchourron and D.Makinson. On the logic of theory change: safe contraction. Studia Logica, 1985, 44:405-422.
    [66] P.Gardenfors and H. Rott, Belief revision, in:D.M.Gabby, C.J.Hogger and J.A.Robinson eds., Hankbook of Logic in Artificial Intelligence and Logic Programming, Clarendon Press, Oxford, 1995:35-132.
    [67] D.Makinson and P.Gardenfors, Relations between the logic of theory change and nonmonotoniclogic, in: A.Fuhrmann and M.Morreau eds. The logic of Theory Change, (Lecture Notes in Computer Science 465, Springer-Verlag, Berlin, Germany) 1991:185-205.
    [68] B.Nebel, Syntax based approaches to belief revision, in: P.Gardenfors ed., Belief Revision (Cambridge University Press, Cambridge), 1992:52-88.
    [69] C.Boutilier. Unifying default reasoning and belief revision in a modal framework. Artificial Intelligence1994, 68:33-85.
    [70] C.Boutilier, Revision sequences and nested conditionals, in: Proceedings IJCAI-95, 1993: 519-525,.
    [71] C.Boutilier and M.Goldszmidt. Revision by conditional beliefs. in: Proceedings of AAAI-93, 649-654.
    [72] D.Lehmann. Belief revision, revised. Proceedings of IJCAI-95, 1995:1534-1540.
    [73] M.A.Williams,Iterated theory base change: a computational model, Proceedings of IJCAI-95, 1995:1541-1547.
    [74] H.Katsuno and A.O.Mendelzon. Propositional knowledge base revision and minimal change. Artificial Intelligence, 1991, 52: 263-294.
    [75] A.Darwixhe and J.Pearl. On the logic of iterated belief revision. Artificial Intelligence, 1997, 89: 1-29.
    [76] Sébastien Konieczny and Ramón Pino Pérez. A framework for iterated revision. Journal of Applied Non-Classical Logics, 2000, 10: 339-367.
    [77] Yi Jin and Michael Thielscher. Iterated belief revision, revised. Artificial Intelligence, 2007, 171: 1-18.
    [78] Sebastian Enqvist, Contraction in Interrogative Belief Revision, 2010 72(3):315-335
    [79] Andreas H. A modal view of the semantics of theoretical sentences. Synthese 2010 174(3): 367–383
    [80] M.Freund. On Rational Preferences. Journal of Mathematical Economics, 1998, 31: 210-228.
    [81] J.Donald Monk, Mathematical logic, Springer-Verlag, New York, 1976.
    [82] V.V.Rybakov, Admissibility of logical inference rules, Elsevier 1997.
    [83]胡世华,陆钟万著,数理逻辑基础(上、下册),科学出版社, 1982, 1983.
    [84]数学辞海第二卷,山西教育出版社,东南大学出版社,中国科学技术出版社,2002年8月第一版.
    [85] George Kourousias and David Makinson. Parallel interpolation, splitting, and relevance in belief change. Journal of Symbolic Logic, 2007,Vol. 72, Issue 3:994-1002.
    [86] Neil Tennant. On the degeneracy of the full AGM-theory of theory-revision. Journal of symbolic logic, 2006, Vol.71, Issue 2:661-676.
    [87] (美)克林(S.C.Kleene)著;莫绍揆译.元数学导论(下册).北京:科学出版社,1985:368-390.
    [88] Chang C C, Keisler J, Model Theory, North-Holland Publishing Company, 1977, Second edition.
    [89] Hennessy M and Milner. Algebraic laws for nondeterminism and concurrency. Journal of the ACM, 1985, 32(1):137-161.
    [90] Andres Perea, A Model of Minimal Probabilistic Belief Revision, Theory and Decision 2009 67(2):163-222.
    [91] Zhu Zhao-hui. Similarity between Preferential Models. Theoretical Computer Science, 2006, Vol.353:26-52.
    [92] K. Eshghi and R. Kowalski, Abduction Compared with Negation by Failure. In Sixth International Conference on Logic Programming (eds. G. Levi and M. Martelli) MIT Press, 1989:234-254.
    [93] A. Kakas, R. Kowalski and F.Toni. Abductive logic programming. Journal of logic and computat -ion 1992,2(6):719-770.
    [94] M. Denecker and A.C. Kakas. Abduction in Logic Programming, In Computational Logic: From Logic Programming into the Future, Springer-Verlag, 2001.
    [95] K. Inoue and C. Sakama, Equivalence in abductive logic, in: Proceedings of the 19th International Joint Conference on Artificial Intelligence, 2005:472-477.
    [96] K. Inoue and C. Sakama, Comparing abductive theories, in: Proceedings of the 18th European Conference on Artivicial Intelligence, IOS Press, 2008:35-39.
    [97] A. del Val, On some tractable classes in deduction and abduction. Artificial Intelligence, 2000,116(12):297-313.
    [98] T. Eiter and G. Gottlob, The complexity of logic-based abduction, Journal of the ACM, 1995, 42(1):3-42.
    [99] B. Zanuttini. New polynomial classes for logic-based abduction. Journal Artificial Intelligence Research, 2003,19:1-10.
    [100] T. Eiter, G. Gottlob and N. Leone. Abduction from logic programs: semantics and complexity. Theoretical Computer Science, 1998, 189:129-177.
    [101] B. Selman and H. J. Levesque. Support set selection for abductive and default reasoning. Artificial Intelligene, 1996, 82(1-2):259-272.
    [102] Matias Alvarado and Gustavo Nunez. Belief Increasing in SKL Model Frames. In Proceedings of the 12th Brazilian Symposium on Artificial Intelligence: Advances in Artificial Intelligence. LNCS, Springer, 1995:28-38.
    [103]Sebastian Enqvist, Interrogative Belief Revision in Modal Logic, Journal of Philosophical Logic, 2009 38(5): 527-548.
    [104] F.Liu and O.Roy, Advances in belief dynamics: Introduction, synthese, 2010 173(2): 123-126.
    [105] Matias Alvarado and Gustaro Nunez. Change of Belief in SKL Model Frames. John Wiley & Sons Ltd, In: W.Wahlster, ed. 12th European Conference on Artificial Intelligence. 1996: 1123-1128.
    [106] Brachman R. J and Levesque H. J. The tractability of subsumption in frame-based description languages. In: Proceedings of the 4th National Conference of the American Association for Artificial Intelligence (AAAI-84) Austra TX, 1984, 34-37.
    [107] Schild K. A correspondence theory for terminological logics: Preliminary report. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-91), 1991, 466-471.
    [108]顾红芳.常识推理中非单调逻辑的研究,[博士学位论文].南京:南京航空航天大学,2001.
    [109]沈复兴.模型论导引.北京:北京师范大学出版社, 1998: 250-253.
    [110] Rober Stalnaker. Iterated Belief Revision. Erkenntnis 2009, 70:189-209.
    [111] McCarthy J. Formalizing Commonsense: Papers by John McCarthy, Ablex Publishing Corporation, 1990.
    [112] Simon.H.A. Search of Reasoning in Problem Solving. Artificial Intelligence, 1983,21(7): 112-134.
    [113] Gardendors and Rott, H. Belief revision. In D. Gabbay, et al. Eds, Handbook of logic inartificial intelligence and logic programming 4: Epistemic and temporal reasoning. Oxford: Oxford University Press. 35-132.
    [114]Andreas H. New account of empirical claims in structuralism. Synthese 2010 176(3): 311–332
    [115] N. Friedman and J.Y. Halpern, Plausibility Measures and Default Reasoning, Journal of ACM, 2001, 48:4:648-685.
    [116] Y. Moinard, Plausibility structures for default reasoning, ECAI 2004, IOS Press , Valencia , 2004,853--857.
    [117] H.Bezzazi, D.Makinson and R.Pino pérez, Beyond rational monotonicity: Some strong non-Horn rules for nonmonotonic inference. Journal of Logic and Computation, 7,1997: 605-631.
    [118]Jorge Lobo and C. Uzcategui, Abductive Consequence Relation, Artificial Intelligence, 1997, 89: 149-171.
    [119]M. Freund, On the revision of preferences and rational inference processes, Artificial Intelligence 2004, 152:105-137.
    [120] F. Voorbraak, A nonmonotonic observation logic, Artificial Intelligence 2004,157: 281-302.
    [121] K. Engesser and D.M. Gabbay, Quantum Logic, Hilbert space, Revision Theory, Artificial Intelligence, 2002, 136,61--100.
    [122] D. Lehmann, Connectives in Quantum and other Cumulative Logics, 2002 ASL European Summer Meeting LC02, Muenster, Germany, August 2002. Leibniz Center for Research in Computer Science TR-2002-28.
    [123] Hofer Andreas, A Structuralist Theory of Belief Revision, Journal of Logic, Language and Information, Online First, 8 October 2010.
    [124] Robert Stalnaker, Iterated Belief Revision, Erkenntnis, 2009 70(2):189-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700