用户名: 密码: 验证码:
基于环氧丙烯酸酯有机—无机复合体系的紫外光固化耐热绝缘涂料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫外光固化涂料具备低VOC(挥发性有机化合物)、节能、高效等突出的环境友好特征,自问世以来得到了迅速发展,应用领域日益扩大。耐热绝缘涂料是一种重要的功能性涂料,在工业生产及日常生活等许多领域都发挥着重要作用,高效节能和环保化是其主要发展趋势。本研究创新性的提出了将紫外光固化技术用于耐热绝缘涂层制备的新颖思路,尝试制备基于EA(环氧丙烯酸酯)有机-无机复合体系的紫外光固化耐热绝缘涂料,对涂料制备过程中低聚物合成、涂料光固化过程、各种填料对紫外光固化涂层性能影响及紫外光固化耐热绝缘涂层性能进行了研究。
     对低聚物EA制备过程优化研究结果表明,反应温度是环氧基与丙烯酸酯化反应的重要影响因素。表观动力学分析表明,反应温度在80℃-110℃时,酯化反应为一级反应。随着催化剂N,N-二甲基苯胺用量的增大,反应速率提高。阻聚剂对苯二酚用量对反应速率的影响不显著。投料比(环氧树脂与丙烯酸的物质的量之比)n(Er):n(AA)对反应速率的影响不大,丙烯酸过量时合成产物的黏度较低。深入研究了以往研究中较少涉及的投料方式对酯化反应的影响,结果表明,投料方式可明显影响酯化反应初期的反应速率,但对总反应时间的影响不大。先将丙烯酸、催化剂、阻聚剂混合后再向环氧树脂中滴加的方式是最佳的投料方式,有利于提高合成产物质量。经正交试验确定EA制备的优化工艺参数为:反应温度为110℃、N,N-二甲基苯胺用量为2.0wt%、对苯二酚用量为0.2wt%、投料比n(Er):n(AA)为1:1.9。EA光固化涂层性能的初步研究表明,涂层性能与EA和活性稀释剂TPGDA(三缩丙二醇双丙烯酸酯)的配比密切相关,随着EA含量的增加,涂层的硬度、与钢铁基材的附着力及耐腐蚀性均先提高后下降。
     采用红外光谱法和表干法分别对EA/纳米Al2O3、EA/PI:聚酰亚胺)树脂粉、EA/云母粉、EA/滑石粉及EA/低温玻璃粉复合涂料体系的光固化过程进行了研究。结果表明,各种填料的加入均未改变体系的光固化行为特征。纳米Al2O3、PI树脂粉、滑石粉、低温玻璃粉的加入均使得体系的光固化速率及双键转化率下降。与其它填料不同的是,当云母粉添加量为EA与TPGDA总质量的2%时体系的光固化速率和双键转化率略有提高,而后随着添加量的增大,光固化速率和双键转化率下降。纳米A1203复合涂料表干时间随其添加量的增大而缩短。PI树脂粉、低温玻璃粉复合涂料的表干时间均随填料添加量的增大而延长。云母粉和滑石粉复合涂料的表干时间随填料添加量的增加先缩短后延长。将光引发剂BP(二苯甲酮)与184(1-羟基环己基苯甲酮)复配使用可显著提高光引发效率、缩短涂料的表干时间。体系光固化速率和双键转化率随复配光引发剂用量的增大先提高后降低,提高光引发剂浓度对复合涂料的表层固化有利。增大紫外光辐照强度可显著提高复合体系的光固化速率及双键转化率、缩短表干时间。使用复配光引发剂、适当提高光引发剂用量、采用高的紫外辐照强度可有效弥补填料对体系光固化过程所带来的负面影响。
     对EA/纳米Al2O3、EA/PI树脂粉、EA/云母粉、EA/滑石粉复合涂层的性能研究结果表明,适量的云母粉、滑石粉及PI树脂粉均能够对涂层起到补强作用,提高涂层的硬度、耐冲击性、柔韧性、附着力及耐腐蚀性,但过大的添加量会导致涂层的上述性能下降。适量的纳米Al2O3能够提高涂层的硬度、耐冲击性、柔韧性及附着力,但纳米Al2O3的加入会对涂层耐腐蚀性带来不利影响。纳米Al2O3、云母粉、滑石粉及PI树脂粉的加入均使涂层的热稳定性提高。
     以EA及TPGDA为有机成膜物,低温玻璃粉为高温成膜物,纳米Al2O3、云母粉、滑石粉及PI树脂粉为填料,制备紫外光固化耐热绝缘涂料。研究了涂料中各组分对涂层性能的影响规律。研究结果表明,拟选用的PbO-B2O3-ZnO系和P2O5-B2O3-Al2O3-K2O-Na2O-SiO2系两种低温玻璃粉中,PbO-B2O3-ZnO系低温玻璃粉具有更好的高温成膜性,以其为高温成膜物的涂层各项性能更优。随着PbO-B2O3-ZnO系低温玻璃粉添加量的增大,涂层在热处理前、300℃及600℃热处理后的附着力、耐冲击性、柔韧性、耐腐蚀性及绝缘性均先提高后下降。PbO-B2O3-ZnO系低温玻璃粉的适宜添加量为EA与TPGDA总质量的60%-70%。滑石粉可显著提高涂层热处理前后对钢铁基材的附着力,其在涂料中的适宜添加量为EA与TPGDA总质量的5%-10%。云母粉对涂层热处理前后的耐腐蚀性和绝缘性的影响较显著,其适宜添加量为EA与TPGDA总质量的5%-10%。在涂料中加入热固性耐高温树脂是提高涂层在“二次成膜”前衔接段性能的有效手段。热固性PI树脂粉可提高涂层在300℃热处理后的各项性能,其适宜添加量为EA与TPGDA总质量的2%-4%;少量的纳米Al2O3可使涂层热处理前后的各项性能均得到提高,其适宜添加量为EA与TPGDA总质量的2%-4%。
     最终制备出的紫外光固化耐热绝缘涂层具有较好的绝缘性及一定的综合性能。热处理前涂层附着力达1级、耐冲击性不低于31cm、柔韧性不大于6mm、24h中性盐雾实验后腐蚀面积比不大于40%,层间电阻值不低于140Ω.cm2/片;涂层在600℃热处理1h后表面平整、不开裂,附着力达2级、耐冲击性不低于22cm、柔韧性不大于12mm、24h中性盐雾实验后腐蚀面积比不大于50%,层间电阻值不低于20Ω·cm2/片。研究结果表明,将紫外光固化技术用于耐热绝缘涂层制备的思路是可行的。
UV curable coating with obvious environment-friendly characteristic such as low VOC (Volatile Organic Compound), energy saving, highly efficient, has been developed rapidly and widely in applications fields since it was discovered. Heat resistant insulating coating is an important functional coating, which plays an important role in industrial production, daily live and many other fields, its main development trend is high efficient, energy saving and environment-friendly. This research put forward the novel idea that the preparation of heat resistant insulating coatings by the UV curable technology, tried to prepare UV curable heat resistant insulating coating base on epoxy acrylate organic-inorganic composite system. During preparation of the coating, the synthesis of the oligomer, UV curing process, various fillers influence on the properties of UV curable coatings and properties of UV curable thermal insulating coatings were studied.
     The preparation process of the EA (epoxy acrylate) oligomer was studied, the results showed that the reaction temperature was an important factor between epoxy group and acrylic acid esterification. It was analyzed by apparent kinetics that the esterification reaction was the first order reaction when the reaction temperature was80℃~110℃. The reaction rate increased with the increasing amount of N,N-dimethylaniline catalyst. The amount of inhibitor hydroquinone had little effect on reaction rate. Feeding ratio (molar ratio of epoxy to acrylic acid) n(Er):n(AA) had little effect on reaction rate. When acrylic acid was excessive, the viscosity of the synthesis product was lower. The effect of feeding mode on esterification reaction was investigated which little involved in the past. The results showed that the feeding mode had significantly effect on the reaction rate of early esterification reaction, but little effect on the overall reaction time. The feeding mode that the acrylic acid, catalyst and inhibitor are premixed together and then added into epoxy is best feeding mode and it is advantageous to improving the quality of the production. The optimal parameters of EA preparation process was determined by orthogonal experiment:reaction temperature is110℃, the amount of N,N-dimethylaniline is2.0wt%, the amount of hydroquinone is0.2wt%, feeding ratio n(Er):n(AA) is1:1.9. The results of preliminary study on properties of UV curable coating showed that the properties was correlated tightly to the mixture ratio of EA and reactive diluent TPGDA (tripropylene glycol diacrylate), with increasing the content of EA, hardness, corrosion resistance and adhesion on steel substrate of the coatings firstly increased and then decreased.
     UV curing process of EA/nanoalumina, EA/PI (polyimide) resin powder, EA/mica powder, EA/talc powder and EA/low temperature glass powder composite coatings were studied by IR spectrum and tack free time method. The results showed that the various fillers didn't change the behavior characteristic of UV curing process. With nanoalumina, PI resin powder, talc powder, low temperature glass powder added to the system, UV curing rate and double bond conversion rate were dropped. Different from other fillers, when the amount of mica powder was2%of total mass of EA and TPGDA, UV curing rate and double bond conversion rate of the system increased slightly, but it was dropped when the amount of mica powder continuously increased. The tack free time of EA/nanoalumina composite coating was shortened with the amount of nanoalumina increased. The tack free time of EA/PI resin powder and EA/low temperature glass powder composite coatings were all prolonged with the amount of fillers increased. The tack free time of EA/mica powder and EA/talc powder composite coatings were firstly shortened and then prolonged with the amount of fillers increased. By mixing photoinitiator BP (benzophenone) and184(1-hydroxycyclohexyl phenyl ketone), photoinitiation efficiency was significantly improved and the tack free time was shortened. UV curing rate and double bond conversion rate of the composite coating were firstly increased and then decreased with the amount of mixing photoinitiator increased. High photoinitiator content was of advantage to curing of the surface layer. By increasing UV radiation intensity, UV curing rate and double bond conversion rate of composite system were significantly increased, the tack free time was shortened at the same time. By using mixed photoinitiator, high UV radiation intensity and appropriately increasing the amount of mixed photoinitiators, it could effectively compensate for the disadvantageous effect caused by fillers.
     The properties of EA/nanoalumina, EA/PI resin powder, EA/mica powder, EA/talc powder and EA/low temperature glass powder composite coatings were studied. The results showed that appropriate amount of mica powder, talc powder and PI resin powder were all able to improve properties of the coatings, such as enhancing hardness, impact resistance, flexibility, adhesion and corrosion resistance, but excessive fillers caused above-mentioned properties of the coatings to degrade. The appropriate amount of nanoalumina could improve hardness, impact resistance, flexibility and adhesion of the coatings, but it was disadvantageous effect on corrosion resistance of the coatings. Thermal stability of the coatings was all increased by adding nanoalumina, mica powder, talc powder and PI resin powder.
     The UV curable heat resistant insulating coatings were preparation with EA and TPGDA as organic film-forming materials, low temperature glass powder as high temperature film-forming materials, nanoalumina, mica powder, talc powder and PI resin powder as fillers. The influence of various components on properties of the coatings were investigated. The results showed that the high temperature film-forming properties of PbO-B2O3-ZnO system was better between PbO-B2O3-ZnO and P2O5-B2O3-Al2O3-K2O-Na2O-SiO2system, so properties of the coatings with its as high temperature film-forming materials was better. With the amount of PbO-B2O3-ZnO system low temperature glass powder increased, adhesion, impact resistance, flexibility, corrosion resistance and insulation of the coatings were all increased firstly and then decreased before heat treatment and after heat treatment at300℃and600℃. The optimal adding amount of PbO-B2O3-ZnO system low temperature glass powder was60%-70%of total mass of EA and TPGDA. Talc powder could significantly increase adhesion of the coatings on steel substrate before and after heat treatment, and its optimal adding amount was5%~10%of total mass of EA and TPGDA. Mica powder could significantly increase corrosion resistance and insulation of the coatings before and after heat treatment, and its optimal adding amount was5%~10%of total mass of EA and TPGDA. By adding thermoset heat resistant resin in the coatings is an efficient means to improve the properties of the coatings before "two-step" film-forming. Thermoset PI resin powder could increase various properties of the coatings after heat treatment at300℃, and its optimal adding amount was2%~4%of total mass of EA and TPGDA. A small amount of nanoalumina enables various properties of the coatings were improved before and after heat treatment, and its optimal adding amount was2%~4%of total mass of EA and TPGDA.
     The UV curable heat resistant insulating coatings with good insulating properties and passable synthetical properties were prepared finally. Before heat treatment, the adhesion of the coatings is up to grade1, impact resistance is not less than31cm, flexibility is not more than6mm, after neutral salt spray (NSS) text for 24h, the ratio of corrosion area is not more than40%, interlamination resistance is basically more than140Ω·cm2/piece; after heat treatment at600℃for1h, its surface smooth, non-cracking, its adhesion is up to grade2, impact resistance is not less than22cm, and flexibility is not more than12mm, after NSS text for24h, the corrosion area ratio is not more than50%, interlamination resistance is more than20Ω·cm/piece. According to the results, the idea that preparation of heat resistant insulating coatings by the UV curable technology is possible.
引文
1.耿耀宗.环境友好涂料配方与制造工艺[M],北京:中国石化出版社,2006:2
    2. 徐峰,邹侯招,储健.环保型无机涂料[M],北京:化学工业出版社,2004:5-11
    3.彭菊芳.涂料产品中的VOC定义及测定方法[J],涂料工业,2004,34(1):30-33
    4. 魏巍,王书肖,郝吉明.中国涂料应用过程挥发性有机物的排放计算及未来发展趋势预测[J],环境科学,2009,10(10):2809-2815
    5. 刘登良.工业涂料应对VOC法规的艰难历程和策略选择—兼论涂料行业可持续及科学发展[J],中国涂料,2009,24(6):1-4
    6. 肖新颜,夏正斌,张旭东,等.环境友好涂料的研究新进展[J],化工学报,2003,54(4):531-537
    7. 王锡春.工业涂装降低VOC的措施和节能减排[J],中国涂料,2008,23(4):54-57
    8.耿耀宗,王云清.环境友好工业涂料研发进展(Ⅰ)[J],现代涂料与涂装,2006,(1):1-7
    9.魏杰,金养智.光固化涂料[M],北京:化学工业出版社,2004:4-5
    10.吕延晓.紫外光/电子束(UV/EB)固化的应用现状与发展前景(二)[J],精细与专用化学品,2007,15(2):31-34
    11. Slavinsky T. Solving the'mystery'of UV curing:Technology advances lead to better, faster, cheaper application of industrial coatings[J], Metal Finishing,2006,104(4):50-56
    12.周其凤,范星河,谢晓峰.耐高温聚合物及其复合材料[M],北京:化学工业出版社,2004
    13.刘登良.特殊功能涂料及发展趋势[J],中国涂料,2009,24(9):9-11
    14.杨建文,曾兆华,陈用烈.光固化涂料及应用[M],北京:化学工业出版社,2004
    15. Civello J V, Lam J H W. Photoinitiated cationic polymerization with triarylsulfonium salts [J], J. Polym. Sci:Polym. Chem. Edi.,1979, (17):977-999
    16. Severin I, Rochdi E A, Poulain M. Mechanical and chemical characteristics of hermetically coated silica optical fibre[J], Surf. Coat. Technol.,2008,202:2494-2499
    17. Mansour S H, Mostafa N, Abd-El-Messieh L. Electrical and positron annihilation study on epoxy and epoxy acrylate composites[J], Eur. Polym. J.,2007,43:4770-4782
    18.章奕,庄祺钦,匡文君,等.水性环氧丙烯酸烤漆的研制[J],上海涂料,2007,45(6):1-3
    19.李艳,王跃川.紫外光固化卷材涂料的研制[J],中国涂料,2007,22(5):33-35
    20.邹岳,Andrew T.100%紫外光固化涂料的消光效应[J],上海涂料,2007,45(10):29-32
    21. Matsubara H, Ohtani H. Evaluation of molecular weight of original epoxy acrylates in UV-cured resins by pyrolysis-gas chromatography in the presence of organic alkali[J], J. Anal. Appl. Pyrolysis,2006,75:226-235
    22.王德锋,王勤.紫外光固化防腐涂料的研制[J],现代涂料与涂装,2005,(4):17-21
    23.石玉,李昕,穆鹏征.UV光固化环氧丙烯酸酯耐磨涂料的研究[J],中国生漆,2005,24(2):21-24
    24. Chattopadhyay D K, Panda S S, Raju K V S N. Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings[J], Prog. Org. Coat.,2005,54:10-19
    25.邢宏龙,朱安峰.碱溶性环氧丙烯酸酯齐聚物的合成及性能研究[J],湖南大学学报(自然科学版),2004,24(3):57-60
    26.黄兴耀,王德海.UV固化涂料在几种建材上的应用[J],国外建材科技,2004,25(4):43-45
    27.丁伟,马家举,江棂.UV固化在金属罩光涂料中的应用[J],贵州化工,2003,28(5):32-34
    28. Stefan O, Stelian V, Aurelian S, et al. Epoxy urethane acrylate[J], Eur. Polym. J.,2000, 36(2):373-378
    29.王孝科,田敉.聚乙二醇改性环氧丙烯酸酯光固化树脂的研究[J],涂料工业,2008,38(5):19-22
    30.王晓丽,刘俊龙,孙祥山,等.马来酸聚乙二醇单酯对环氧丙烯酸酯的改性及其紫外光固化膜性能的研究[J],化工新型材料,2007,35(3):55-57
    31.田志高,陈红艳.紫外光固化改性环氧丙烯酸酯涂料的研制[J],材料科学与工程学报,2004,22(1):95-97
    32.唐薰,李喜见,陈洪,等.水性聚氨酯丙烯酸酯预聚物UV固化的涂膜性能研究[J],湖南大学学报(自然科学版),2003,30(4):36-39
    33.王浩,唐黎明,陈久军,等.水性端丙烯酸酯基聚氨酯的合成与紫外光固化[J],清华大学学报(自然科学版),2007,47(6):867-869
    34.吕君亮,张力.紫外光固化水性环氧丙烯酸酯的研究[J],广东化工,2008,35(1):38-40
    35.王秋英,陈志明,赵辉.水性环氧丙烯酸酯的制备与表征[J],化工新型材料,2004,32(12):47-49
    36.周建平,徐伟箭,熊远钦,等.异氰酸酯改性光敏水性环氧丙烯酸酯的合成[J],涂料工业,2005,35(1):24-26
    37.王正祥,陈洪,赵东柏,等.紫外光固化掺Euo.6Gdo.4(TTA)3phen水性荧光防伪油墨的制备与性能[J],稀有金属,2004,1(28):210-213
    38. Madhu B, Vipin S, Firdous H. Development of a heat resistant UV-curable epoxy coating [J], Prog. Org. Coat.,2005,53(4):239-245
    39.熊远钦,代堂军,唐光斌,等.含磷树枝状紫外光固化涂料的合成及应用[J],涂料工业,2008,38(5):1-3
    40. Kahraman M V, Nilhan K A, Nergis A, et al. Flame retardance of epoxy acrylate resin modified with phosphorus containing compounds[J], Prog. Org. Coat.,2004,51(3): 213-219
    41. Wei Y X, Lei S, Yuan H, et al. Thermal properties and combustion behaviors of a novel UV-curable flame retarded coating containing silicon and phosphorus[J], Polym. Degrad. Stab.,2009,94(9):1503-1508
    42. Zhu S W, Shi W F. Flame retardance of UV cured epoxy acrylate blended with different states of phosphated methacrylate[J], Polym. Degrad. Stab.,2003,82(3):435-439
    43.刘世勇,黄战光,施文芳.紫外光固化磷氮类丙烯酸酯的制备及其阻燃性能[J],火灾科学,2009,17(1):8-14
    44.李春旭,张育川,邵青.光敏性含磷聚氨酯丙烯酸酯(P-PUA)阻燃预聚物的合成与性能[J],精细化工,2005,22(1):66-70
    45. Liang H B, Ding J, Shi W F. Kinetics and mechanism of thermal oxidative degradation of UV cured epoxy acrylate/phosphate triacrylate blends [J], Polym. Degrad. Stab.,2004, 86(2):217-223
    46.凌华招,谢川.阳离子型UV光引发剂——三芳基硫鎓盐的合成[J],合成化学,2006,14(2):170-171
    47. Liska R. Photoinitiators with functional groups VI chemically bound sensitizers[J], J. Polym. Sci., Part A:Polym. Chem.,2004,42:2285
    48. Kura H, Oka H, Ohiwa M, et al. Photochemistry and photocuring properties of thiol-substituted a-aminoalkylphenone as radical photoinitiator[J], J. Polym. Sci., Part B: Polym. Phys.,2005,43:1684
    49. Paczkowski J, Kucybala Z, Scigalski F, et al. Sulfur-containning initiators and coinitiators of free radical polymerization[J], J. Photochem. Photobiol., A:Chem.,2003,159:115
    50.谢川,李焱飞,李万舜,等.自由基-阳离子杂化型光引发剂的合成[J],精细化工,2008,25(2):134-138
    51. Padon K S, Scranton A B. A mechanistic investigation of the three-component radical photoinitiator system eosin Y spirit soluble, N-methyldiethanolamine, and diphenyliodonium chloride[J], J. Polym. Sci., Part A:Polym. Chem.,2001,39:715
    52. Padon K S, Scranton A B. A mechanistic investigation of a three-component radical photoinitiator system comprising methylene blue, N-methyldiethanolamine, and diphenyliodonium chloride[J], J. Polym. Sci., Part A:Polym. Chem.,2000,38:2057
    53. Chen Y, Loccufier J, Vanmaele L, et al. Novel multifunctional polymeric photoinitiators and photo-coinitiators derived from hyperbranched polyglycerol[J], Macromol. Chem. Phys.,2007,208(15):1694-1706
    54. Angiolini L, Caretti D, Carlini C et al. Polymeric photoinitiators having benzoin methylether moieties connected to the main chain through the benzyl aromatic ring and their activity for ultraviolet-curable coatings[J], Polym.,1999,40(26):7197-7207
    55.陈明军,潘春跃.UV固化超支化大分子光引发剂的合成与表征[J],涂料工业,2008,38(10):29-34
    56.谢川,谭智勇,李万舜,等.水溶性光引发剂α-氨基-1-苯基-1-丙酮衍生物的合成和光引发性能测试[J],精细化工,2003,20(7):387-389
    57.李浩,姜学松,印杰.新型的含葡萄糖胺的水溶性高分子型硫杂蒽酮光引发剂[J],感光科学与光化学,2007,25(6):445-451
    58.刘兰.(2,4,6-三甲基苯甲酞基)二苯基膦氧化物的合成及光引发性能测试[J],化工生产与技术,2005,12(5):14-15
    59.李蕾.水溶性光引发剂及研究进展[J],化工生产与技术,2006,13(6):40-42
    60. Wang Y L, Jiang X S, Yin J. A water-soluble supramokcular-structured photoinitiator between methylated betacyclodextrin and 2,2-dimethoxy-2-phenylacetophenone[J], J. Appl. Polym. Sci.,2007,105(6):3817-3823
    61. Bibaut-Renauld C, Burget D, Fouassier J P. Use of alpha-diketones as visible photoinitiators for the photocrosslinking of waterborne latex paints[J], J. Polym. Sci., Part A:Polym. Chem.,2002,40(18):3171-3181
    62. Wei J, Jiang X S, Wang H Y. Effect of the structure of photosensitive groups contained in novel PU-type polymeric benzophenone photoinitiators on photopolymerization[J], Macromol. Chem. Phys.,2007,208(21):2303-2311
    63. Zafar S, Riaz U, Ahmad S. Water-borne melamine-formaldehyde-cured epoxy-acrylate corrosion resistant coatings[J], J. Appl. Polym. Sci.,2008,107(1):215-222
    64.郑耀臣,柳志青,任冬雪.紫外光固化光敏稀释剂的合成及性能研究[J],烟台大学学报(自然科学与工程版),2006,19(4):300-306
    65.王毅.一种多功能活性稀释剂对UV固化涂料性能的影响[J],广东化工,2007,34(4):23-24
    66.李萍,夏代宽,张兴乾.三羟甲基丙烷三丙烯酸酯的制备研究[J],化工时刊,2007,21(11):4-8
    67.黄笔武,王晓峰.光敏预聚物丁二醇二缩水甘油醚二丙烯酸酯的合成和性能测试[J],南昌大学学报,2008,32(3):243-246
    68.储绍荣,徐博,王凤武.UV固化磷腈阻燃单体的合成与表征[J],涂料工业,2006,36(5):22-23
    69. Liu H B, Chen M C, Huang Z T, et al. The influence of silicon-containing acryl ate as active diluent on the properties of UV-cured epoxydiacrylate films[J], Eur. Polym. J., 2004,40(3):609-613
    70.林榕,林金娜,曾幸荣.超支化聚氨酯丙烯酸酯的性能与UV固化动力学研究[J],化学与黏合,2008,30(3):1-4
    71.侣庆法,范晓东,王欣,等.可紫外光固化的超支化聚硅氧烷合成及固化研究[J],高分子学报,2005(6):947-951
    72. Dzunuzovic E, Tasic S, Bozic B, et al. UV-curable hyperbranched urethane acrylate oligomers containing soybean fatty acids [J], Prog. Org. Coat.,2005,52(2):136-143
    73.魏焕郁,施文芳,聂康明,等.树枝状醚酰胺多官能团(甲基)丙烯酸酯低聚物的合成及其紫外光固化性能的研究[J],高等学校化学学报,2001,22(9):1065-1069
    74.王德海,江棂.紫外光固化材料-理论与应用[M],北京:科学出版社,2001
    75.王娟娟,马小燕,晁小练.辐射固化技术研究进展[J],材料保护,2005,38(1):44-47
    76.李富生.紫外光固化环氧丙烯酸酯/SiO2(TiO2)纳米复合涂层的研究[D],上海:复旦大学,2006
    77. Sangermano M, Malucelli G, Amerio E, et al. Photopolymerization of epoxy coatings containing silica nanoparticles [J], Prog. Org. Coat.,2005,54(2):134-138
    78.郑耀臣,陈芳,王慧敏,等.纳米Si02/光敏稀释剂改性EA光固化材料[J],材料科学与工程学报,2007,25(5):768-771
    79.王璧,徐瑞芬,丁雪佳PMMA/TiO2纳米复合粒子的制备及初步应用研究[J],北京化工大学学报,2006,33(2):72-75
    80.陈士昆,储昭荣.紫外光固化纳米复合树脂的制备[J],涂料工业,2006,36(2):19-21
    81.侣庆法,罗冠鸿,范晓东.紫外光固化聚氨酯丙烯酸酯/蒙脱土纳米复合材料的制备与表征[J],高分子材料科学与工程,2005,21(3):278-281
    82. Fawn M U, Dean C W, Siva P D, et al. UV curable epoxy acrylate-clay nanocomposites [J], Eur. Polym. J.,2006,42(10):2596-2605
    83.郑耀臣,陈芳.水和氯离子在纳米蒙脱土改性光固化涂层中的传输行为[J],腐蚀与防护,2008,29(4):189-191
    84.刘辉,罗英武,李宝芳.溶胶-凝胶法制备紫外光固化纳米复合涂料[J],高校化学工程学报,2004,18(3):329-333
    85.张玲,曾兆华,杨建文,等.溶胶-凝胶法制备光固化聚氨酯丙烯酸酯杂化材料的研究[J],功能高分子学报,2004,17(3):442-446
    86. Karatas S, Kizilkaya C, Kayaman-Apohan N, et al. Preparation and characterization of sol-gel derived UV-curable organo-silica-titania hybrid coatings[J], Prog. Org. Coat., 2007,60(2):140-147
    87. Sangermano M, Borlatto E, D'Herin Bytner F D, et al. Photostabilization of cationic UV-cured coatings in the presence of nanoTiO2[J], Prog. Org. Coat.,2007,59(2): 122-125
    88. Esposito C, Frigione M, Maffezzoli A,et al. Photo-DSC and real time-FT-IR kinetic study of a UV curable epoxy resin containing o-Boehmites[J], Eur. Polym. J.,2008,44(4): 2010-2023
    89. Caroline S, Bernard R, Pierre B. Kinetic studies of UV-waterborne nanocomposite formulations with nanoalumina and nanosilica[J], Prog. Org. Coat.,2009,66(1):412-419
    90. Li F S, Zhou S X, You B, et al. Kinetic investigations on the UV-induced photopolymerization of nanocomposites by FTIR spectroscopy[J], J. Appl. Polym. Sci., 2006,99:1429-1436
    91.徐伟箭,刘光鹏,臧阳陵.EA/MMT纳米复合材料的制备及其光固化动力学研究[J],湖南大学学报(自然科学版),2009,36(7):63-67
    92.侣庆法,唐中华,范晓东.紫外光固化环氧丙烯酸酯/蒙脱土纳米复合材料的合成与表征[J],高分子材料科学与工程,2004,20(4):206-209
    93.洪啸吟.光固化汽车涂料[J],精细与专用化学品,2004,12(8):6-7
    94.刘红波,李荣先,缪国元,等.紫外光固化纳米抗菌木器漆[J],涂料工业,2007,37(5):14-16
    95. Cheng X E, Liu S Y, Shi W F. Synthesis and properties of silsesquioxane-based hybrid urethane acrylate applied to UV-curable flame-retardant coatings[J], Prog. Org. Coat., 2009,65(1):1-9
    96. Wouters M E L, Wolfs D P, Van der Linde M C, et al. Transparent UV curable antistatic hybrid coatings on polycarbonate prepared by the sol-gel method[J], Prog. Org. Coat., 2004,51(4):312-319
    97.赵子千,姚伯龙,陈明清.UV固化防雾涂料的研制[J],涂料工业,2007,37(2):4-7
    98.胡兆斌.绝缘材料工艺学[M],北京:化学工业出版社,2005:4-11
    99.滕建勇,许名裕.高温绝缘涂料及其应用举例[J],上海涂料,2001,39(2):34-35
    100.何忠治.电工钢[M],北京:冶金工业出版社,1996:34-35
    101.赵雪辰.耐温耐湿绝缘复合涂料的研制[D],上海:东华大学,2007
    102.李战雄,王标兵,欧育湘.耐高温聚合物[M],北京:化学工业出版社,2007:326-393
    103.李友清,刘丽,刘润山.聚酰亚胺研究[J],精细石油化工进展,2003,4(3):38-42
    104.徐峰,邹侯招,储健.环保型无机涂料[M],北京:化学工业出版社,2004:397-414
    105.王海侨,李营,苟国立,等.有机硅耐高温涂料的研究[J],北京化工大学学报,2006,33(1):59-62
    106.沈孝忠,王兆安,田玉廉.耐热涂料的原材料选择和配方设计[J],上海涂料,2005,43(6):6-9
    107.丁浩,童忠良,杨飞华,等.新型功能复合涂料与应用[M],北京:国防工业出版社,2007:113-118
    108.储双杰,瞿标,戴元远,等.无取向硅钢表面绝缘涂层[J],宝钢技术,1997,(4):49-52
    109. Narishima R, Kikuchi N, Osada J. Heat and water-resistant poly(ether sulfone) compositions for coatings:Japan,05194854[P],1993
    110. Yoshikawa M, Maeda T. Water-resistant electrically insulating PEEK coatings:Japan, 05135625[P],1993
    111.王雪秋,吴缀图,赵慈义,等.H级无溶剂浸渍绝缘漆制备研究[J],华东理工大学学报,1999,25(4):386-389
    112.左瑞霖,梁国正,常鹏善,等.耐高温无溶剂绝缘浸渍漆的研究[J],高分子材料科学与工程,2002,18(5):131-134
    113.李强军,姜其斌.H级不饱和聚酯亚胺无溶剂浸渍漆的研究[J],绝缘材料,2005,38(3):11-13
    114.卢军彩,祝斌,王德祥.新型H级不饱和聚酯亚胺无溶剂浸渍漆的研制[J],船电技术,2008,28(5):312-314
    115.饶保林,赵斌,史博.马来酰亚胺改性二苯醚无溶剂浸渍漆的研究[J],绝缘材料,2004,37(4):4-6
    116.王祖德,金品梅.220、240级亚胺型无溶剂浸渍树脂的研究[J],绝缘材料,2008,41(2):1-3
    117.顾嫒娟,梁国正,张犇,等.新型高性能无溶剂双马来酰亚胺/氰酸酯浸渍树脂的研究[J],绝缘材料,2009,42(1):5-7
    118.陈红生.C级3551有机硅无溶剂浸渍树脂及其在牵引电机上的应用[J],电力机车与城轨车辆,2009,29(5):38-40
    119. Lee J K, Kookheon C, Rhee H W, et al. Synthetic control of molecular weight and microstructure of processible poly(methylsilsesquioxane)s for low-dielectric thin film applications[J], Polym.,2001,42(21):9085-9089
    120. Sato S. Electrically insulating resin compositions and enamel wire thereform:Japan, 2001202824[P],2001
    121. Toshikazu O, Yatsuya N, Seiichi. Heat-resistant polymer compositions, their coatings, and abrasion-coated therewith:Japan,2002047414[P],2002
    122. Hideyuki K, Shigeharu M, Eiji S. Heat disformation-resistant self-bonding enameled wires, and heat deformation-resistant litz wires:Japan,11219621[P],2001
    123.李春华,姜建华.电工钢表面耐高温绝缘无机涂层的制备和表征[J],化学世界,2009,(4):220-224
    124.赵键,肖福明,张辉宁.绝缘涂层对高磁感取向硅钢片性能的影响[J],变压器,2002,39(5):25-27
    125.沈侃毅,黄昌国,路林林.无铬环保的取向硅钢绝缘涂层:中国,200610030717.6[P],2008
    126.重里元一,藤井浩康,村上健一,等.赋予张力性绝缘皮膜的粘合性优异的单取向硅钢板及其制造方法:中国,02801316.6[P],2003
    127.韩旭,陈敏,王跃华.溶胶-凝胶法制备耐高温绝缘涂料[J],大连工业大学学报,2008,27(2):137-139
    128.樊子民,王晓刚,强云霄.电致发热SiC多孔陶瓷Al2O3/SiO2复相绝缘涂层制备[J],西安科技大学学报,2008,28(1):72-75
    129. Wu L N, Song L X, Wu J H, et al. Al2O3 coating with a Ni-based buffer layer: Preparation, characterization and electrical insulating properties [J], Ceram. Int.,2007, 33(5):747-750
    130. Teruya Tanaka T, Nagayasu R, Sawada A, et al. Electrical insulating property of ceramic coating materials in radiation and high-temperature environment[J], J. Nucl. Mater., 2007,367(1):1155-1159
    131.张志华,李雅卓,谢福斌,等.铝用高温绝缘涂料的研制[J],贵州化工,2004,29(1):4-5
    132.王李军.耐高温绝缘涂层的技术研究[D],南京:南京理工大学,2004
    133.王海侨,李营,苟国立,等.有机硅耐高温涂料二次成膜机理的探讨[J],涂料工业,2005,35(10):17-20
    134.宋传洪.常温固化聚有机硅氧烷耐高温(700-C以上)涂料的研究[D],北京:机械科学研究院,2001
    135.中国腐蚀与防护学会非金属材料专业委员会.功能性防腐涂料及应用[M],北京:化学工业出版社,2004:80-88
    136.罗发,闫晓红,黄立军,等.滑石粉对环氧改性有机硅耐高温涂层性能的影响[J],精细化工,2009,26(1):3-5
    137.周文英,齐暑华,王彩风,等.高温导热绝缘涂料[J],复合材料学报,2007,24(2):28-32
    138. Lu X, Xu G, Hofstra P G. Moisture-absorption, dielectrirelaxation and thermal conductivity studies of polymer composites[J], J. Polym. Sci.,1998,36(13):2259-2265
    139.张东升,孔祥华,汪栋.环保半无机丙烯酸树脂型电工钢绝缘涂料的研究[J],中国涂料,2007,22(9):44-46
    140.孙致平,朱涛,董梅,等.无取向电工钢M21环保绝缘涂料的研制[J],绝缘材料,2009,42(1):11-14
    141.耿立,王崇学,王全礼,等.一种无取向硅钢用的绝缘环保涂料:中国,200810222008.7[P],2009
    142. Sashi K, Shigekuni T, Kono M. Electromagnetic steel sheets equipped with electrically insulating coatings:Japan,200812767[P],2008
    143.裴陈新,孔祥华,朱涛,等.一种无取向电工钢无铬绝缘涂料:中国,200710302549.6[P],2008
    144.D·S·劳德米尔克,J·L·布朗.无取向电工钢无机/有机绝缘涂层:中国,98125437.3[P],1999
    145.管爱国,缪国庆,徐卫刚.水分散性无铬单组份硅钢绝缘涂料及其制备方法:中国,200610038817.3[P],2006
    146.刘世斌,李一兵,侯宝林,等.水溶性热交联硅钢片涂料:中国,200410064513.5[P],2005
    147. Takeda K, Ishizuka K, Arai S, et al. Non-oriented electromagnetic steel sheet with insulating layer having adeqate properties:Japan,2005240125[P],2005
    148. Sashi K, Shigekuni T, Kono M. Electromagnetic steel sheets having chromiumfree insulating coatings:Japan,2008127664[P],2008
    149. Weinberg S, Cupta G W, Hibri E I, et al. Insulated magnet wire using polysulfone/polyphenyl sulfone blend and its preparation and applications:WO, 2004000941 [P],2003
    150. Ishii T. Moisture-resistant silicone compositions and heat-resistant electrically insulated: Japan,05239359[P],1993
    151.施利毅,张剑平, 钟庆东,等.纳米复合粉体改性变频绝缘漆研制[J],电线电缆,2008,(1):38-42
    152.范勇,安军伟,周宏,等.纳米氧化铝杂化聚酰亚胺薄膜的制备与性能研究[J],绝缘材料,2007,40(2):1-3
    153.刘学忠,徐传骧.纳米无机粉末填充电磁线漆的介电特性研究[J],中国电机工程学报,2004,24(10):143-147
    154. Meloni P A. High temperature polymeric materials containing corona cesistant composite filler and methods relating thereto:USA,2004/0249041 [P],2004
    155.吕延晓.紫外光/电子束(UV/EB)固化的应用现状与发展前景(四)[J],精细与专用化学品,2007,15(5):29-32
    156. Wang W Z. Synthesis and characterization of UV-curable polydimethylsiloxane epoxy acrylate[J], Eur. Polym. J.,2003,39(6):1117-1123
    157. Gulay B, Vezir K M, Nilhan K A et al. Synthesis and characterization of UV-curable dual hybrid oligomers based on epoxy acrylate containing pendant alkoxysilane groups[J], Prog. Org. Coat.,2006,57(1):50-55
    158. Sun F, liang S L. Synthesis and characterization of photosensitive polysiloxane[J], Nucl. Instrum. Methods Phys. Res., Sect. B,2007,254:125-130
    159. He J Y, Zhou L, Soucek M D et al. UV-curable hybrid coatings based on vinyl-functionalized siloxane oligomer and acrylated polyester[J], J. Polym. Sci.,2007, 105(4):2376-2386
    160. Lindenmo M, Coombs A, Snell D. Advantages, properties and types of coatings on non-oriented electrical steels[J], J. Magn. Magn. Mater.,2000, (215-216):79-82
    161. Snell D, Coombs A. Novel coating technology for non-oriented electrical steels[J], J. Magn. Magn. Mater.,2000, (215-216):133-135
    162.王李军,张荣伟,陆文明,等.耐高温绝缘涂层的研制[J],涂料工业,2005,35(10):30-32
    163.吕延晓.辐射固化的全球产业化与市场动态(二)[J],精细与专用化学品,2006,14(21):24-28
    164.郝才成,肖新颜,万彩霞.新型紫外光固化涂料的研究进展[J],化工新型材料,2008,36(1):4-6
    165.贺琼,杨晓梅.填料对紫外光固化涂料性能的影响[J],上海涂料,2007,46(10):20-21
    166.李红强,曾幸荣.紫外光固化涂料及其研究进展[J],涂料技术与文摘,2007,(4):8-11
    167.刘红波,林峰,徐玲.纳米材料在紫外光固化体系中的分散研究[J],应用化工,2009,38(3):375-381
    168.任飙,文应军,肖有才.环氧丙烯酸酯树脂生产工艺的改进[J],化学工程师,2001,(4):15-17
    169.孙兴平,王德海.环氧丙烯酸酯合成及应用的研究进展[J],涂料工业,2007,37(11):53-56
    170.翁诗甫.傅里叶变换红外光谱仪[M],北京:化学工业出版社,2005:100
    171.梁永生,梁亮.合成光敏性环氧丙烯酸酯的催化剂研究[J],精细化工,2006,23(3):278-281
    172. Brandl C. UV Curing Driving Factors[J], Mod. Paint Coat.,2002, (2):24-28
    173.黄福堂,赵佳.影响聚丙烯酰胺聚合的因素分析与研究[J],国外油田工程,2001,17(7):26-28
    174. Wang W, Cheng K. Synthesis and characterization of ultraviolet light-curable resin for optical fiber coating [J], Eur. Polym. J.,2003,39(9):1891-1897
    175. Bajpai M, Shukla V, Kumar A. Film performance and UV curing of epoxy acrylate resins [J], Prog. Org. Coat.,2002,44(4):271-278
    176. Gatiyatullina G. V, Prochukhan Y A, Battalov E M, et al. Synthesis and properties of epoxy-acrylate polymers prepared in the presence of sulfoxides and their complexes [J], Russ. J. Appl. Chem.,2003,76(4):623-625
    177.王英秋,陈志明,赵辉.水性丙烯酸酯的制备与表征[J],化工新型材料,2004,32(12):47-49
    178.刘振学,黄仁和,田爱民.实验设计与数据处理[M],北京:化学工业出版社,2005:189
    179.范学运,王艳香,孙健,等.不同形貌的纳米氧化锌粉的光学性能研究[J],人工晶体学报,2009,38(4):994-997
    180.于景华,杜洪光,韩克飞,等.新型银配位聚合物的制备和光吸收性能[J],北京化工大学学报,2006,33(4):61-64
    181.王艳香,范学运,余熙.三聚磷酸钠辅助水热合成制备氧化锌纳米片[J],无机化学学报,2008,24(3):434-438
    182.周时凤,洪樟连,赵芙蓉,等.一种可见光响应纳米Ti02粉体的光响应特性表征[J],无机材料学报,2006,21(4):783-788
    183.张青红,高镰,孙静.烧温度对二氧化钦纳米晶性能的影响[J],无机材料学报,2001,16(5):833-838
    184.陈君华,王飞,陈忠平,等.铜银改性六方介孔硅材料的结构及抗菌性能[J],硅酸盐学报,2009,37(5):760-766
    185.范玉涛,王燕民,谢平波,等.机械法制备纳米二氧化钛粉体及其光学性能[J],硅酸盐学报,2007,35(7):832-837
    186. Young J P, Dong H L, Hyun J K, et al. UV-and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers[J], Int. J. Adhes. Adhes., 2009,29(7):710-717
    187. Li F, Zhou S, Gu G, et al. Preparation and characterization of ultraviolet-curable nanocomposite coatings initiated by benzophenone/n-methyl diethanolamine[J], J. Appl. Polym. Sci.,2005,96(3):912-918
    188. Wang J Z Y, Bogner R H. Techniques to monitor the UV curing of potential solvent-free film coating polymers[J], Int. J. Pharm.,1995,113(10):113-122
    189. Decker C. Photoinitiated crosslinking polymerization[J], Prog. Polym. Sci.,1996,21(4): 593-650
    190. Lombardi V, Bongiovanni R, Malucelli G, et al. New acrylic-allylic resins containing perfluoropolyether chains for UV cured coatings[J], Pigment Resin Technol.,1999, 28(4):212-216
    191. Wei H, Lu Y, Shi W, et al. UV curing behavior of methacrylated hyperbranched poly(amine-ester)s[J], J. Appl. Polym. Sci.,2001,80(1):51-57
    192.陈用烈,曾兆华,杨建文.辐射固化材料及其应用[M],北京:化学工业出版社,2003
    193.翟媛萍,侯丽雅,章维一,等.颜料对紫外光固化涂料固化速率的影响[J],南京理工大学学报,2003,27(1):81-83
    194.孙志英,魏杰.有色体系UV固化粉末涂料组成与性能的研究[J],信息记录材料,2004,5(3):10-13
    195. Rutsch W, Dietliker K, Leppard D, et al. Recent developments in photoinitiators[J], Prog. Org. Coat.,1996,27(1-4):227-239
    196. Maisch R, Stahlecker O, Kieser M. Mica pigments in solvent free coatings systems[J], Prog. Org. Coat.,1996,27(1-4):145-152
    197.邵亚薇,顾胜飞,张涛,等.云母填料尺寸效应对水在环氧涂层中扩散行为的影响[J],涂料工业,2007,37(10):11-14
    198. Yang R, Yu J, Liu Y, et al. Effects of inorganic fillers on the natural photo-oxidation of high-density polyethylene[J], Polym. Degrad. Stab.,2005,88(2):333-340
    199. Jiang X S, Xu H J, Yin J. Polymeric amine bearing side-chain thioxanthone as a novel photoinitiator for photopolymerization [J], Polym.,2004,45(1):133-140
    200. Lecamp L, Youssef B, Bunel C. Photoinitiated polymerization of a dimethacrylate oligomer:1.Influence of photoinitiator concentration, temperature and light intensity [J], Polym.,1997,38(25):6089-6096
    201. Viengkhou V, Ng L T, Carnett J. Role of additives on UV curable coatings on wood [J], J. Appl. Polym. Sci.,1996,61(13):2361-2366
    202.韩跃新,印万忠,王泽红,等.矿物材料[M],北京:科学出版社,2006
    203.郑水林.非金属矿物材料[M],北京:化学工业出版社,2007
    204.陈绪煌,马桂秋,盛京.聚合物共混相态形成过程及其理论研究进展[J],高分子通报,2009,(1):31-36
    205.来育梅,王伟,章刚,等.热塑性聚酚亚胺/聚醚醚酮机械共混物的研究[J],机械工程材料,2006,30(7):25-28
    206.汪小华,刘润山,李立,等.聚酰亚胺改性环氧树脂研究进展[J],热固性树脂,2004,19(2):34-39
    207. Lu X H, Xu J W, Wong L M. Blends of polyimide and dodecylbenzene sulfonic acid-doped polyaniline:Effects of polyimide structure on electrical conductivity and its thermal degradation[J], Synth. Met.,2006,156(2-4):117-123
    208.张书森,尹学敏,袁显永.改进聚酰亚胺金刚石砂轮磨削性能的研究[J],金刚石与磨料磨具工程,2003,136(4):71-72
    209.高越友,韩培文,韩宏,等.聚酰亚胺树脂金刚石砂轮的特点与应用[J],金刚石与磨料磨具工程,2000,118(4):25-27
    210.刘忠祥,余家国,程蓓.聚酰亚胺树脂粉在金刚石抛光片中的应用[J],光学技术,1997,(5):36-42
    211. Kardar P, Ebrahimi M, Bastani S. Study the effect of nano-alumina particles on physical-mechanical properties of UV cured epoxy acrylate via nano-indentation[J], Prog. Org. Coat.,2008,62(3):321-325
    212.翁盛光,陈建定,夏浙安,等.纳米碳酸钙/聚苯乙烯原位复合材料的制备及表征[J],过程工程学报,2007,7(4):790-795
    213.唐富兰,莫健华,薛邵玲.纳米Si02改性光固化成型材料的研究[J],高分子材料科学与工程,2007,23(5):210-213
    214.郭彬,舒心,刘亚康.纳米Ti02对聚酯环氧粉末涂料性能的影响[J],涂料工业,2004,34(11):11-13
    215.徐楠,刘亚康.丙烯酸粉末罩光清漆耐冲击性能的研究[J],涂料工业,2005,35(4):21-24
    216.翟兰兰,凌国平,郦剑.纳米颗粒改性聚乙烯与钢铁的附着机理[J],材料科学与工程学报,2007,25(5):676-679
    217.曹楚南,张鉴清.电化学阻抗谱导论[M],北京:科学出版社,2002:156-160
    218.薛茹君,吴玉程.硅烷偶联剂表面修饰纳米氧化铝[J],应用化学,2007,24(11):1236-1239
    219. Dahiya J B, Muller-Hagedorn M, Bockhorn H, et al. Synthesis and thermal behaviour of polyamide 6/bentonite/ammonium polyphosphate composites[J], Polym. Degrad. Stab., 2008,93(11):2038-2041
    220. Marinovic-Cincovic M, Zoran V S, Vladimir D, et al. The influence of hematite nano-crystals on the thermal stability of polystyrene[J], Polym. Degrad. Stab.,2006, 91(2):313-316
    221.庄韦,张建华,刘靖,等.纳米Ti02/聚乳酸复合材料的制备和表征[J],复合材料学报,2008,25(3):8-11
    222.周菁,晏大雄,朱永筠.超细绢云母粉在环氧防腐蚀涂料中的应用[J],涂料工业,2004,34(6):52-53
    223.付东,王欢欢.云母粉在环保型防腐涂料中的应用机理[J],河北化工,2008,31(2):39-40
    224. Kalenda P, Kalendova A, Stengl V, et al. Properties of surface-treated mica in anticorrosive coatings[J], Prog. Org. Coat.,2004,49(2):137-145
    225. Yang L H, Liu F C, Han E H. Effects of P/B on the properties of anticorrosive coatings with different particle size[J], Prog. Org. Coat.,2005,53(2):91-98
    226.赵世琦,云会明.刚性粒子增韧环氧树脂的研究[J],中国塑料,1999,13(9):35-39
    227.樊泽东,罗筑,于杰,等.超微细滑石粉的表面改性及对聚丙烯性能的影响[J],高分子材料科学与工程,2007,23(3):143-147
    228.王国全.聚合物共混改性原理与应用[M],北京:中国轻工业出版社,2007:7
    229. Hourston D J, Lane J M, MacBeath N A. The toughening of epoxy resins with thermoplastics[J], Polym. Int.,1991,26:17
    230.陈鸣才,Hourston D J.硝化聚酰亚胺/多官能团环氧树脂的相容性及断裂行为[J],厦门大学学报(自然科学版),1997,36(6):885-890
    231.李战雄,王标兵,欧育湘.耐高温聚合物[M],北京:化学工业出版社,2007:326
    232. Shin-ichi K, Koichiro T, Kyohei N, et al. Degradation of aromatic polymers-I. Rates of crosslinking and chain scission during thermal degradation of several soluble aromatic polymers[J], Eur. Polym. J.,1989,25(1):1-7
    233.丁孟贤.聚酰亚胺-化学、结构与性能的关系及材料[M],北京:科学出版社,2006
    234.陈国华,刘心宇.低温烧结玻璃/陶瓷复合材料的微结构及性能[J],硅酸盐学报,2006,34(8):956-961
    235. Kingery W D. Densification during sintering in the presence of a liquid phase. I theory[J], J. Appl. Phys.,1959,30(3):301-306
    236. Mei, Yang J, Jose Ferreira M F. The densification and morphology of cordierite-based glass-ceramics[J], Mater. Lett.,2001,47(4-5):205-211
    237. Jean J H, Gupta T K. Alumina as a devitrification inhibitor during sintering of borosilicate glass powders[J], J. Am. Ceram. Soc.,1993,76(8):2010-2016
    238. Ei-Kheshen A A. Effect of alumina addition on properties of glass/ceramic composite[J], Brit. Ceram. Trans.,2003,102(5):205-209
    239.陆佩文.无机材料科学基础[M],武汉:武汉工业大学出版社,1996:281-298
    240. Miguel O, Edgar D Z. Glass sintering with concurrent crystallization[J], Comptes Rendus Chimie,2002,5(11):773-786
    241.赵彦钊,殷海荣.玻璃工艺学[M],北京:化学工业出版社,2006
    242.肖卓豪,卢安贤,李秀英,等.无铅红外吸收电真空封装玻璃的制备及其性能[J],中南大学学报(自然科学版),2008,39(1):35-41
    243.李海燕.薄膜电阻器用纳米Si02/环氧树脂复合涂料的制备与表征[D],天津:天津大学,2004:75
    244.王海风,韩文爵,王依民,等.超细玻璃粉增强环氧树脂的研究化[J],化工新型材料,2007,35(1):78-81
    245.解原,汪灵.白云母类矿物在绝缘材料中的应用现状与开发利用建议[J],中国非金属矿业导刊,2004,(6):10-14
    246.陈德良.无机组合粒子增强增韧聚合物的协同效应[D],长沙:中南大学,2002:57-77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700