内置H型钢预应力混凝土组合梁受力性能与设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内置H型钢预应力混凝土组合梁是指在内置H型钢混凝土组合梁的H型钢上、下翼缘间合理布置并张拉预应力筋,产生预定量值的等效荷载,使得控制截面实际受到的净荷载效应明显减小的新型梁。这种新型梁与普通内置H型钢混凝土梁相比,当作用荷载和跨度相同时,截面尺寸可明显减小;当作用荷载和截面尺寸相同时,跨越的跨度可明显增大。这类梁可用于新建工程,也可用于套建增层工程。因此,对这种梁开展研究具有一定的现实意义。
     对普通内置型钢混凝土组合梁的刚度、裂缝及承载力的研究是有报道的,且也有工程建设标准。但未见有预应力及预应力筋(束)对这类梁裂缝分布及开展影响的报道,也未见预应力及预应力筋对这类梁刚度影响的报道。这类梁的受力性能也应有其自身特点。为此,设计制作了以内置H型钢、非预应力筋、预应力度为变量的5根内置H型钢预应力混凝土简支组合梁,其型钢含钢率为6.65%~7.24%之间,并完成了对其三分点加荷试验,考察了从开始加荷至破坏的全过程。试验结果表明,试验梁开裂对荷载—跨中变形关系曲线的走向影响不大,H型钢受拉翼缘或纵向受拉非预应力钢筋屈服点成为曲线的转折点,从加载到达到试验梁的正截面承载能力极限状态,荷载—跨中变形关系曲线呈双折线特征。试验梁破坏后仍具有一定的刚度和承载力,卸载后残余裂缝宽度和残余变形相对较小,这类梁具有良好的变形恢复能力。
     钢连续梁可进行充分的内力重分布,普通钢筋混凝土连续梁的弯矩调幅系数有表可查,预应力混凝土连续梁弯矩调幅的计算方法也有报道。对内置H型钢预应力混凝土连续梁,我们采用以支座控制截面达到承载能力极限状态时该截面荷载作用下弹性弯矩计算值与内置H型钢实际承担弯矩的差值为调幅对象,以塑性铰的塑性转角与梁截面有效高度比值(称为相对塑性转角)为自变量求解弯矩调幅系数的思路。设计制作了3根内置H型钢预应力混凝土连续梁,这三个试件以支座控制截面预应力度、支座控制截面相对受压区高度和跨中控制截面受弯承载力为关键参数。完成了这三个试件每跨跨中单点集中加荷试验,考察了从加荷到破坏的全过程。获得了这类连续梁等效塑性铰长度的计算公式,等效塑性铰长度随预应力度的增大而减小。应用弯矩—曲率非线性全过程分析方法,获得了9根模拟连续梁的极限荷载,丰富了样本空间。基于模型的试验结果和对模拟梁的非线性分析结果,建立了以支座控制截面相对塑性转角为自变量的弯矩调幅系数计算公式。
     提出了包括材料选择,截面选择,内力计算,型钢、预应力筋、非预应力筋选配,斜截面计算,变形验算及裂缝验算和施工方法等内容的内置H型钢预应力混凝土连续梁的设计建议。
Prestressed concrete composite beam with encased H-steel (PCCBEH)refers to a kind of new beam, in which the presrtressing steel is rationally arranged and tensioned between the top flange and the bottom flange of H-steel, and the scheduled equivalent load is formed which can reduced the net load effect acted on the critical section. Compared with the common encased H-steel concrete composite beam, the dimension of the cross section of PCCBEH can be distinctly decreased with the same load and the same span; the span can be distinctly increased with the same load and the same cross section. This beam can be used in the new project, and it can also be used in the out-jacketing frame project for adding stories. So, it is of practical significance to do some research on this PCCBEH.
     For the common encased steel concrete composite beam, the research on the stiffness, the crack and the carrying capacity had been reported, and the construction standard can be used to guide the design and construction. But there is no report on the influence on of prestress and prestressing steel on the distribution of crack as well as their influence on stiffness. PCCBEH has its own characteristic on the mechanical performance. 5 PCCBEHs were designed and fabricated with the encased H-steel, non-prestressing steel and the prestressing degree as the variable and the steel ratio is 6.65%~7.24%. These 5 beams were tested with the two-point load test. The whole process from the beginning of loading to failure was investigated. Test results indicated: cracking of the beam affected little on the curve of load-deflection at the midspan. The yield point of the tensile flange of the H-steel and the tensile longitudinal non-prestressing steel bar become the turning point of the curve. Form the beginning of loading to reaching the strength ultimate limit state of the beam, the curve of load-deflection at the midspan was double broken line. The beam still had a certain stiffness and carrying capacity when it failed. The residual crack width and the residual deflection was relative small after unloading. PCCBEH had good ability on recovery of deflection.
     The sufficient redistribution of plastic internal force can occur in continuous steel beams, and the moment modification coefficient of the common concrete continuous beam has been listed in literature. There already have some reports on the calculation method of moment modification for prestressed concrete continuous beams. For PCCBEH, the idea for calculating the moment modification coefficient is put forward: the object can be modified is the deference between the elastic calculated moment caused by the load and the moment subjected by H-steel at the critical section at the intermediate support when reaching the ultimate limit state. The variable is the relative plastic rotation that is the ratio of rotation of the plastic hinge to the effective depth of the section. 3 continuous PCCBEHs were designed and fabricated with 3 key factors. They were: the prestressing degree of the critical section at the intermediate support, the relative depth of the critical section at the intermediate support and the carrying capacity of the critical section at the midspan. 3 beams were test with a single load on each midspan. The whole process from the beginning of loading to failure was investigated. The calculation formula for the length of the equivalent plastic hinge was got. It decreased with the increase of the prestressing degree. The ultimate load of 9 simulated continuous beams was obtained by using the moment-curvature nonlinear whole process analysis method, so the sample space is enriched. Based on the model test results and the simulated nonlinear analysis results, the calculation formula of the moment modification coefficient is established with the relative plastic rotation of the critical section at the intermediate support is the variable.
     Design proposals are presented for PCCBEH including selection of materials, selection of sections, calculation of internal force, selection and configuration of steel, prestressing steel, non-prestressing steel bar, calculation of the oblique section, control and check of crack, control and check of deflection, construction method and so on.
引文
1李惠.高强混凝土及其组合结构.科学出版社,2004:259~275
    2赵世春.型钢混凝土组合结构计算原理.西南交通大学出版社,2004:11~25
    3刘军进,吕志涛.预应力钢骨混凝土梁的理论分析和计算方法研究.工程力学. 2000,(增刊):175~181
    4白国良,赵鸿铁,文双玲.实腹式型钢混凝土(SRC)梁正截面承载力计算.钢结构. 1999,14(4):22~25
    5白国良,赵鸿铁.实腹式型钢混凝土梁抗弯承载力计算方法.西安建筑科技大学学报, 1999,31(3):211~214
    6叶洋,张权斌.型钢混凝土受弯构件开裂弯矩的计算初探.建筑结构. 2009,7(2):130~132
    7刘天明.无粘结预应力钢-混凝土连续梁理论与试验研究.吉林大学博士学位论文. 2009:93~95
    8张培信.钢-混凝土组合结构设计.上海科学技术出版社, 2004:62~65
    9任君,杜洋,陈永庆.钢骨混凝土构件的受力性能研究综述.建筑结构. 2008,59(9):13~15
    10李峰.预应力钢骨混凝土梁承载能力试验研究.重庆大学硕士学位论文. 2007:5~8
    11赵风华.钢-混凝土组合梁的抗弯承载力分析.常州工学院学报. 2008,21(2):1~4
    12徐杰,傅传国,戴航,李玉莹,赵国栋.型钢混凝土及预应力型钢混凝土梁试验研究.工程抗震与加固. 2007,29(5):57~62
    13邵永健.型钢轻骨料混凝土梁的力学性能及设计方法的试验研究.西安建筑科技大学硕士学位论文. 2007:1~4
    14董建菲,魏巍,辛欣.型钢混凝土结构的研究发展及应用.陕西建筑. 2009,(164):5~7
    15 E.J. Barbero, S.H. Fu, L. Raftoyiannis. Ultimate Bending Strength of Composite Beams. Journal of Materials in Civil Engineering. 1991,3(4):292~306
    16 M. Gaetano, C. Edoardo, F. Giovanni. Modeling of Steel-Concrete Composite Beams Under Negative Bending. Journal of Engineering Mechanics. 1999, 125(6): 654~662
    17 S. Morino. Recent Development in Hybrid Structures in Japan-Research, Design and Construction. Engineering Structures. 1998, 20: 336~346
    18 Xiao Hui, Li Aiqun, Du Derun. Experimental Study on Ultimate Flexural Capacity of Steel Encased Concrete Composite Beams. Journal of Southeast University (English Edition). 2005, 21(2): 191~196
    19张根俞,梁书亭,朱筱俊,覃志尚.考虑约束效应的型钢混凝土梁抗弯承载力计算分析.东南大学学报. 2009,39(3):569~573
    20李峰,秦士洪,丁智潮,杨波.预应力钢骨混凝土梁受弯性能试验研究.哈尔滨工业大学学报. 2007,39: 272~275
    21陶兵,彭伟,杨雨嘉.国内外型钢混凝土结构设计方法的比较.铁道建筑. 2008,28(4):107~108
    22叶列平,方鄂华.钢骨混凝土构件正截面承载力计算.建筑结构. 1999,(8):56~60
    23叶列平,赵树红,方鄂华.钢骨混凝土构件正截面承载力计算.工程力学. 1999,16(2):29~36
    24王琳,王士奇,王玉华.常用截面钢骨混凝土梁简化设计方法.钢结构, 2008,23(7):10~12
    25 G. Porco, G. Spadea, R. Zinno. Finite Element Analysis and Parametric Study of Steel-Concrete Composite Beams. Cement and Concrete Composites. 1994,16(4):275~283
    26 Alessandro Zona, Gianluca Ranzi. Finite Element Models for Nonlinear Analysis of Steel–Concrete Composite Beams with Partial Interaction in Combined Bending and Shear. Finite Elements in Analysis and Design. 2011,47(2):308~313
    27 Nan Zhang, Experimental and Theoretical Studies on Composite Steel–Concrete Box Beams with External Tendons. Engineering Structures. 2009,31(2):275~283
    28 Eurocode No.4. Design of Composite Steel and Concrete Structures. Part 1.1: General Rules for Building,Revised Draft,1992:8~13
    29 European Convention for Constructional Steelwork. Composite Structure. The Construction Press. London and New York,1981:80~122
    30 British Standards Institution. Structural Use of Concrete: BS8110. London,1985:39~55
    31 R. W. Furlong. Strength of Steel-Encased Concrete Beam, Proceeding of ASCE, Journal of the Strength Division, 1967, 93(ST5):113~124
    32 R. W. Furlong. Strength of Steel-Encased Concrete Beam-Column, Proceeding of ASCE, Journal of the Strength Division, 1968, 94(ST1):71~82
    33 Abolhassan Astaneh-Asl. Behavior and Design of Steel and Composite Structures Including Seismic Effects. University of California, Berkeley, 2004:67~101
    34 Reinhard Bergmann, Gerhard Hanswille. New Design Method for Composite Columns Including High Strength Steel. 2006,36:381~388
    35 R. Kindmann, R. Bergmann. Effect of Reinforced Concrete Between the Flanges of the Steel Profile of Partially Encased Composite Beams. Journal of Constructional Steel Research. 1993:27(1-3): 107-122
    36 Thierry Chicoine, Bruno Massicotte, Robert Tremblay. Long-Term Behavior and Strength of Partially Encased Composite Columns Made with Built-up Steel Shapes. Journal of Structural Engineering. 2003, 129(2): 141-150
    37 JGJ 138—2001.型钢混凝土组合结构技术规程,2002:17~24
    38 YB 9082—97.钢骨混凝土结构设计规程,1998:60~66
    39日本建筑学会.钢骨钢筋混凝土结构计算标准及解说.冯乃谦,叶列平等译.北京:能源出版社,1998:22~24
    40邵永健,刘凡,翁晓红等.型钢轻骨料混凝土梁挠度与裂缝宽度的计算.建筑结构. 2009,39(6):22~24
    41徐世烺.混凝土结构裂缝形成与发展机理及控制技术.国家自然科学基金重点项目结题报告.大连理工大学,2009:1~310
    42欧阳坚.型钢混凝土受弯构件短期刚度的试验研究.科研开发,2009,(4):21~25
    43叶列平.钢-混凝土连续组合梁负弯矩区裂缝宽度.北京工业大学学报. 2008,34(7):714~719
    44赵鸿铁.钢与混凝土组合结构.科学出版社,2001:123~127
    45 GB 50010-2002.混凝土结构设计规范,2002:42~60
    46 Alain Lachal, Jean-Marie Aribert, Adrian Ciutina. Seismic Performance of End-Plate Moment Resisting Composite Joints. 2006,59:631~640
    47 W. Minoru. Composite Construction in Steel and Concrete. New York Noy Hamphire,1987:483~498
    48 Sandeep Chaudhary, Umesh Pendharkar, A.K. Nagpal. Bending Moment Prediction for Continuous Composite Beams by Neural Networks. Advances in Structural Engineering. 2007,10(4):439~454
    49 M.V.V.S. Murthy, D.Roy Mahapatra, K. Badarinarayana, S. Gopalakrishnan. ARefined Higher Order Finite Element for Asymmetric Composite Beams. Compos Struct. 2005, 67:27~35
    50 K.S. Virdi, P.J. Dowling. A Unified Design Method for Composite Columns. CESUC Report CCU, Imperial College, London, 1975:381~389
    51 C. Faella, V. Consalvo, E. Nigro. Some Remarks on the Ultimate and Serviceability Checks of Steel-Concrete Composite Beams According to Eurocode 4. Proceedings of the Engineering Foundation Conference. Reston, USA: ASCE, 1996, 406~419
    52 A. Ghali. Deflection of Reinforced Concrete Members: A Critical Review. ACI Structural Journal. 1993, 90: 364~373
    53车顺利.型钢高强高性能混凝土梁的基本性能及设计计算理论研究.西安建筑科技大学硕士学位论文. 2008:109~113
    54聂建国,刘明,叶列平.钢-混凝土组合结构.中国建筑工业出版社,2005:37~51
    55杨佳林.实腹式预应力型钢混凝土梁刚度的计算方法研究.科技情报开发与经济. 2007,17(7):187~189
    56傅传国,李玉莹,梁书亭.预应力型钢混凝土简支梁受弯性能试验研究.建筑结构学报. 2007,6:63~73
    57傅传国.预应力钢骨高强混凝土叠层空腹桁架转换层试验研究.南京东南大学,2000,4:45~87
    58王连广.钢与混凝土组合结构理论与计算.科学出版社,2005:84~107
    59赵世春,施建平.型钢混凝土梁受弯刚度计算.西南交通大学学报.2004,39(6):730~733
    60沈银良.型钢混凝土梁受力性能试验研究.南京理工大学硕士学位论文. 2005:55~61
    61李灏.高强型钢混凝土受弯构件的受力性能研究.西安建筑科技大学硕士论文. 2005:15~28
    62 G. Ranzi, M.A. Bradford. Nonlinear Analysis of Composite Beams with Partial Shear Interaction by Means of the Direct Stiffness Method. Steel and Composite Structures. 2009,9(2):131~158
    63 G. Ranzi, A. Zona. A Steel-Concrete Composite Beam Model with Partialinteraction Including the Shear Deformability of the Steel Component. Steel and Composite Structures. 2007:231~236
    64 Sandeep Chaudhary, Umesh Pendharkar, A.K. Nagpal. Time-Dependent Behavior of Continuous Composite Beams. Steel and Composite Structures. 2007:323~328
    65 Shiming Chen. Experimental study of prestressed steel–concrete composite beams with external tendons for negative moments. Journal of Constructional Steel Research. 2005,61(12):1613~16301
    66傅传国,李玉莹,梁书亭,孙晓波,徐杰.预应力和非预应力型钢混凝土框架受力及抗震性能试验研究.防灾减灾工程学报. 2007,27:372~377
    67徐杰,戴航,傅传国,周晓娜.预应力型钢混凝土梁正截面承载力计算.工业建筑. 2007,37:571~574
    68周晓娜,徐杰,连峰,傅传国,周继远.预应力型钢混凝土梁受弯性能非线性分析.山东建筑大学学报. 2009 ,24(4):316~320
    69慕光波,王连广,周乐.预应力钢骨混凝土受弯构件承载力计算.东北大学学报. 2008,29(11):1648~1650
    70刘鲲鹏,李卫东,张涛.浅谈预应力型钢混凝土结构的发展概况.工业技术. 2009,80(12):60~61
    71杨波.预应力钢骨混凝土构件裂缝试验研究.重庆大学硕士学位论文. 2007:68~72
    72傅传国,李玉莹,梁书亭.预应力型钢混凝土简支梁受弯性能试验研究.建筑结构学报. 2007,28(3):62~73
    73 S.M.R. Lopes, L.F.A. Bernardo. Plastic Rotation Capacity of High-Strength Concrete Beams. Materials and Structures/Materiaux et Constructions. 2003, 36(255):22~31
    74 Marisa Pecce, Giovanni Fabbrocino. Plastic Rotation Capacity of Beams in Normal and High-Performance Concrete. ACI Structural Journal. 1999, 96(2): 290~296
    75 G. Ranzi, M.A. Bradford. Nonlinear Analysis of Composite Beams with Partial Shear Interaction by Means of the Direct Stiffness Method. Steel and Composite Structures. 2009,9(2):131~158
    76 G. Ranzi, M.A. Bradford. Direct Stiffness Analysis of A Composite Beam-Column Element with Partial Interaction. Computers and Structures. 2007, 85:1206~1214
    77 Agnieszka Bigaj, Joost Walraven. Size Effects in Plastic Hinges of Reinforced Concrete Members. Heron. 2002,47(1):53~75
    78 T. Weil, J. Schnell. Continuous Composite Beams with Large Web Openings. Proceedings of the 3rd International Conference on Steel and Composite Structures. ICSCS07-Steel and Composite Structures,2007, 171~176
    79 Michael H. Scott, Gregory L. Fenves. A Plastic Hinge Simulation Model forReinforced Concrete Members. 17th Analysis and Computation Specialty Conference. 2006,7:1~11
    80 Mehmet Inel, Hayri Baytan Ozmen. Effects of Plastic Hinge Properties in Nonlinear Analysis of Reinforced Concrete Buildings. Engineering Structures. 2006,28(11):1494~1502
    81 P. Mendis. Plastic Hinge Lengths of Normal and High-Strength Concrete in Flexure. Advances in Structural Engineering. 2001,4(4):189~195
    82 Alessandro Zona, Laura Ragni, Andrea Dall’Asta. Simplified Method for the Analysis of Externally Prestressed Steel–Concrete Composite Beams. Journal of Constructional Steel Research. 2009,65(2):308~313
    83杨春峰.无粘结预应力混凝土连续梁截面曲率延性分析与塑性设计.哈尔滨工业大学硕士学位论文. 2003:37~52
    84王常雷.预应力钢-混凝土组合梁的动力特性研究.同济大学硕士学位论文. 2008:61~62
    85金波,童根树.钢-混凝土连续组合梁的内力分析研究的研究.浙江建筑. 2008,4(4):12~15
    86 R.J. Quantrill, L.C. Hollaway. The Flexural Rehabiltation of Reinforced Concrete Beams by the Use of Prestressed Advanced Composite Plates. Composites Science and Technology. 1998,58:1259~1275
    87 H.-L. Hsu, H.-L. Yu. Seismic Performance of Concrete-Filled Tubes with Restrained Plastic Hinge Zones. Journal of Constructional Steel Research. 2003, 59(5):587~608
    88 Yong Xia, Hong Hao, Andrew J. Deeks. Condition Assessment of Shear Cormectors in Slab-Girder Bridgesvia Vibration Measuremenis. Journal of Briudge Engineering February. 2008,13(1):43~53
    89 M.A. Bradford. Restrained Distortional Buckling in Continuous Composite Beam. Composite Structures Steel and Composite Structures. 2007:37~41
    90 A. H. Al-Shaikh, R. Z. Al-Zaid. Effect of Reinforcement Ratio on the Effective Moment of Inertia of Reinforced Concrete Beams. ACI Journal of Structure. 1998, 90:148~149
    91 G. Ranzi, M.A. Bradford. Analytical Solutions for the Time-Dependent Behaviour of Composite Beams with Partial Interaction. International Journal of Solids and Structures. 2006,43:3770~3793
    92 Sandeep Chaudhary, Umesh Pendharkar, A.K. Nagpal. Time-Dependent Behavior ofContinuous Composite Beams. Proceedings of the 3rd International Conference on Steel and Composite Structures,ICSCS07-Steel and Composite Structures,2007, 323~328
    93 J.G. Nie, C.S. Cai, T.R. Zhou. Experimental and Analytieal Study of Prestressed Steel-Conerete Composite Beams Considering SliP Effeet. Journal of Engineering Structure. 2007,4:220 ~231
    94郑文忠,解恒燕.内置钢箱-混凝土组合梁受力性能与设计方法研究.哈尔滨工业大学博士学位论文. 2007:4~9
    95 CEB欧洲国际混凝土委员会. 1990CEB-FIP模式规范.北京:中国建筑科学研究院结构所规范室译. 1991:244~259
    96构件弹塑性计算专题研究组.钢筋混凝土连续梁弯矩调幅限值的研究.建筑结构. 1982,(4):37~42
    97石平府.部分预应力混凝土超静定结构的内力重分布和弯矩调幅.东南大学硕士学位论文. 1995:93~98
    98 P. Fangning. Nonlinear Modles of Reinforced and Post-tensioned Concrete Beams. Element Journal of Structural Engineering. 2001,(2):111~119
    99 K.B. Prodyot. Partially Prestressed Continuous Composite Beams. Journal of Structural Engineering ASCE. 1987,113(9):1926~1938
    100 G. Fabbrocino, G. Manfredi, E. Cosenza. Analysis of Continuous Composite Beams Including Partial Interaction and Bond. Journal of Structure Engineering. 2000,126(12):1288~1294.
    101郑文忠,王英.预应力混凝土房屋结构设计统一方法与实例.黑龙江科学技术出版社,1998:51~57
    102沈洋.体外预应力钢-混凝土连续组合梁的弯矩调幅.同济大学硕士学位论文. 2008:15~17
    103 B. Jurkiewiez, J.M. Hottier. Static Behaviour of A Steel–Concrete Composite Beam with An Innovative Horizontal Connection. Journal of Constructional Steel Research 2005, 61:1286~1300
    104 Tie-ming Hu, Cheng-kui Huang, Xiao-feng Chen. Fatigue Properties of Special Kind of Reinforced Concrete Composite Beams. Journal of Central South University of Technology.2010,17(1):142~149
    105 Whenzhong Zheng, Jing Ji. Dynamic Performance of Angle-Steel Concrete Columns Under Low Cyclic Loading-I: Experimental Study. Earthquake Engineering andEngineering Vibration. 2008,7(1):67~75
    106 Wenzhong Zheng, Kun Wang, Geming Zhang. Experimental Study on Hysteretic Behavior of Prestressed Truss Concrete Composite Beams. Earthquake Engineering and Engineering Vibration. 2010,9(1):65~74
    107 B. Jurkiewiez, C. Meaud, L. Michel. Non Linear Behaviour of Steel–Concrete Epoxy Bonded Composite Beams. Journal of Constructional Steel Research. 2011,67:389~397
    108 J.G. Nie, C.S. Cai, H. Wu, J.S. Fan. Experimental and Theoretical Study of Steel–Concrete Composite Beams with Openings in Concrete Flange. Engineering Structures. 2006,28(7): 992~1000
    109 Shiming Chen, Zhibin Zhang. Effective Width of A Concrete Slab in Steel–Concrete Composite Beams Prestressed with External Tendons. Journal of Constructional Steel Research. 2006,62:493~500
    110谭燕秋,王伟,武祥宝.钢-混凝土连续组合梁受力性能的有限元分析.钢结构. 2009,24(2):20~22
    111史文田.钢筋混凝土连续梁塑性转动能力的研究.西北水力发电. 1986,(1):35~44
    112 Francesca Giussani. The Effects of Temperature Variations on The Long-Term Behaviour of Composite Steel–Concrete Beams. Engineering Structures.2009,31(10): 2392~2406
    113 O. Mirza, B. Uy. Behaviour of Headed Stud Shear Connectors for Composite Steel–Concrete Beams at Elevated Temperatures. Journal of Constructional Steel Research. 2009,65(3): 662~674
    114 B. Jurkiewiez, S. Braymand. Experimental Study of A Pre-Cracked Steel–Concrete Composite Beam. Journal of Constructional Steel Research. 2007,63(1): 135~144
    115 Gianluca Ranzi, Alessandro Zona. A Steel-Concrete Composite Beam Model with Partial Interaction Including the Shear Deformability of the Steel Component. Engineering Structures. 2007,29(11): 3026~3041
    116 Umesh Pendharkar, Sandeep Chaudhary, A.K. Nagpal. Neural Network for Bending Moment in Continuous Composite Beams Considering Cracking and Time Effects in Concrete. Engineering Structures. 2007,29(9): 2069~2079
    117王刚,王福建,申永刚,曾进忠.双层连续组合梁弹塑性状态的界面滑移.浙江大学学报(工学版). 2008,43(11):2023~2027
    118汤昱川,叶列平.钢骨混凝土梁刚度计算的内力分配法.工业建筑. 2001,31 (12):33~36
    119 Hamid R. Valipour, Mark A. Bradford. A Steel-Concrete Composite Beam Element with Material Nonlinearities and Partial Shear Interaction. Finite Elements in Analysis and Design. 2009,45(12): 966~972
    120 J.M. Irwan, A.H. Hanizah, I. Azmi. Test of Shear Transfer Enhancement in Symmetric Cold-Formed Steel–Concrete Composite Beams. Journal of Constructional Steel Research. 2009,65(12): 2087~2098
    121 B. Jurkiewiez. Static and Cyclic Behaviour of A Steel–Concrete Composite Beam with Horizontal Shear Connections. Journal of Constructional Steel Research. 2009,65(12): 2207~2216
    122 L. Bouazaoui, G. Perrenot, Y. Delmas, A. Li. Experimental Study of Bonded Steel Concrete Composite Structures. Journal of Constructional Steel Research.2007,63(9): 1268~1278
    123 C. Amadio, M. Fragiacomo. Effective Width Evaluation for Steel–Concrete Composite Beams. Journal of Constructional Steel Research. 2002,58(3):373~388
    124 M.B. Wong, J.I. Ghojel. Strength of Steel Concrete Composite Beam in Fire. Fourth International Conference on Advances in Steel Structures. 2005: 973~980
    125 Andrea Dall’Asta, Alessandro Zona. Non-Linear Analysis of Composite Beams by A Displacement Approach. Computers & Structures. 2002,80(27): 2217~2228
    126 Ashraf Ayoub. A Force-Based Model for Composite Steel–Concrete Beams with Partial Interaction. Journal of Constructional Steel Research. 2005,61(3): 387~414
    127周钦,刘进朝.型钢混凝土梁受弯承载力的简化计算.甘肃科技. 2008,24(9):130~131
    128施亮.型钢高强高性能混凝土梁受力性能试验研究与刚度裂缝理论分析.西安建筑科技大学硕士学位论文. 2007:64~68
    129 Shiming Chen, Xindi Wang, Yuanlin Jia. A Comparative Study of Continuous Steel–Concrete Composite Beams Prestressed with External Tendons: Experimental Investigation. Journal of Constructional Steel Research. 2009,65(7):1480~1489
    130 Zheng Wenzhong, Xie Hengyan. Experimental Research and Analysis on Encased Steel Box Concrete Beams. Advances in Structural Engineering. 2009,12(2):210~230
    131郑文忠,李和平,王英.超静定预应力混凝土结构塑性设计.哈尔滨工业大学出版社,2002:124~131
    132何政,欧进萍.钢筋混凝土结构非线性分析.哈尔滨工业大学出版社, 1998:88~124
    133 GB/T 14370.预应力筋用锚具、夹具和连接器,2000:3~14
    134 JGJ85-2002.预应力筋用锚具,夹具和连接器应用技术规程,2002:5~12
    135傅传国,娄宇.预应力型钢混凝土结构试验研究及工程应用.科学出版社出版社,2007:50~58
    136计静,郑文忠.三种套建增层结构在既有房屋增层改造中的应用.哈尔滨工业大学学报. 2008(1):76~87
    137石晶,白国良.空腹式型钢混凝土框架柱的恢复力特性.西安公路交通大学学报. 2000, 2(4):94~97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700