稀土离子掺杂发光玻璃的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土离子掺杂发光玻璃在激光、光学放大器、光通讯、储能和显示等光电领域有着广泛的应用。氧氟玻璃既具有氧化物玻璃的高机械强度、高化学稳定性和热稳定性等特点,又具有氟化物玻璃声子能低的优点,能有效地提高稀土离子的发光强度。本论文以Sm3+、Dy3+、Ce3+和Tb3+等稀土离子掺杂的SiO2-Al2O3-LiF-CaF2氧氟玻璃为研究对象,对其组成、制备工艺以及热处理对氧氟玻璃性能的影响进行研究,并对玻璃组成-结构-发光性能三者之间的相关性进行了探索。
     通过大量的实验工作,取得了一些创新性成果。
     研究了Sm3+、Dy3+、Ce3+和Tb3+等稀土离子掺杂SiO2-Al2O3-LiF-CaF2氧氟玻璃的结构、热稳定性和吸收/透光性能。结果表明,这些氧氟发光玻璃体系的结构主要是[SiO4]四面体和[Al04]四面体以顶角相连的方式构成基本网络骨架,Li+、Ca2+和稀土离子处于网络间隙,Al3+主要作为玻璃网络形成体以[Al04]形式参与网络构成,部分F-取代02-进入网络内部,而另一部分F-则位于网络间隙。玻璃的稳定因子均大于100,表明所制备的玻璃具有较好的热稳定性;玻璃的Hruby常数较高,表明它们具有-定的抗析晶能力。Sm3+、Dy3+离子单掺SiO2-Al2O3-LiF-CaF2氧氟玻璃在紫外-可见-近中红外区具有良好的吸收性能。Ce3+、Tb3+离子单掺/共掺SiO2-Al2O3-LiF-CaF2氧氟玻璃在可见光区具有良好的透光性能,且紫外吸收边较短,有利于发射光的透过。
     研究了热处理对SiO2-Al2O3-LiF-CaF2氧氟微晶玻璃结构与性能的影响。对基础玻璃进行了晶化处理,计算了玻璃的析晶活化能和晶化指数,并分析了其析晶机理。研究表明,晶化温度控制在670-690℃范围之内,保温时间为2h,可以获得理想的含CaF2单一晶相的透明微晶玻璃。在紫外光的激发下,相比较基础玻璃试样,微晶玻璃试样中的稀土离子可以发出更大强度的荧光。
     研究了Sm3+、Dy3+离子单掺SiO2-Al2O3-LiF-CaF2氧氟玻璃的荧光性能。在紫外光的激发下,Sm3+离子单掺SiO2-Al2O3-LiF-CaF2氧氟玻璃发射出强烈的橙色光,其发光强度随Sm3+离子掺杂浓度表现出先增大后减小的规律,最佳掺杂浓度为1.0m0l%。Sm3+离子的发光衰减时间为毫秒级,且随Sm3+离子掺杂浓度的增大而减小。Sm3+离子之间的能量转移机制主要为偶极-偶极相互作用。Dy3+离子单掺Si02-Al203-LiF-CaF2氧氟玻璃的蓝色发光4F9/2→6H15/2(482nm)强于黄色发光4F9/2→6H13/2(574nm),成为最强发射,从而提供了独特的更高效率的可供固体激光、光纤放大用的材料基质。Dy3+离子的发光强度随Dy3+的掺杂量表现出先增大后减小的规律,最佳掺杂浓度为0.5mol%。Dy3+离子的发光衰减时间为毫秒级,且随玻璃中Dy3+离子掺杂浓度的增大而减小。Dy3+离子之间的能量转移机制主要为偶极-偶极相互作用。
     研究了Ce3+、Tb3+单掺/共掺SiO2-Al2O3-LiF-CaF2氧氟玻璃的荧光性能。在紫外光的激发下,Ce3+离子单掺SiO2-Al2O3-LiF-CaF2氧氟玻璃发射出强烈的蓝紫光,发光中心位于385nm附近,其发光衰减时间为纳秒级。Tb3+离子单掺SiO2-Al2O3-LiF-CaF2氧氟玻璃主要表现为绿光发射5D4→7FJ(J=6-3)。其中,543nm附近5D4→7F5绿光发射的相对强度是其它发射峰的2.5倍以上。即使Tb3+离子浓度高达8.0mol%,也没有观察到浓度猝灭现象。说明玻璃基质为稀土离子提供了一个非常均匀的环境,稀土离子得到了相当均匀的分布,减少了稀土离子的非辐射驰豫,提高了其发光强度和荧光猝灭浓度,从而为高密度绿光激光和短光纤放大提供了优质材料。Ce3+/Tb3+离子共掺SiO2-Al2O3-LiF-CaF2氧氟玻璃主要表现为Tb3+离子的绿光发射(主峰位于543nm附近),体系中存在Ce3+→Tb3+的能量转移,导致Tb3+离子的发光强度达到了相同浓度Tb3+离子单掺玻璃样品的10倍以上且Tb3+离子的发光强度随着Ce3+离子浓度的增加表现出先增大后减小的规律。Ce3+-Tb3+离子间的共振能量转移主要表现为电偶极-电偶极的相互耦合作用机制。
Rare earth ions doped luminescence glass has a wide range of applications in optoelectronics field, such as laser, optical amplifiers, optical communications, energy storage and display. Oxyfluoride glass has many advantages, including high mechanical strength, excellent chemical stability and thermal stability of oxide glass and lower phonon energy of fluoride glass, which can effectively enhance the luminescence intensity of the doped RE ions. The present paper take Sm3+, Dy3+, Ce3+and Tb3+doped SiO2-Al2O3-LiF-CaF2oxyfluoride glass as the research object, its composition and preparation process, as well as the effect of heat treatment on the performance of oxyfluoride glass has been studied in detail, and the relationship between glass composition, structure, and luminescent properties has been explored.
     Through substantive experimental work, some new and interesting results have been obtained and listed as follows.
     The structure, thermal stability, and absorption or transmittance performance of Sm3+, Dy3+, Ce3+and Tb3+doped SiO2-Al2O3-LiF-CaF2oxyfluoride glass have been investigated. The results indicated that the network of these oxyfluoride luminescent glasses is composed mainly of [SiO4] and [AlO4] tetrahedrals, which linking by vertex angle oxide ions. Li+, Ca2+and/or the RE ions are in the network gap, Al3+ions mainly as the glass network former enter in the network with [AlO4] tetrahedrals, part F-ions substitute for O2-ions to enter in the network, and another part located at the network gap. The glass stability factors all greater than100, indicating that these oxyfluoride luminescent glasses have good thermal stability, and the glass Hruby constants indicated that they have certain anti-crystallization ability. The Sm3+, Dy3+single doped SiO2-Al2O3-LiF-CaF2oxyfluoride glass has a good absorption property in the UV-vis-NIR region, whereas Ce3+, Tb3+ions single doped or codoped oxyfluoride glass has a good light transmittance performance in the visible region, and the UV absorption edge is shorter, which is advantageous for the transmission of emission light.
     The effect of heat treatment on the structure and properties of SiO2-Al2O3-LiF-CaF2oxyfluoride glass-ceramic has been investigated. The crystallization treatment has been carried out on the as-made glass, the crystallization activation energy and crystallization index have been calculated, and the crystallization mechanism has been analyzed. The results indicated that it can be obtain an ideal only containing CaF2nanocrystalline transparent glass-ceramic by controlled the crystallization temperature within the range of670-690℃, and the holding time of2hours. Compare to the as-made glass, the RE ions in glass-ceramic exhibit greater intensity fluorescence under UV excitation.
     The luminescent property of Sm3+or Dy3+doped SiO2-Al2O3-LiF-CaF2oxyfluoride glass has been investigated. The Sm3+doped SiO2-Al2O3-LiF-CaF2oxyfluoride glass emits intense orange light under UV excitation, and the luminescent intensity first increases and then decreases with the optimal Sm3+concentration of1.0mol%. The luminescence decay time of Sm3+is of milliseconds magnitude, with the Sm3+increasing concentration decreases. The main energy transfer mechanism between Sm3+-Sm3+ions is the dipole-dipole interaction. The blue light-emitting4F9/2→6H15/2(482nm) of Dy3+ions doped SiO2-Al2O3-LiF-CaF2oxyfluoride glass is stronger than the intensity of yellow light-emitting4F9/2→6H13/2(574nm) under UV excitation, and becomes the strongest emission. Thus, the Dy3+ions doped oxyfluoride luminescent glass providing a unique and more efficient material matrix for the solid-state laser and fiber amplifier. The luminescent intensity of Dy3+ions doped oxyfluoride luminescent glass first increases and then decreases with the optimal Dy3+concentration of0.5mol%. The luminescence decay time of Dy3+is of milliseconds magnitude, and with the Dy3+increasing concentration decreases. The main energy transfer mechanism between Dy3+-Dy3+ions is the dipole-dipole interaction.
     The Ce3+doped SiO2-Al2O3-LiF-CaF2oxyfluoride glass emits intense purplish-blue light under UV excitation, luminescence centers at385nm with the luminescence decay time of the order of nanoseconds. The Tb3+doped SiO2-Al2O3-LiF-CaF2oxyfluoride glass mainly emits the green emissions5D4→7FJ(J=6-3). Of them, the relative intensity of 543nm (5D4→7F5) green emission is above2.5times than other emissions. It is very significant that Tb3+can be doped up to8.0mol%in host glass without concentration quenching. This indicates that the as-made host glass provides a more homogeneous environment, and enhances the distribution of RE ions. The good distribution of RE ions could reduce the non-radiative relaxation, and result in an increase in the emission intensity and quenching concentration. Therefore, the as-made Tb3+doped oxyfluoride luminescent glass has important potential applications in the high-density green laser and short fiber amplifier. Ce3+/Tb3+codoped SiO2-Al2O3-LiF-CaF2oxyfluoride glass mainly exhibits the green emission of Tb3+ions (peak at543nm) under UV excitation. The Ce3+→Tb3+effective energy transfer were observed in Ce3+/Tb3+codoped oxyfluoride luminescent glass, resulting in the luminescent intensity of Tb3+enhances above10times than that of the same Tb3+concentration single doped oxyfluoride glass. It was also observed that the luminescent intensity of Tb3+in Ce3+/Tb3+codoped oxyfluoride luminescent glass increases firstly and then decreases with the increasing Ce3+ions concentration. The main resonance energy transfer mechanism between Ce+-Tb3+ions is the dipole-dipole interaction.
引文
[1]孙家跃,杜海燕,胡文祥.固体发光材料[M].北京:化学工业出版社,2003.
    [2]张希艳,卢利平,柏朝晖,等.稀土发光材料[M].北京:国防工业出版社,2005.
    [3]张俊英,张林,王天民,等.长余辉发光玻璃的研究进展[J].材料导报,2003,17(4):17-20.
    [4]刘鸣,马剑,张宝刚.稀土发光玻璃的制备与性能研究[J].材料工程,2007,(5):48-52.
    [5]梁晓峦.白光LED用稀土离子/过渡金属离子掺杂发光玻璃的制备及性能研究[D].上海:华东理工大学,2011.
    [6]G Lakshminarayana, H Yang, J Qiu. White light emission from Tm3+/Dy3+ co-doped oxyfluoride germanate glasses under UV light excitation [J]. Journal of Solid State Chemistry,2009,182(4):669-676.
    [7]S Dai, T Xu, Q Nie, et al. Investigation of concentration quenching in Er3+: Bi2O3-B2O3-SiO2 glasses [J]. Physics Letters A,2006,359(4):330-333.
    [8]G Lakshminarayana, J Qiu. Photoluminescence of Pr3+, Sm3+and Dy3+: SiO2-Al2O3-LiF-GdF3 glass ceramics and Sm3+, Dy3+:GeO2-B2O3-ZnO-LaF3 glasses [J]. Physica B:Condensed Matter,2009,404(8-11):1169-1180.
    [9]L Zhu, A Lu, C Zuo, et al. Photoluminescence and energy transfer of Ce3+and Tb3+doped oxyfluoride aluminosilicate glasses [J]. Journal of Alloys and Compounds,2011,509(29):7789-7793.
    [10]赵彦钊,殷海荣.玻璃工艺学[M].北京:化学工业出版社,2006.
    [11]卢安贤.无机非金属材料导论(第2版)[M].长沙:中南大学出版社,2010.
    [12]武汉建筑材料工业学院,华东化工学院,浙江大学.玻璃工艺原理[M].北京:中国建筑工业出版社,1981.
    [13]刘光华.稀土材料学[M].北京:化学工业出版社,2007.
    [14]张中太,张俊英.无机光致发光材料及应用(第1版)[M].北京:化学工业出版社,2005.
    [15]A J Cohen, H L Smith. Variable Transmission Silicate Glasses Sensitive to Sunlight [J]. Science,1962,137(3534):981.
    [16]N S Hussain, Y P Reddy, S Buddhudu. Luminescence spectra of Eu3+-doped GeO2-Pb0-Bi2O3 glasses [J]. Materials Research Bulletin,2001,36(10): 1813-1821.
    [17]M Yamazaki, Y Yamamoto, S Nagahama, et al. Long luminescent glass: Tb3+-activated ZnO-B2O3-SiO2 glass [J]. Journal of Non-Crystalline Solids, 1998,241(1):71-73.
    [18]Y Lin, Z Tang, Z Zhang, et al. Preparation and properties of photoluminescent rare earth doped SrO-MgO-B2O3-SiO2 glass [J]. Materials Science and Engineering:B,2001,86(1):79-82.
    [19]J Qiu, K Hirao. Long lasting phosphorescence in Eu2+-doped calcium aluminoborate glasses [J]. Solid State Communications,1998,106(12): 795-798.
    [20]J Qiu, M Kawasaki, K Tanaka, et al. Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses [J]. Journal of Physics and Chemistry of Solids,1998,59(9):1521-1525.
    [21]伏振兴.稀土转光玻璃的合成及荧光性质的研究[D].西安:陕西师范大学,2010.
    [22]匡文波.稀土配合物在荧光识别和近红外发光的应用[D].大连:大连理工大学,2009.
    [23]杨海贵.稀土掺杂氧化物晶体和氟锆酸盐玻璃的上转换及发光特性[D].长春:吉林大学,2007.
    [24]张思远.稀土离子的光谱学——光谱性质和光谱理论[M].北京:科学出版社,2008.
    [25]许银生.铟基硫卤玻璃及稀土掺杂氧氟玻璃的形成和光学性能[D].上海:华东理工大学,2011.
    [26]李善锋.铒、镱掺杂硼硅酸盐玻璃的光学特性[D].大连:大连理工大学,2006.
    [27]何洪.硅酸盐基稀土发光材料的制备及其光谱特性与光谱调控[D].南京:南京航空航天大学,2010.
    [28]G Blasse, B C Grabmaier. Luminescent Materials [M]. Berlin:Springer-Verg, 1994.
    [29]徐叙瑢,苏勉曾.发光学与发光材料[M].北京:化学工业出版社,2004.
    [30]乔旭升.镧系掺杂碱土氟硅酸盐透明发光微晶玻璃的制备与性能研究[D].杭州:浙江大学,2007.
    [31]L Zhu, C Zuo, Z Luo, et al. Photoluminescence of Dy3+and Sm3+: SiO2-Al2O3-LiF-CaF2 glasses [J]. Physica B:Condensed Matter,2010,405(21): 4401-4406.
    [32]R R Reddy, Y N Ahammed, P A Azeem, et al. Absorption and emission spectral studies of Sm3+ and Dy3+ doped alkali fluoroborate glasses [J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2003,77(2):149-163.
    [33]T Suhasini, J S Kumar, T Sasikala, et al. Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses [J]. Optical Materials, 2009,31(8):1167-1172.
    [34]G Lakshminarayana, J Qiu. Photoluminescence of Pr3+, Sm3+ and Dy3+ -doped SiO2-Al2O3-BaF2-GdF3 glasses [J]. Journal of Alloys and Compounds,2009, 476(1-2):470-476.
    [35]S S Sundari, K Marimuthu, M Sivraman, et al. Composition dependent structural and optical properties of Sm3+-doped sodium borate and sodium fluoroborate glasses [J]. Journal of Luminescence,2010,130(7):1313-1319.
    [36]Y Dwivedi, A Bahadur, S B Rai. Spectroscopic study of Sm:Ce ions co-doped in barium fluoroborate glass [J]. Journal of Non-Crystalline Solids,2010, 356(33-34):1650-1654.
    [37]G Lakshminarayana, R Yang, J Qiu, et al. White light emission from Sm3+/Tb3+ codoped oxyfluoride aluminosilicate glasses under UV light excitation [J]. Journal of Physics D:Applied Physics,2009,42(1):015414.
    [38]Z Lin, X Liang, Y Ou, et al. Full color photoluminescence of Tb3+/Sm3+codoped oxyfluoride aluminosilicate glasses and glass ceramics for white light emitting diodes [J]. Journal of Alloys and Compounds,2010,496(1-2):L33-L37.
    [39]S Tannabe, J Kang, T Hanada, et al. Yellow/blue luminescences of Dy3+-doped borate glasses and their anomalous temperature variations [J]. Journal of Non-crystalline Solids,1998,239(1-3):170-175.
    [40]Ch Basavapoornima, C K Jayasankar, P P Chandrachoodan. Luminescence and laser transition studies of Dy3+:K-Mg-Al fluorophosphate glasses [J]. Physica B: Condensed Matter,2009,404(2):235-242.
    [41]R Praveena, R Vijaya, C K Jayasankar. Photoluminescence and energy transfer studies of Dy3+-doped fluorophosphate glasses [J]. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy,2008,70(3):577-586.
    [42]K K Mahato, A Rai, S B Rai. Optical properties of Dy3+doped in oxyfluoroborate glass [J]. Spectrochimica Acta A:Molecular and Biomolecular Spectroscopy,2005,61(3):431-436.
    [43]Z Duan, J Zhang, L Hu. Spectroscopic properties and Judd-Ofelt theory analysis of Dy3+ doped oxyfluoride silicate glass [J]. Journal of Applied Physics,2007, 101(4):043110.
    [44]P Babu, K H Jang, E S Kim, et al. Optical properties and energy transfer of Dy3+-doped transparent oxyfluoride glasses and glass-ceramics [J]. Journal of Non-Crystalline Solids,2010,356(4-5):236-243.
    [45]G Lakshminarayana, R V Sagar, S Buddhudu. Emission analysis of Dy3+and Pr3+:Bi2O3-ZnF2-B2O3-Li2O-Na2O glasses [J]. Physica B:Condensed Matter, 2008403(1):81-86.
    [46]A Santana-Alonso, A C Yanes, J Mendez-Ramos, et al. Down-shifting by energy transfer in Dy3+-Tb3+co-doped YF3-based sol-gel nano-glass-ceramics for photovoltaic applications [J]. Optical Materials,2011,33(4):587-591.
    [47]Y Dwivedi, S B Rai. Spectroscopic study of Dy3+ and Dy3+/Yb3+ ions co-doped in barium fluoroborate glass [J]. Optical Materials,2009,31(10):1472-1477.
    [48]R Ye, Z Cui, Y Hua, et al. Eu2+/Dy3+ co-doped white light emission glass ceramics under UV light excitation [J]. Journal of Non-Crystalline Solids,2011, 357(11-13):2282-2285.
    [49]D H Cho, Y G Choi, K H Kim. Energy transfer from Tm3+:3F4 to Dy3+:6H11/2 in oxyfluoride tellurite glasses [J]. Chemical Physics Letters,2000,322(3-4): 263-266.
    [50]赵达亮.稀土离子掺杂氟氧化物玻璃及微晶玻璃制备和发光性能研究[D].杭州:浙江大学,2007.
    [51]M Bettinelli, G Ingletto, P Polato, et al. Optical spectroscopy of Ce3+, Tb3+ and Eu3+ in new scintillating glasses [J]. Physics and Chemistry of Glasses,1996, 37(1):4-8.
    [52]R R Jacobs, W F Krupke, M J Weber. Measurement of excited-state-absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d→4f rare-earth lasers [J]. Applied Physics Letters,1978,33(5):410-412.
    [53]J Fu, J M Parker, R M Brown, et al. Compositional dependence of scintillation yield of glasses with high Gd2O3 concentrations [J]. Journal of Non-Crystalline Solids,2003,326-327:335-338.
    [54]Z Pan, K James, Y Cui, et al. Terbium-activated lithium-lanthanum-aluminosilicate oxyfluoride scintillating glass and glass-ceramic [J]. Nuclear Instruments and Methods in Physics Research A:Accelerators, Spectrometers, Detectors and Associated Equipment,2008,594(2):215-219.
    [55]N Duhamel-Henry, J L Adam, B Jacquier, et al. Photoluminescence of new fluorophosphate glasses containing a high concentration of terbium(III) ions [J]. Optical Materials,1996,5(3):197-207.
    [56]X Sun, M Gu, S Huang, et al. Luminescence behavior of Tb3+ ions in transparent glass and glass-ceramics containing CaF2 nanocrystals [J]. Journal of Luminescence,2009,129(8):773-777.
    [57]X Sun, S Huang. Tb3+-activated SiO2-Al2O3-CaO-CaF2 oxyfluoride scintillating glass ceramics [J]. Nuclear Instruments and Methods in Physics Research A, 2010,621(1-3):322-325.
    [58]L Feng, J Zhang, J Wang, et al. Cooperative energy transfer frequency upconversion in Tb3+/Yb3+-codoped oxyfluoride glasses [J]. Spectrochimica Acta A:Molecular and Biomolecular Spectroscopy,2007,67(3-4):886-889.
    [59]W Zhang, Q Chen, Q Qian, et al. Cooperative energy transfer in Tb3+/Yb3+-and Nd3+/Yb3+/Tb3+-codoped oxyfluoride glasses [J]. Physica B:Condensed Matter, 2010,405(4):1062-1066.
    [60]Q Luo, X Qiao, X Fan, et al. Preparation and luminescence properties of Ce3+ and Tb3+ co-doped glasses and glass ceramics containing SrF2 nanocrystals [J]. Journal of Non-Crystalline Solids,2010,356:2875-2879.
    [61]L Zhu, A Lu, C Zuo, et al. Fluorescence properties of Tb3+:SiO2-M2O3 (M=Al, Ga)-LiF-CaF2 glasses [J]. Advanced Materials Research,2011,239-242: 1558-1561.
    [62]左成钢,卢安贤,朱立刚,等.铽离子掺杂铝硅酸盐氧氟玻璃的制备及其荧光性能[J].中南大学学报(自然科学版),2011,42(12):3668-3673.
    [63]左成钢.稀土离子掺杂氟氧化物玻璃的制备技术和发光性能研究[D].长沙:中南大学,2011.
    [64]C Zuo, A Lu, L Zhu. Luminescence of Ce3+/Tb3+ ions in lithium-barium-aluminosilicate oxyfluoride glasses [J]. Materials Science and Engineering:B, 2010,175(3):229-232.
    [65]C Zuo, A Lu, L Zhu, et al. Luminescence of Ce3+ or Tb3+ in lithium-barium-gadolinium-aluminosilicate oxyfluoride glasses. Advanced Materials Research,2011,239-242:468-471.
    [66]C Zuo, A Lu, L Zhu, et al. Luminescent properties of Tb3+ and Gd3+ ions doped aluminosilicate oxyfluoride glasses [J]. Spectrochimica Acta A:Molecular and Biomolecular Spectroscopy,2011,82(1):406-409.
    [67]K Tonooka, N Kamata, K Yamada, et al. An estimation of the distribution functions of doped Tb3+ and Nd3+ in glasses by fluorescence measurements [J]. Journal of Non-Crystalline Solids,1992,150(1-3):185-191.
    [68]M J Webber. Inorganic scintillators:today and tomorrow [J]. Journal of Luminescence,2002,100(1-4):35-45.
    [69]G P Pazzi, P Fabeni, C Susini, et al. Defect states induced by UV-laser irradiation in scintillating glasses [J]. Nuclear Instruments and Methods in Physics Research B:Beam Interactions with Materials and Atoms,2002, 191(1-4):366-370.
    [70]P Pavan, G Zanella, R Zannoni, et al, Spatial resolution in X-ray imaging with scintillating glass optical fiber plates [J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,1993,327(2-3):600-604.
    [71]刘史敏.Al203-B203-SiO2系统光功能玻璃制备、结构及性能研究[D].杭州:浙江大学,2009.
    [72]H T Amorim, M V D Vermelho, A S Gouveia-Neto, et al. Red-green-blue upconversion emission and energy-transfer between Tm3+ and Er3+ ions in tellurite glasses excited at 1.064μm [J]. Journal of Solid State Chemistry,2003, 171(1-2):278-281.
    [73]M Nogami, T Hagiwara, G Kawamura, et al. Redox equilibrium of samarium ions doped in Al2O3-SiO2 glasses [J]. Journal of Luminescence,2007,124(2), 291-296.
    [74]L Huang, X Wang, H Lin, et al. Luminescence properties of Ce3+and Tb3+doped rare earth borate glasses [J]. Journal of Alloys and Compounds,2001,316(1-2): 256-259.
    [75]A Agnesi, P Dallocchio, F Pirzio, et al. Compact sub-100-fs Nd:silicate laser [J]. Optics Communications,2009,282(10):2070-2073.
    [76]R K Verma, D K Rai, S B Rai. Investigation of structural properties and its effect on optical properties:Yb3+/Tb3+codoped in aluminum silicate glass [J]. Journal of Alloys and Compounds,2011,509(18):5591-5595.
    [77]J E C Silva, G F de Sa, P A Santa-Cruz. Red, green and blue light generation in fluoride glasses controlled by double excitation [J]. Journal of Alloys and Compounds,2001,323-324:336-339.
    [78]程峰,王宝义,王天民,等.铈和铽离子掺杂硼硅酸盐玻璃的发光性能[J]. 硅酸盐学报,2008,36(7):1018-1021,1026.
    [79]张锐.陶瓷工艺学[M].北京:化学工业出版社,2007:51-54.
    [80]北京大学化学系仪器分析教学组.仪器分析教程[M].北京:北京大学出版社,1997:53.
    [81]张锐,许红亮,王海龙,等.玻璃工艺学[M].北京:化学工业出版社,2008:55-56.
    [82]肖卓豪.整流罩用新型锗酸盐玻璃和微晶玻璃材料的研究[D].长沙:中南大学,2009.
    [83]华中师范大学,陕西师范大学,东北师范大学.分析化学(下册,第三版)[M].北京:高等教育出版社,2001:13-57.
    [84]Z Pan, A Ueda, S H Morgan, et al. Luminescence of Er3+ in Oxyfluoride Transparent Glass-Ceramics [J]. Journal of Rare Earths,2006,24(6):699-705.
    [85]唐武彪,卢安贤,朱立刚.氧氟玻璃及其微晶玻璃的研究进展[J].材料导报,2009,23(5):47-52.
    [86]R Reisfeld, E Greenberg, R Velapoldi. Luminescence quantum efficiency of Gd and Tb in borate glasses and the mechanism of energy transfer between them [J]. The Journal of Chemical Physics,1972,56(4):1698-1705.
    [87]西北轻工业学院主编.玻璃工艺学[M].北京:中国轻工业出版社,1982.
    [88]孟政,刘树江,沈建兴,等.CaO-Al203-SiO2-F玻璃的红外光谱和热膨胀行为[J].玻璃和搪瓷,2010,38(1):14-18.
    [89]D Mazza, M Lucco-Borlera, G Busca, et al. High-quartz solid-solution phases from xerogels 2MgO·2Al2O3·5SiO2(μ-eucryptite) and Li2O·Al2O3·nSiO2 (n=2 to 4) (β-eucryptite):Characterization by XRD, FTIR and surface measurements [J]. Journal of the European Ceramic Society,1993,11:299-308.
    [90]常鹰,李溪滨.Li20-Al203-SiO2微晶玻璃的IR、DTA、XRD和SEM研究[J].硅酸盐通报,2006,25(3):146-150.
    [91]任祥忠,张培新,梁讯,等.MgO-Al203-SiO2系统微晶玻璃的红外光谱研究[J].材料科学与工程学报,2007,25(2):197-200.
    [92]段仁官,梁开明,顾守仁.一种组成的CaF2-Al203-SiO2系玻璃结构研究[J].无机材料学报,1998,13(4):593-598.
    [93]M Sroda, C Paluszkiewicz, M Reben, et al. Spectroscopic study of nanocrystallization of oxyfluoride glasses [J]. Journal of Molecular Structure, 2005,744-747:647-651.
    [94]I Kansal, A Goel, D U Tulyaganov, et al. The effect of fluoride ions on the structure and crystallization kinetics of La2O3-containing diopside based oxyfluoride glasses [J]. Ceramics International,2009,3489-3493.
    [95]吴忠荣,程汉亭.Si02·Al203·CaO-CaF2·P玻璃的红外光谱研究[J].生物医学工程研究,2006,25(3):166-169.
    [96]何峰,程金树,谢峻林,等.CaO-Al2O3-SiO2系统微晶玻璃的振动光谱研究[J].武汉工业大学学报,1998,20(3):28-31.
    [97]干福熹.玻璃的化学和光谱性质[M].上海:上海科学技术出版社,1992:39-54.
    [98]F Gan, G Huang, S Chen. Vibrational spectra of multicomponent inorganic glasses [J]. Journal of Non-Crystalline Solids,1982,52(1-3):203-210.
    [99]段仁官,梁开明,陈禾.热处理制度对CaO-Al203-SiO2系玻璃晶化的影响研究[J].机械工程材料,1997,21(4):16-18,43.
    [100]J Wang, E M Vogel, E Snitzer. Tellurite glass:a new candidate for fiber devices [J]. Optical Materials,1994,3(3):187-203.
    [101]A Hruby. Evalauation of glass-forming tendency by means of DTA [J]. Czechoslovak Journal of Physics,1972, B22:1187-1193.
    [102]章健良,聂秋华,戴世勋,等.Bi203-B203-Ga203玻璃的光学折射率和带隙研究[J].硅酸盐通报,2010,29(2):340-344,351.
    [103]N F Mott, E A Davis. Electronic Processes in Non-Crystalline Materials (2nd Edition) [M]. Oxford:Clarendon Press,1979.
    [104]M Subhadra, P Kistaiah. Effect of Bi2O3 content on physical and optical properties of 15Li2O-15K2O-xBi2O3-(65-x)B2O3:5V2O5 glass system [J]. Physica B:Condensed Matter,2011,406(8):1501-1505.
    [105]J Tauc. Amorphous and Liquid Semiconductors [M]. New York:Plenium Press, 1974:171.
    [106]F Urbach. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids [J]. Physical Review,1953,92(5):1324-1324.
    [107]陈伟民.氟硅酸盐微晶玻璃的研究[D].广州:华南理工大学,1997.
    [108]薛汇丽.稀土双掺氟氧化物微晶玻璃的研究[D].长春:长春理工大学,2007.
    [109]P W McMillan. Glass-Ceramics (2nd Edition) [M]. London:Academic Press, 1979.
    [110]朱立刚,肖卓豪,卢安贤.上转换发光氧氟微晶玻璃的研究进展[J].材料导报,2009,23(3):38-43.
    [111]Y Wang, J Ohwaki. New transparent vitroceramics codoped with Er3+and Yb3+ for efficient frequency upconversion [J]. Applied physics letters,1993,63(24): 3268-3270.
    [112]张军杰,段忠超,何冬兵,等.频率上转换掺稀土氧氟纳米微晶玻璃的研究进展[J].激光与光电子学进展,2005,42(6):2-7,18.
    [113]M Takahashi, M Kano, Y Kawamoto. Compositional dependence of local vibration around rare earth ions in SiO2-PbF2 glass-ceramics [J]. Journal of Physics:Condensed Matter,1998,10(14):3269-3274.
    [114]A S Gouveia-Neto, E B da Costa, L A Bueno, et al. Intense red upconversion emission in infrared excited holmium-doped PbGeO3-PbF2-CdF2 transparent glass ceramic [J]. Journal of Luminescence,2004,110(1-2):79-84.
    [115]徐东勇,藏竞存.上转换激光和上转换发光材料的研究进展[J].人工晶体学报,2001,30(2):203-210.
    [116]陈媛媛.掺镱离子透明微晶玻璃材料的研究[D].长沙:中南大学,2009.
    [117]H E Kissinger. Reaction kinetics in differantial thermal analysis [J]. Analayis Chemical,1957,29(11):1702-1706.
    [118]G O Piloyan, I D Ryabchikov, O S Novikova. Determination of activation energies of chemical by differential thermal analysis [J]. Nature,1966,212: 1229-1239.
    [119]I W Donald. The crystallization kinetics of a glass based on the cordierite composition studied by DTA and DSC [J]. Journal of Material Science,1995, 30(4):904-915.
    [120]魏先顺NiTiZrAlCuSi块体非晶合金等温晶化动力学及晶化行为[D].哈尔滨:哈尔滨理工大学,2007.
    [121]T Ozawa. Kinetics of non-isothermal crystallization [J]. Polymer,1971,12(1): 150-158.
    [122]D Chen, Y Wang, Y Yu, et al. Influence of Yb3+content on microstructure and fluorescence of oxyfluoride glass ceramics containing LaF3 nano-crystals [J]. Materials Chemistry and Physics,2007,101(2-3):464-469.
    [123]R Jain, N S Saxena, D Bhandari, et al. Crystallization kinetics of CuxTi100-x (x= 43,50 and 53) glasses [J]. Physica B:Condensed Matter,2001,301(3-4): 341-348.
    [124]徐祖耀,李鹏兴.材料科学导论[M].上海:上海科学技术出版社,1986:301.
    [125]J Malek. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses [J]. Thermochimica Acta,1995, 267:61-73.
    [126]朱超峰.白光LED用发光材料的制备及性能研究[D].上海:华东理工大学,2007.
    [127]V Venkatramu, P Babu, C K Jayasankar, et al. Optical spectroscopy of Sm3+ ions in phosphate and fluorophosphate glasses [J]. Optical Materials,2007, 29(11):1429-1439.
    [128]V K Rai, S B Rai. Optical transitions of Dy3+in tellurite glass:observation of upconversion [J]. Solid State Communications,2004,132(9):647-652.
    [129]J Heo, Y B Shin. Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses [J]. Journal of Non-Crystalline Solids,1996,196: 162-167.
    [130]L F Johnson, H J Guggenhiem. Laser emission at 3μm from Dy3+ in BaY2F8 [J]. Applied Physics Letters,1973,23(2):96-98.
    [131]N P Barnes, R E Allen. Room temperature Dy:YLF laser operation at 4.34μm [J]. IEEE Journal of Quantum Electron,1991,27(2):277-282.
    [132]K Wei, D P Machewirth, J Wenzel, et al. Spectroscopy of Dy3+ in Ge-Ga-S glass and its suitability for 1.3μm fiber-optical amplifier applications [J]. Optics Letters,1994,19(12):904-906.
    [133]S Tanabe, T Hanada, M Watanabe, et al. Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3-μm optical amplifier [J]. Journal of the American Ceramic Society,1995,78(11):2917-2922.
    [134]T Schweizer, D W Hewak, B N Samson, et al. Spectroscopic data of the 1.8-, 2.9-, and 4.3-μm transitions in dysprosium-doped gallium lanthanum sulfide glass [J]. Optics Letters,1996,21(19):1594-1596.
    [135]A Thulasiramudu, S Buddhudu. Optical characterization of Sm3+ and Dy3+: ZnO-PbO-B2O3 glasses [J]. Spectrochimica Acta A:Molecular and Biomolecular Spectroscopy,2007,67(3-4):802-807.
    [136]G Lakshminarayana, J Qiu, M G Brik, et al. Photoluminescence of Eu3+-, Tb3+-, Dy3+-and Tm3+-doped transparent GeO2-TiO2-K2O glass ceramics [J]. Journal of Physics:Condensed matter,2008,20(33):335106.
    [137]X Sun, M Gu, S Huang, et al. Enhancement of Tb3+ emission by non-radiative energy transfer from Dy3+ in silicate glass [J]. Physica B:Condensed Matter, 2009,404(1):111-114.
    [138]V Aruna, N S Hussain, S Buddhudu. Spectra of Sm3+ and Dy3+: B2O3-P2O5-R2SO4 Glasses [J]. Materials Research Bulletin,1998,33(1): 149-159.
    [139]N S Hussain, V Aruna, S Buddhudu. Absorption and photoluminescence spectra of Sm3+:TeO2-B2O3-P2O5-Li2O glass [J]. Materials Research Bulletin,2000, 35(5):703-709.
    [140]M J Weber, J D Myers, D H Blackburn. Optical properties of Nd3+ in tellurite and phosphotellurite glasses [J]. Journal of Applied Physics,1981,52(4): 2944-2949.
    [141]M B Saisudha, J Ramakrishna. Optical absorption of Nd3+, Sm3+ and Dy3+ in bismuth borate glasses with large radiative transition probabilities [J]. Optical Materials,2002,18(4):403-417.
    [142]P Srivastava, S B Rai, D K Rai. Optical properties of Dy3+ doped calibo glass on addition of lead oxide [J]. Spectrochimica Acta A:Molecular and Biomolecular Spectroscopy,2003,59(14):3303-3311.
    [143]P S May, D H Metcalf, F S Richardson, et al. Measurement and analysis of excited-state decay kinetics and chiroptical activity in the 6HJ←4G5/2 transitions of Sm3+ in trigonal Na3[Sm(C4H4O5)3]·2NaClO4·6H2O [J]. Journal of Luminescence,1992,51(5):249-268.
    [144]K Devlin, B O'Kelly, Z R Tang, et al. A structural study of the sol-gel process by optical fluorescence and decay time spectroscopy [J]. Journal of Non-Crystalline Solids,1991,135(1):8-14.
    [145]V D Rodriguez, I R Martin, R Alcala, et al. Optical properties and cross relaxation among Sm3+ions in fluorzincate glasses [J]. Journal of luminescence,1992,54(4):231-236.
    [146]M Inokuti, F Hirayama. Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence [J]. The Journal of Chemical Physics, 1965,43(6):1978.
    [147]G Armagan, A M Buoncristiani, B Di Bartolo. Excited state dynamics of thulium ions in Yttrium Aluminum Garnets [J]. Optical Materials,1992,1(1): 11-20.
    [148]K Annapurna, R N Dwivedi, A Kumar, et al. Temperature dependent luminescence characteristics of Sm3+-doped silicate glass [J]. Spectrochimica Acta A:Molecular and Biomolecular Spectroscopy,2000,56(1):103-109.
    [149]K Annapurna, R N Dwivedi, P Kundu, et al. Fluorescence properties of Sm3+: ZnCl2-BaCl2-LiCl glass [J]. Materials Research Bulletin,2003,38(3): 429-436.
    [150]G Tripathi, V K Rai, A Rai, et al. Energy transfer between Er3+:Sm3+ codoped TeO2-Li2O glass [J]. Spectrochimica Acta A:Molecular and Biomolecular Spectroscopy,2008,71(2):486-489.
    [151]R Praveena, V Venkatramu, P Babu, et al. Fluorescence spectroscopy of Sm3+ ions in P205-Pb0-Nb2O5 glasses [J]. Physica B:Condensed Matter,2008, 403(19-20):3527-3534.
    [152]G Lakshminarayana, R Yang, M Mao, et al. Spectral analysis of RE3+(RE=Sm, Dy, and Tm):P2O5-Al2O3-Na2O glasses [J]. Optical Materials,2009,31(10): 1506-1512.
    [153]V M Orera, P J Alonso, R Cases, et al. Optical properties of Dy3+ in fluorozirconate glasses [J]. Physics and chemistry of glasses,1988,29(2): 59-62.
    [154]孙心瑗,黄世明,顾牡,等.Dy3+和Tb3+掺杂硅酸盐玻璃的发光性能[J].硅酸盐学报,2008,36(4):526-530.
    [155]S Baccaro, A Cecilia, A Cemmi, et al. Optical Characterization Under Irradiation of Ce3+(Tb3+)-Doped Phosphate Scintillating Glasses [J]. IEEE Transactions on Nuclear Science,2001,48(3):360-366.
    [156]S Rai, S Hazarika. Fluorescence dynamics of Tb3+ and Tb3+/Ho3+ doped phosphate glasses [J]. Optical Materials,2008,30(9):1343-1348.
    [157]J Ding, Q Zhang, J Cheng, et al. Multicolor upconversion luminescence from RE3+-Yb3+(RE=Er, Tm, Tb) codoped LaAlGe2O7 glasses [J]. Journal of Alloys and Compounds,2010,495(1):205-208.
    [158]O M Ntwaeaborwa, H C Swart, R E Kroon, et al. Enhanced luminescence and degradation of SiO2:Ce, Tb powder phosphors prepared by a sol-gel process [J]. Journal of Physics and Chemistry of Solids,2006,67(8):1749-1753.
    [159]M Nikl, J A Mares, E Mihokova, et al. Radio-and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses [J]. Radiation Measurements,2001,33(5):593-596.
    [160]Y Chiu, W Liu, Y Yeh, et al. Luminescent Properties and Energy Transfer of Green-Emitting Ca3Y2(Si309)2:Ce3+, Tb3+ Phosphor [J]. Journal of the Electrochemical Society,2009,156(8):J221-J225.
    [161]D Jia, J Zhu, B Wu, et al. Luminescence and energy transfer in CaAl4O7:Tb3+, Ce3+[J]. Journal of Luminescence,2001,93(2):107-114.
    [162]T Tsuboi. Optical properties of Ce3+/Tb3+-codoped borosilicate glass [J]. The European Physical Journal Applied Physics,2004,26(2):95-101.
    [163]T Wang, C Shen, Q Peng, et al. Novel luminescence behaviors of Ce3+/Tb3+ co-doped phosphate glasses [J]. Journal of Non-Crystalline Solids,2011, 357(11-13):2440-2442.
    [164]D He, C Yu, J Cheng, et al. Effect of Tb3+ concentration and sensitization of Ce3+ on luminescence properties of terbium doped phosphate scintillating glass [J]. Journal of Alloys and Compounds,2011,509(5):1906-1909.
    [165]H Lai, A Bao, Y Yang, et al. UV Luminescence Property of YPO4:RE (RE= Ce3+, Tb3+) [J]. Journal of Physical Chemistry C,2008,112(1):282-286.
    [166]Y P Naik, M Mohapatra, N D Dahale, et al. Synthesis and luminescence investigation of RE3+(Eu3+, Tb3+ and Ce3+)-doped lithium silicate (Li2Si03) [J]. Journal of Luminescence,2009,129(10):1225-1229.
    [167]G Xia, S Zhou, J Zhang, et al. Structural and optical properties of YAG:Ce3+ phosphors by sol-gel combustion method [J]. Journal of Crystal Growth,2005, 279(3-4):357-362.
    [168]C Qi, F Gan. Study on energy transfer process of Tb3+, Ce3+ions doped phosphate glasses [J]. Journal of Luminescence,1984,31-32(1):339 341.
    [169]C R Ronda, T Amrein. Evidence for exchange-induced luminescence in Zn2SiO4:Mn [J]. Journal of Luminescence,1996,69(5-6):245-248.
    [170]N Da, M Peng, S Krolikowski, et al. Intense red photoluminescence from Mn2+-doped (Na+; Zn2+) sulfophosphate glasses and glass ceramics as LED converters [J]. Optics express,2010,18(3):2549-2557.
    [171]J Lin, Q Su, H Zhang, et al. Crystal structure dependence of the luminescence of rare earth ions (Ce3+, Tb3+, Sm3+) in Y2SiO5 [J]. Materials Research Bulletin, 1996,31(2):189-196.
    [172]B V Rao, Y T Nien, W S Hwang, et al. An Investigation on Luminescence and Energy Transfer of Ce3+ and Tb3+ in Ca3Y2Si3O12 Phosphors [J]. Journal of the Electrochemical Society,2009,156(11):J338-J341.
    [173]H Lin, E Y B Pun, X Wang, et al. Intense visible fluorescence and energy transfer in Dy3+, Tb3+, Sm3+ and Eu3+ doped rare-earth borate glasses [J]. Journal of Alloys and Compounds,2005,390(1-2):197-201.
    [174]D Jia, X Wang, W M Yen. Electron traps in Tb3+-doped CaAl2O4 [J]. Chemical Physics Letters,2002,363(3-4):241-244.
    [175]A Thulasiramudu, S Buddhudu. Optical characterization of Eu3+ and Tb3+ ions doped zinc lead borate glasses [J]. Spectrochimica Acta A:Molecular and Biomolecular Spectroscopy,2007,66(2):323-328.
    [176]T Hayakawa, N Kamata, K Yamada. Visible emission characteristics in Tb3+ -doped fluorescent glasses under selective excitation [J]. Journal of Luminescence,1996,68(2-4):179-186.
    [177]C H Kam, S Buddhudu. Luminescence and decay behaviour of Tb3+ ZrF4-BaF2-LaF3-YF3-AlF3-NaF optical glasses [J]. Physica B:Condensed Matter,2003,337(1-4):237-244.
    [178]D L Dexter. A Theory of Sensitized Luminescence in Solids [J]. The Journal of Chemical Physics,1953,21(5):836-850.
    [179]杨锦瑜.烧绿石结构稀土锡酸盐纳米材料的制备和发光性能研究[D].长沙:中南大学,2010.
    [180]D Jia, R S Meltzer, W M Yen, et al. Green phosphorescence of CaAl2O4:Tb3+, Ce3+ through persistence energy transfer [J]. Applied Physics Letters,2002, 80(9):1535-1537.
    [181]N Guo, Y Song, H You, et al. Optical Properties and Energy Transfer of NaCaPO4:Ce3+, Tb3+ Phosphors for Potential Application in Light-Emitting Diodes [J]. European Journal of Inorganic Chemistry,2010(29),4636-4642.
    [182]Th Forster. Transfer mechanisms of electronic excitation energy [J]. Radiation Research Supplement,1960,2:326-339.
    [183]L Zhu, X Wang, G Yu, et al. Effect of Ce3+ doping and calcination on the photoluminescence of ZrO2 (3%Y2O3) fibers [J]. Materials Research Bulletin, 2008,43(4):1032-1037.
    [184]A M Srivastava, M T Sobieraj, A Valossis, et al. Luminescence and Energy Transfer Phenomena in Ce3+, Tb3+ Doped K3La(PO4)2 [J]. Journal of The Electrochemical Society,1990,137(9):2959-2962.
    [185]K Riwotzki, H Meyssamy, A Kornowski, et al. Liquid-Phase Synthesis of Doped Nanoparticles:Colloids of Luminescing LaPO4:Eu and CePO4:Tb Particles with a Narrow Particle Size Distribution [J]. The Journal of Physical Chemistry B,2000,104(13):2824-2828.
    [186]U Caldino, A Speghini, E Alvarez, et al. Spectroscopic characterization and optical waveguide fabrication in Ce3+, Tb3+ and Ce3+/Tb3+ doped zinc-sodium-aluminosilicate glasses [J]. Optical Materials,2011,33(12): 1892-1897.
    [187]T Yamashita, Y Ohishi. Cooperative energy transfer between Tb3+ and Yb3+ ions co-doped in borosilicate glass [J]. Journal of Non-Crystalline Solids,2008, 354(17):1883-1890.
    [188]N S Hussain, Y P Reddy, S Buddhudu. Emission properties of Tb3+-doped zinc boro-silicate glasses [J]. Materials Letters,2001,48(5):303-308.
    [189]G Lakshminarayana, S Buddhudu. Spectral analysis of Eu3+ and Tb3+: B2O3-Zn0-PbO glasses [J]. Materials Chemistry and Physics,2007,102(2-3): 181-186.
    [190]R M Martinez, A Speghini, M Bettinelli, et al. White light generation through the zinc metaphosphate glass activated by Ce3+, Tb3+ and Mn2+ ions [J]. Journal of Luminescence,2009,129(11):1276-1280.
    [191]干福熹,邓佩珍.激光材料[M].上海:上海科学技术出版社,1996,94-95.
    [192]J Sokolnicki. Enhanced luminescence of Tb3+ due to efficient energy transfer from Ce3+ in a nanocrystalline Lu2Si2O7 host lattice [J]. Journal of Physics: Condensed Matter,2010,22(27):275301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700