Hat Creek煤作为固相有机碳源去除地下水中硝酸盐氮的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工农业生产的迅速发展,地下水硝酸盐污染日益严重。由于地下水中的硝酸盐会以间接或者直接的方式对人类健康造成危害,因此对受硝酸盐污染的地下水进行修复势在必行。传统的修复方法都各自存在着缺点,在地下水的原位修复方面尤为明显。
     本文提出以Hat Creek煤作为地下水硝酸盐污染生物修复的固相有机碳源生物载体,将其既作为固相有机碳源又作为生物载体;其次制作统一标准的硝酸盐污染生物修复模拟反应柱试验装置,对比其在多种条件下反硝化去除硝酸盐氮的效能,同时以生物陶粒、滤纸等生物载体为参照进行对比试验研究。通过对不同碳源浓度、不同流速、不同碳氮比以及不同生物载体等条件下的系统硝酸盐氮去除率对比分析,可以得出以下结论:(1)有机碳源甲醇浓度从150mg/L逐渐减小到50mg/L,以陶粒和煤为载体的反应柱硝酸盐氮的去除率均逐渐降低且无明显区别;(2)流速从625μl/min逐渐减小到200μl/min,煤反应柱硝酸盐氮的去除率逐渐高于陶粒反应柱;(3)随着碳氮比的降低,以陶粒和煤为载体的反应柱硝酸盐氮的去除率均有所降低,但两者硝酸盐氮的去除率差别逐渐增大且煤反应柱去除率高于陶粒反应柱;(4)以滤纸为载体填料的反应柱硝酸盐氮的去除率高于以煤为载体填料的反应柱硝酸盐氮的去除率,同时都高于以陶粒为载体填料的反应柱硝酸盐氮的去除率;(5)在零碳源条件下,引入溶煤菌的煤反应柱硝酸盐氮的去除率达到60%,高于未引入溶煤菌时的40%。
     Hat Creek煤属于一种半惰性固体材料,使用一定的方法对其进行改性处理后,该煤就能够释放出更多的有机碳源供微生物利用。因此,就可以利用Hat Creek煤兼具生物载体和固相有机碳源的双重作用,适当解决地下水体中反硝化脱氮作用中碳源不足的问题,同时也可以减少外部投加碳源的总量以及由外加碳源过多而引起的再次污染问题。
With the development of industry and agriculture, nitrate pollution in the groundwater become more and more seriously. At present, the drinking water in many countries has been polluted by nitrate. Comcern for possible health consequences has led to a desire for remedition of the contaminated groundwater. But all the current technologies to remove nitrate from groundwater have disadvantages, especially when be used for the purpose of in situ remediation.
     In this experiment, coal is used as the carbon-souece and the bio-carrier to remove the nitrate from the groundwater. Different conditions such as the concentration of the carbon-source, the flow rate, the ratio of carbon/hydrogen, and the bio-carrier are used in the experiment, meanwhile, the ceramisite is used as comparision in it. Studied by experiment, we draw conclusions that: (1) When the conditions like flow rate and so on are the same, the removal rate of the nitrate on the condition that the concentration of the carbon-source is 150mg/L is higher than it on the conditon that the concentration of the carbon-source is 100mg/L and 50mg/L. (2)when the flow rate is decreased to 200μl/min, the removal rate of the nitrate is higher than it on the condition that the flow rate is 625μl/min. (3)when the other conditions are the same, the removal rate of the nitrate in the high ratio of carbon/hydrogen condition is correspondingly high. when the concentration of the carbon-source is 50mg/L, the removal rate of the nitrate on the conditon that using filter paper as bio-carrier is about 95%, and is higher than it on the conditon that using coal as bio-carrier. Meanwhile, the removal rate of the nitrate on the condition that using ceramisite as bio-carrier is the lowest and about 50%. (4)With the same other conditions, when the flow rate is 625μl/min, the removal rate of the nitrate on two conditions that using ceramisite and coal as bio-carrier is almost the same. However, when the flow rate are 300μl/min and 200μl/min, the better removal rate of the nitrate is obtained as the coal is used for bio-carrier. (5)When the concentration of the carbon-source is 0mg/L, after the coal is changed through some certain methods, the removal rate of the nitrate on the condition that using the modified coal as bio-carrier is comparatively high and up to 60%.
     Coal is half-inert solid materials,therefore we can solve the problem of the carbon-source lack during the denitrification process based on the double-roles of the organic carbon-source and the bio-carrier. It is important that the problems of external carbon-source and secondary pollution can be sovled.
引文
[1]阚学成.地下水的性质及其污染与自净.科技情报开发与经济, 2006, 16(8):269.
    [2]李俊云,李林立,等.人类活动对川东平行岭谷区岩溶地下水化学性质季节变化的影响.长江流域资源与环境, 2007, 16(4):514-518.
    [3]李政红,张翠云,等.地下水微生物学研究进展综述.南水北调与水利科技, 2007, 5(5):60-63.
    [4]孙景云,左犀.地下水饮用水源地的保护.环境科学, 1996, 17(5):20-24.
    [5]张庆乐,王浩,张丽青,等.饮用水中硝态氮污染对人体健康的影响.地下水, 2008, 30(1):57-59.
    [6]孙彭力,等.氮素化肥的环境污染.环境保护与防治, 1995, 17(1):38-41.
    [7] Devlin J F.. Barker J F.. Field Demonstration of Permeable Wall Flushing for Biostmulation of a Shallow Sandy Aquifer. Groundwater Monitoring & Remediation. 1999, 19(1).
    [8] David F Weymann. Biosparging Used in Aquifer Remediation. Pollution Engineering. 1995, (5):36-41.
    [9]陈秀成,曹瑞钰.地下水污染治理技术的进展.中国给水排水, 2001:23-26.
    [10]张文静,董维红,等.地下水污染修复技术综合评价.水资源保护, 2006, 22(5):1-4.
    [11] Zhukun, Chenhui, LiGuangHe, et al. In Situ Remediation of Petroleum Compounds in Groundwater Aquifer With Chlorine Dioxide. Water Research. 1998, 32(5):1471-1480.
    [12]赵勇胜.地下水污染场地污染的控制与修复.吉林大学学报, 2007, 37(2):303-310.
    [13]蓝俊康.污染场地修复技术的种类.四川环境, 2006, 25(3):90-100.
    [14] Kao C.M., Lei S.E.. Using a Peat Biobarrier to Remediate PCE/TCE Contaminated Aquifer. Wat Res. 2000, 34(3):835-845.
    [15]杨梅,费宇红.地下水污染修复技术的研究综述.勘察科学技术, 2008, 4:12-16.
    [16]余国忠,等.污染地下水的生物修复.河南化工, 2007, 24(3):11-15.
    [17] Canter L.W.. Nitrates in Groundwater. Lewis Publishers. 1997.
    [18]罗泽娇,等.地下水三氮污染的研究进展.水文地质工程地质, 2002, 4:65-69.
    [19] J.L.Costa, H.Massone, D.Martinez, et al. Nitrate contamination of aquifer and accumulation in the unsaturated zone. Agricultural Water Management. 2002(57):33-47.
    [20]谢红梅,朱波.农田非点源污染研究进展.生态环境, 2003, 12(3):349-352.
    [21] N.Haruvy, A.Hadas, I.Ravina, S.Shalhevet. Cost assessment of groundwater pollution. Water Science Technology. 2000, 42(1-2):135-140.
    [22]曹仁林,贾晓葵.我国集约化农业中氮污染问题及防治对策.土壤肥料, 2001(3):3-6.
    [23]党民团.氮素化肥的污染现状与防治对策.渭南师范学院学报, 2003, 18(2):50-51.
    [24]孟凡生,王业耀等.饮用水中硝酸盐的去除.净水技术, 2005, 24(3):34-37.
    [25] Kostraba J.N., Gay E.C., Reviewrs M., et al. Nitrate levels in community drinking waters and risk of IDDM. Diabetes Care. 1992(15):1505-1508.
    [26]张庆乐,王浩,张丽青,等.饮水中硝态氮污染对人体健康的影响.地下水, 2008, 30(1):57-64.
    [27]范彬等.引用水中硝酸盐的脱除.环境污染治理技术与设备, 2000, 1(3):44-50.
    [28]周全明,孙万义,李吉林,等.青岛市地下水硝酸盐氮特征分析.山东水利, 2006, 9:17-18.
    [29]陈长伟,神进.城市地下水污染治理方法.中国水运, 2008, 6(1):114-116.
    [30]胡国臣,张清敏,等.地下水硝酸盐氮污染防治研究.农业环境保护, 1999, 18(5):228-230.
    [31]张燕,陈英旭,刘宏远.地下水硝酸盐污染的控制对策及去除技术.农业环境保护, 2002, 21(2):183-184.
    [32] John M.Stark, Stephen C.Hart. High rates of nitrification and nitrate turnover in undisturbed coniferous forest. Nature. 1997, 385(2):61-64.
    [33]徐芳香,陆雍森.我国地下水中硝酸盐污染防治及水源保护区划分.污染防治技术, 1999, 12(1):20-23.
    [34]张文渊.对地下水污染的根源及其治理浅析.地下水, 1999, 21(3):109-111.
    [35]陈建耀,王亚,张洪波,等.地下水硝酸盐污染研究综述.地理科学进展, 2006, 25(1):34-43.
    [36] Dorshelmer W.T., Drewry C.B., et al. Removing Nitrate from Groundwater. Water Engineering & Management. 1997(12):20-24.
    [37]朱艳芳,金朝晖.催化还原脱除地下水中硝酸盐的研究.环境科学学报, 2006, 26(4):567-571.
    [38] Paul Westerhoff, Jenifer James. Nitrate Removal in zero-valent Iron Packed Columns. WaterResearch. 2003(37):1818-1830.
    [39]康海彦,金朝晖.铁屑修复地浸采铀地下水中硝酸盐污染的研究.农业环境科学学报, 2006, 25:198-200.
    [40]吴耀国.地下水环境中反硝化作用.环境污染治理技术与设备, 2002, 3(3):27-31.
    [41] Bruce O., et al. Hydrogenotrophic Denitrification in a Micro porous Membrane Bioreactor. Water Research. 2002(36):4683-4690.
    [42] S.E.Oh, et al. Effect of Organics on Sulfur-utilizing Autotrophic Denitrification under Miaxotrophic Conditions of Biotechnology. 2001(92):1-8.
    [43]邵坚,常亮,刘雅莉. PRBs-地下水修复的新技术.河南科技, 2006, 6:62.
    [44]金赞芳,李文腾等.地下水硝酸盐去除方法.水处理技术, 2006, 32(8):34-37.
    [45] Ying-chih Chiu et al. Determination of Optimal COD/Nitrate Rratio for Biological Eenitrification. International Biodeterioration & Biodegradation. 2003(51):43-49.
    [46]周玲,金朝晖等.地下水硝酸盐氮的修复技术.环境卫生工程, 2004, 12(3):127-131.
    [47] Peter Kesseru, et al. Biological Denitrification in a Continuous-flow Pilot Bioreactor Containing Immobilized Pseudomonas Butanovora Cells. Bioresource Echnology, 2003(87):75-80.
    [48]黄国强,李鑫钢,李凌,李天成.地下水有机污染的原位生物修复进展.化工进展, 2001, 10:3-15.
    [49] Schipper L.A., et al. Nitrate Removel from Ground Water Using a Denitrification Wall Amended with Sawdust:Field Trials. J.Environmental Quality. 1998(27):664-668.
    [50]金朝晖等.地下水原位生物修复技术.城市环境与城市生态, 2002, 15(1):10-12.
    [51]代世峰,任德贻,唐跃刚.煤中常量元素的赋存特征与研究意义.煤田地质与勘探, 2005, 33(2):1-5.
    [52]刘桂建,郑刘根,高连芬.煤中某些有害微量元素与人体健康.中国非金属矿工业导刊, 2004(5):78-80.
    [53]汪广恒,周安宁,郭蓉,葛岭梅. SPI改性煤和氧化煤的生物降解研究.煤炭转化, 2005, 28(3):6-9.
    [54]杨卉艳,李文英.煤的微生物改性方法及改性产物分析和利用.煤化工, 2005(2):12-15.
    [55]阳卫军,彭长宏,唐谟堂.煤的微生物转化.现代化工, 2001, 21(6):12-15.
    [56]王龙贵,张明旭,欧泽深,沈国娟.煤炭微生物转化技术研究状况与前景分析.洁净煤技术, 2006, 12(3):62-66.
    [57]刘明举,许考,何学秋.煤表面电磁改性红外光谱实验研究.中国矿业大学学报, 2004, 33(1):79-81.
    [58]周俊虎,李艳昌,程军等.神华煤微波改性提高成浆性能的研究.煤炭学报, 2007, 32(6):617-621.
    [59]程志强.热力改性对神华煤成浆性的影响.煤炭科学技术, 2007, 35(6):84-87.
    [60]周俊虎,李艳昌,程军等.神华煤热处理改性提高成浆性能的研究.热力发电, 2007(7):21-24.
    [61]朱红,王淀佐,李虎林,欧泽深.电化学法对细粒煤表面改性机理的研究.煤炭学报, 2000, 25(3):307-311.
    [62]田晓燕,胡奇林,刘万毅.重铬酸钾改性煤基活性炭催化合成环己酮乙二醇缩酮.化学世界, 2006:618-621.
    [63]牛蓉,卢建军,李凡,朱素渝,谢克昌.煤的表面处理及润湿性研究.煤炭转化, 2001, 24(1):44-49.
    [64]郝明芳,卢建军,李凡,朱素渝,谢克昌.微生物法对煤进行改性的研究进展.煤炭转化, 2002, 25(1):23-27.
    [65]王龙贵,张明旭,欧泽深,沈国娟.白腐真菌降解转化煤炭的机理研究.煤炭科学技术, 2006, 34(3):40-43.
    [66]王丽丽,赵林,谭欣,闫博.不同碳源及其碳氮比对反硝化过程的影响.环境保护科学, 2004, 30(121):15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700