梭形杆环空流场数值计算及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物驱是提高原油采收率的重要手段。为了改善吸水剖面,注聚与注水一样,均采用分层配注。聚合物驱分层配注中两个关键技术便是满足分层配压和降低聚合物溶液在配注过程中的视粘度损失。对于分层配压一般采用节流的办法来实现,但往往聚合物视粘度损失较大;而解决了视粘度损失问题后,又往往实现不了分层配压。这一矛盾的存在,成为限制聚合物驱分层配注技术发展的瓶颈。
     以解决上述矛盾为出发点,结合现场实际情况,本文提出了梭形杆环空偏心分层配注新工艺。该工艺的核心技术便是梭形杆环空流道的形状设计与梭球数的确定,而解决这一问题的途径是棱形杆环空流场特性的研究。
     梭形杆环空流属于复杂流场,目前难以通过求解N-S方程得到解析解,往往采用数值计算和实验的方法来研究。随着计算机应用技术的发展和基于湍流模式理论的较完善的湍流模型的推出,用于流场数值计算的大型商用CFD软件得以推广和应用,成为梭形杆环空流场数值计算的有效手段。
     本文在调研常用CFD软件资料的基础上,选择具有丰富的湍流模型和较高准确度的PHOENICS软件为计算工具,按照梭形杆实际尺寸建立了模拟模型,以水为例对Newton流体在梭形杆环空中流动进行了数值计算,给出了流场的速度分布、压力分布以及湍动能分布,同时还分析了流量、三种流道形状以及梭球数对流场特性的影响。
     在成功进行Newton流体在棱形杆环空中流动的数值计算基础上,以HPAM水溶液为例,对非Newton流体在梭形杆环空中的流动进行了数值计算,给出了不同流性指数下的速度分布、压力分布、湍动能分布以及视粘度分布。
     通过水及HPAM水溶液在梭形杆环空中的流动实验,验证了上述计算的可靠性,同时研究了两种梭形角和不同梭球数条件下HPAM水溶液的视粘度损失,为确定梭形杆环空偏心分层配注器中梭形球的夹角和梭球数,降低HPAM水溶液在注入过程中的视粘度损失提供了可靠依据。
     根据数值计算和实验研究成果,设计加工了梭形杆环空偏心分层配注器,并在大庆采油六厂进行了聚合物驱梭形杆环空偏心分层配注工艺的现场应用。现场应用结果表明,本文设计加工的梭形杆环空偏心分层配注器原理可行、结构合理,视粘度大大降低,完全达到了聚合物驱分层配注的设计要求。
Polymer flooding is one of the most important ways for EOR. In order to perfect water injection profile, multi-zone flow regulating of polymer injection is used, just like that of water injection. Two of the key technologies in multi-zone flow regulating of polymer flooding are the satisfactory multi-zone pressure regulating and decreasing the apparent viscosity lost of polymer solution during the process of flow regulating. As to the multi-zone pressure regulating, way of throttle is usually used, but there is big apparent viscosity lost of polymer solution; while once the problem of apparent viscosity lost is solved, multi-zone pressure regulating can't be achieved. Therefore, the paradox becomes the bottleneck of the development of multi-zone flow regulating of polymer flooding.
     In order to solve the problem mentioned above, combined with the situations in the oilfield, a new technology of multi-zone flow regulating in eccentric annulus with shuttle rod is proposed in this paper. The core technologies are design of the shape of flow channel in annulus with shuttle rod and definition of the number of the shuttle balls. So, the way to solve the problem is the research on the characteristics of the flow field in annulus with shuttle rod.
     The flow in annulus with shuttle rod is very complex. It is hard to obtain the analytical solution by solving the N-S equation. So, numerical calculation and experiments are often used to research on the problem. With the development of the application of computer and based on the derivation of the turbulent model, CFD software used for numerical calculation of flow field are applied and developed, and becomes the effective way for numerical calculation of flow field in annulus with shuttle rod.
     Based on surveys and researches on the CFD software information, PHOENICS software, which has plenty of turbulent models and high accuracy, was selected as the tool for calculation; simulation model was established according to the real size of shuttle rod; the flow of Newtonian fluid in annulus with shuttle rod was numerically calculated, used water; velocity distribution, pressure distribution and kinetic energy of turbulent of the flow field were given, respectively, and the flow rate, three kinds of shapes of flow channel and the influences of the number of shuttle rod on the characteristics of flow field were analysed, respectively.
     On the basis of successful numerical calculation of the flow of Newtonian fluid in annulus with shuttle rod, using HPAM solution, the flow of non-Newtonian fluid in annulus with shuttle rod was numerically calculated; velocity distribution, pressure distribution, kinetic energy of turbulent and apparent viscosity distribution under varied liquidity indexes were given, respectively.
     Through the experiments of flow of water and HPAM solution in annulus with shuttle rod, the reliability of the calculation mentioned above was testified; through researches on the apparent viscosity lost of HPAM solution under the condition of two shuttle angles and varied number of shuttle balls, respectively, reliable criteria were provided for defining the number and the included angles of shuttle balls in multi-zone flow regulating equipment in eccentric annulus with shuttle rod and decreasing the apparent viscosity lost during the process of HPAM solution injection.
     Based on the results of numerical calculation and experiments, multi-zone flow regulating equipment in eccentric annulus with shuttle rod was designed and produced, and applied in the oilfield of the sixth oil company of Daqing Oilfield. The application results show that the multi-zone flow regulating equipment in eccentric annulus with shuttle rod, designed in this paper, is feasible; the apparent viscosity decreases to a very lower degree, and it is in a good accordance with the request of the design.
引文
[1]李圣勇,李圣涛,陈馥.聚合物驱提高采收率发展现状与趋势[J].化工时刊,2005,19(8):40-42
    [2]兰玉波,杨清彦,李斌会.聚合物驱波及系数和驱油效率实验研究[J].石油学报,2006,27(1):64-68
    [3]宋考平,李世军,方伟,吴家文,穆文志.用荧光分析方法研究聚合物驱后微观剩余油变化[J].石油学报,2005,26(2):92-95
    [4]李杰训,张伟,芦维年.聚合物溶液配注过程中的粘度损失[J].石油规划设计,2000,11(2):22-24
    [5]陈会军,武力强,张军等.聚合物溶液流经不同孔径水嘴前后的粘度损失[J].大庆石油学院学报,1999,23(3):23-24
    [6]卢祥国,闫文华,王克亮等.聚合物驱产出水配制聚合物溶液的粘度损失及影响因素研究[J].油气采收率技术,1997,4(1):28-32
    [7]刘国俊.计算流体力学的地位、发展情况和发展趋势[J].航空计算技术,1994,(1):15-21
    [8]翟建华.计算流体力学(CFD)的通用软件[J].河北科技大学学报,2005,26(2):160-165
    [9]CourantR,FriedrichsKOandLewyH.On the Partial Difference Equationsof Mathematical Physics.IBMJournal.March.1967:21522341
    [10]傅德薰.流体力学数值模拟[M].北京:国防工业出版社,1993
    [11]侯天相,周荣春.钝体绕流的非定常差分法[M].北京:宇航出版社,1986
    [12]Harten A.High resolution scheme for hyperbolic system of conservation law[J].JCompPhys,1983,(49):357-393.
    [13]Sweby P K.High resolution schemes using flux limiters for hyper bolic conservation laws[J].SIAMJNumAnal,1984,21:995-1011.
    [14]Yee H C.Construction of explicit and implicit symmetric TVD scheme and their applications[J].JCompPhys,1987,(68):151-179.
    [15]Steger J L,Warming R F.Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods[J].JCompPhys,1981,(40):263-293.
    [16]Chakravarthy S R.The split-coefficient matrix method for hyperbolic system of gas dynamics equations[A].AIAA Paper[C],80-268,1980.
    [17]Roe P L.Approximate Riemannsolvers,parameter vectors and different schemes[J].JCompPhys,1981,(43):357-372.
    [18]Van Leer B.Towards the ultimate conservative diffe-rence scheme V:A second order sequal to Godunov's method[J].J Comp Phys,1979,(32):101-136.
    [19]Jameson A,Schmidt W,Turkel E.Numerical solution of the Euler equation by finite volume methods with Runge-Kutta time stepping schemes[A].AIAA Paper[C],81-1259,1981.
    [20]Ni R H.A Multiple grid scheme for solving the Euler equation[J].J AIAA,1982,20:1565-1571.
    [21]Van Leer B,Tai C H,Powell K G.Design of optimally smoothing multistage schemes for the Euler equations[A].AIAA Paper[C],89-93,1989.
    [22]张涵信.第四届亚洲计算流体力学会议学术交流情况[J].力学进展,2001,31(1):156-157
    [23]国家自然科学基金委员会数理科学部.第七届国际计算流体力学尝议简介[J].力学进展,1998,28(3):430-431
    [24]傅德薰.第二届国际计算流体力学会议简介[J].力学进展,2003(3):388
    [25]蔡荣泉.船舶计算流体力学的发展与应用[J].船舶,2002(4):8-13
    [26]周连第.船舶与海洋工程计算流体力学的研究进展与应用[J].空气动力学学报,1998,16(1):122-131
    [27]尹晔东,王运东,费维场.计算流体力学(CFD)在化学工程中的应用[J].石化技术 2000,7(3):166-169
    [28]肖柯则,夏艺.计算流体力学在铸造过程中的应用[J].内蒙古工业大学学报,1995,4(3):30-38
    [29]翟晓华,谢晶,徐世琼.计算流体力学在制冷工程中的应用[J].制冷,2003,22(1):17-22
    [30]傅晓英,刘俊,许剑峰.计算流体力学在城市规划设计中的应用研究[J].四川大学学报(工程科学版),2002,34(6):36-39
    [31]金杉,庄达民,张向阳计算流体力学在现代建筑消防设计中的应用[J].消防科学与技术,2003,22(3):194-197
    [32]常思勤,扈圣刚1计算流体力学进展及其在汽车设计中的应用[J].武汉汽车工业大学学报,1997,19(4):12-15
    [33]Da-WenSun.ComputersandElectronicsinAgricultrue.supplement,Ireland,2002,(1)
    [34]许同乐,周志鸿.复杂流道流场的研究状况[J].机床与液压,2005,(7).
    [35]刘红,李宇红,陈佐一.叶轮机复杂流道内振荡扰动传播的简化理论及其应用[J].中国电机工程学报,2001,21(11):114-119
    [36]高殿荣,赵永凯.液压传动中复杂流道流场的数值计算[J].甘肃工业大学学报,1998,24(1):66-69
    [37]尹则高,孙东坡,张土乔,李国庆.复杂流场的二维数值模拟方法[J].浙江大学学报(工学版),2004,38(2):180-184
    [38]苗佩云,袁曾凤.筒内复杂流场三维数值模拟[J].弹箭与制导学报,2004,24(1):71-72,84
    [39]丁广骧,杨胜强,张吉禄.采场复杂流场的流体动力相似与模化问题[J].中国矿业大学学报,1995,24(1):47-51
    [40]纪楚群,李骏.Godunov方法在复杂流场数值模拟中的应用[J].空气动力学学报,2000,18(2):132-137
    [41]肖志祥,李凤蔚,鄂秦.湍流模型在复杂流场数值模拟中的应用[J].计算物理,2003,20(4):335-340
    [42]雷雨冰,袁亚雄,赵坚行.壁面函数在复杂流场计算中的应用[J].弹道学报,2003,15(2):1-5
    [43]陈雄,郑亚,周长省等.应用TVD格式研究冲压增程弹丸进气道复杂流场[J].弹道学报,2004,16(3):33-38
    [44]鲁晓东,任安禄,周永霞.用高精度紧致差分格式分块耦合求解二维粘性不可压缩复杂流场[J].空气动力学学报,2001,19(4)461-465
    [45]王运涛.等价差分格式在三维复杂流场数值模拟中的应用[J].空气动力学学报,1997,15(4):524-529
    [46]陈海昕,李凤蔚,鄂秦等.复杂流场数值模拟中的网格生成[J].西北工业大学学报,2000,18(2):194-197
    [47]李栋,孙刚,乔志德.网格嵌套法在复杂流场计算中的应用[J].空气动力学学报,1998,16(2):216-220
    [48]郑秋亚.用于复杂流场数值模拟的重叠/嵌套网格方法[J].航空计算技术,1998,28(2):56-58
    [49]李凤蔚,鄂秦,李杰,杨国伟.复杂外形网格生成技术[J].空气动力学学报,1998,16(1):89-96
    [50]李凤蔚,鄂秦.有限体积法的分析与改进[J].空气动力学学报,1994,12(4):465-470
    [51]Thompson,J.F.,Weatherill,N.P.,"Aspects of Numerical Grid Generation:Current Science and Art",AIAA Paper 93-3539-CP,1993.
    [52]桑为民,“非结构多段翼型绕流Euler及N-S方程数值模拟”,西北工业大学硕士学位论文,1999
    [53]Wang,Z.J.,Chen,R.F.,Hariharan,N.,andPrzekwas,A.J.,"A2"Tree Based Automated Viscous Cartesian Grid Methodology for Feature Capturing",AIAAPaper99-3300,1999.
    [54]桑为民,基于自适应直解叉树切割网格的Euler及N-S方程数值模拟.西北工业 大学博士学位论文,2003
    [55]李杰,“先进民用飞机复杂外形跨音速绕流数值分析”,西北工业大学博士学位论文,1999
    [56]E,Q.,Li,F.W.,and Yang,G.W.,Numerical Solution of Euler Equations for the Transonic Flowaboutthe Complete Aircraft.AIAAPaper97-2406,1996.
    [57]Thompson,J.F.,etal,Automatic Numeric Generationof Body-Fitted Curvilinear Coordinatesfora Field Containingany Numberof Arbitrary Two-Dimensional Bodies.Journal of Computationg Physics,Vol.15,No.3,1974.
    [58]Sonar,Th.,GridsGeneration Using Elliptic Partial Differential Equations.DFVLR-IB 129-88/11,1988.
    [59]李凤蔚.复杂流动Navier-Stokes方程数值模拟及湍流模型应用研究.西北工业大学博士学位论文,2003
    [60]李志印,熊小辉,吴家鸣.计算流体力学常用数值方法简介[J].广东造船,2004,(3):5-8
    [61]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社.1997,3
    [62]巫衡竹.有限差分法在斯托克斯问题上的应用[J].盐城工学院学报(社会科学版),1996,9(4):38-41
    [63]齐清兰.有限差分法在计算流体力学中的应用[J].河北工程技术高等专科学校学报,1994,(4)
    [64]齐清兰.有限差分法在计算流体力学中的应用(续)[J].河北工程技术高等专科学校学报,1995,(2)
    [65]高殿荣,王益群.管道节流孔口流场的有限元数值模拟[J].流体机械,2000,28(5):29-31,28
    [66]赵键.薄板和不可压流体耦合振动的边界元法研究[J].中山大学学报(自然科学版),1996,35(1):7-11
    [67]高殿荣,郭明杰,李华.带有方腔的管道流动流场的有限元数值模拟[J].流体机械,2005,33(3):26-29,63
    [68]李人宪,杨忠超.流场有限元分析的并行计算[J].应用力学学报,2002,19(2):88-90
    [69]陈德江,王尚锦.应用有限元法计算离心式叶轮内部流场[J].应用力学学报,1999,16(1):27-32
    [70]何发祥,刘浩吾.有限元法前处理技术的发展[J].水利水电科技进展,2000,20(6)15-18
    [71]恽伟君,段根宝.流固耦合振动流体边界元拟湿模态综合性[J].交通部上海船舶运输科学研究所学报.1991,14(2):7-16
    [72]臧跃龙.流体晃动时域双协边界元法分析[J].应用力学学报,2001,18(4):9-15
    [73]臧跃龙.非线性流体晃动时域双协边界元法分析[J].重庆建筑大学学报,2000,22(6):96-99
    [74]李遇春,楼梦麟.渡槽中流体非线性晃动的边界元模拟[J].地震工程与工程振动.2000,20(2):51-56
    [75]刘建秀.流体力学滑坡涌浪区的样条边界元法[J].商丘师范学院学报,1994,10(3):35-38
    [76]李泯江,桂幸民.用于叶轮机械流场计算的交错网格有限体积法[J].北京航空航天大学学报,2004,30(6):577-582
    [77]王正华,王承尧.矢通量分裂隐式有限体积法解超音速喷流强干扰流场[J].航空学报,1996,17(1):1-8
    [78]谢中强,欧阳水吾.粘性流场三维NS方程有限体积法数值解[J].空气动力学学报,1996,14(4):475-483
    [79]那宇彤,槐文信.混合有限分析法求解σ坐标系下的扩散方程[J].武汉大学学报(工学版),2002,35(1):10-14
    [80]周玉新,周志芳.有限分析法在排土场渗流分析中的应用[J].金属矿山,2001,(10):18-21
    [81]彭惠明,崔志强,贾少燕.三维弹性问题的有限分析法[J].三峡大学学报(自然科学版),1997,(4):41-45
    [82]王文科.求解地下水非稳定流问题的局部坐标有限分析法[J].长春科技大学学报,1995,25(4):415-422
    [83]张晓元,李炜.用混合有限分析法模拟二维后台阶分离流[J].武汉水利电力大学学报,1995,(5)
    [84]李勇,刘志友,安亦然.介绍计算流体力学通用软件—Fluent.水动力学研究与进展:A辑[J].2001,16(2):254-258
    [85]潘小强,袁璟.CFD软件在工程流体数值模拟中的应用南京工程学院学报[J]:自然科学版.2004,2(1):62-66
    [86]吴淞涛,徐纲,蒋康涛,等.并行平台上的CFD通用界面标准—第一部分:标准的建立[J].工程热物理学报,2001,22(3):307-309
    [87]徐纲,吴淞涛,蒋康涛,等.并行平台上的CFD通用界面标准—第二部分:CFD 应用[J].工程热物理学报,2001,22(3):310-312
    [88]项钦之.CFD领域中PHOENICS软件介绍[J].软件.1995,(6):25-33
    [89]Steinbrener J P,Chawner J R,Fouts C L.Multiple·block grid generation in the interactive environment[A].AIAA Paper[C],90-1602,1990.
    [90]Benek J A,Buning P G,Steger J L.A 3-D Chimera grid embedding technique[A].AIAA Paper[C],85-1523,1985.
    [91]Versteeg H K,Malalasekera W.An Introduction to Computational Fluid Dynamics: The Finite Volume Method [M]. London: Longman Group Ltd, 1995.
    [92] Gaskell P H, Lau A K C. Curvature-compensated convective transport: SMART, a new boundedness-preserving transport algorithm[J]. Int J Num Meth Fluids, 1988, 8:617.
    [93] Van Leer B. Towards the ultimate conservative difference scheme II[J]. J Comp Phys,1974, (14) :361.
    [94] Van Albada G D, Van Leer B, Roberts WW. A comparative study of computational methods in cosmic gas dynamics. Astron Astrophysics, 1982, (108) :76.
    [95] Spolding D B, Zhubrrin S V. X-cell: a new algorithm for fluid-flow simulation in Phoenics[A]. Lecture at Phoenics User Conference in Tokyo[C], 1996.
    [96] Leonard B P. A stable and accurate convective modeling procedure based on quadratic upstreaminterpolation[J]. Comp Meth Appl Mech Engrg, 1979, 29: 59-98.
    [97] Turkel E. Preconditioning method for solving the incompressible and low speed compressible equations[J]. J Comp Phys, 1988, (72) : 277-298.
    [98] MacCormack R W, Baldwin B S. A numerical method for solving the Navier-Stokes equations with application to shock-boundary layer iteration[A]. AIAA Paper[C],75-1, 1975.
    [99] Ritchtmayer R D, Morton K W. Difference Methods for Initial Value Problems[M]. New York: John Wiley and Sons, 1967.
    [100] Hirsch Ch. Numerical Computation of Internal and External Flows[M]. New York:John Wiley and Sons, 1988.
    [101] Harten A, Osher S. Uniformly high order accurate essentially non-oscillatory schemes[J]. J Appl Num Math, 1986, (2) : 347-377.
    [102] Swanson R C, Turkel E. Artificial dissipation and central difference schemes for the Eulerand N-S equations[A]. AIAA Paper[C], 87-1107, 1987.
    [103] Jameson A. Analysis and design of numerical schemes for gas dynamics. I: Artificial diffusion, upwind biasing, limiters and their effects on accuracy and multigrid convergence[J]. Int J Comp Fluid Dyn, 1994, (4) : 171-218.
    
    [104] Paillere H, Deconinck H, Struijs R, etal. Computa-tions of compressible flows using fluctuation-splitting on triangular meshes[A]. AIAA Paper[C], 93-3301 -CP,1993.
    [105] Cebeci T, Smith A MO. Analysis of Turbulent Boundary Layers[M]. Acad Press,1974.
    [106] Baldwin B S, Lomax H. Thin layer approximation and algebraic model for separated turbulent flows[A]. AIAA Paper[C], 78-257, 1978.
    
    [107] Agonafer D, Liao GL, Spalding B. The LVEL turbulence model for conjugate heat transfer at low Reynolds numbers. PHOENICS|Polis|Lecture|LEVEL [Z], 1993.
    [108]PHOENICS|Polis|Lectures|Turbulence Models[Z].
    [109]Baldwin B S,Barth T.A one-equation turblence transport model for higf Reynolds number wall boundary flow[A].AIAA Paper[C],91-0610,1991.
    [110]Rodi W.Turbulence model and their application in hydraulics[R].The Netherlands:Int Asso For Hydraulics Research,1980.
    [111]姚征、陈康民.CFD通用软件综述[J].上海:上海理工大学学报.2002,24(2):137-144
    [112]Spalding B,Zhubrin S.MFM simulations of flowsnear walls.PHOENICS Polis Lectures MFM[Z].
    [113]PHOENICS Polis Workshop the use of Pasol[Z]
    [114]Smith R J,Johson L J.Automatic grid generation and flow solution for complex geo metries[J].J AIAA,1996,34:1120-1124.
    [115]Zeeuw D De,Powell K G.An adaptively refined Cartesian mesh solver for Euler equation[J].J CompPhys,1993,(104):56-68.
    [116]马培勇,仇性启,唐鹏.计算流体力学软件PHOENICS及其工程应用[J].数值计算与工程仿真,2005,1(4):73-80
    [117]zhaof.PHOENICS中CAD图形文件的导入问题[J].数值计算与工程仿真,2005,1(1):47-54
    [118]李兆敏,张平,黄善波等.Casson流体轴向同心环空中速度及温度分布研究[J].石油学报,2004,25(4):105-108
    [119]李兆敏、张平、董贤勇等.屈服幂律流体轴向同心环空中速度及温度分布研究[J].水动力学研究与进展A辑.2004,19(1):31-37
    [120]贺成才.幂律流体同心环空螺旋流数值模拟[J].钻井液与完井液.2002,19(4):7-9
    [121]陶文铨.数值传热学[M].西安:西安交通在学出版社.1998
    [122]雷雨冰、袁亚雄、赵坚行,壁面函数在复杂流场计算中的应用,弹道学报,2003,15(2):1-5
    [123]Launder B E.spalding D B.The numerical computation of turbulent flows,Computer Methods in Applied Mechanics and Engineering[J].1974(3):269-289
    [124]Huang Shujuan,紊流冲击射流数学研究中的壁面函数法,南京航空航天大学学报(英文版),2001,18(1):29-34
    [125]陈在康、汤广发、黄敏华等,壁面函数对室内空气环境数值预测的影响研究[J],湖南大学学报,1999,26(2):58-61
    [126]李兆敏,张平,黄善波等.Casson流体轴向同心环空中速度及温度分布研究.石油学报,2004,25(4),105-108
    [127]李兆敏、张平、董贤勇等.屈服幂律流体轴向同心环空中速度及温度分布研究.水 动力学研究与进展A辑.2004,19(1),31-37
    [128]贺成才.幂律流体同心环空螺旋流数值模拟.钻井液与完井液.2002,19(4),7-9
    [129]杨树人,张景富,陈家琅等.幂律流体在偏心环空中流动的数值计算方法[J].大庆石油学院学报,1996,02:11-14
    [130]刘永建,王天成,柳颖,石仲仁.偏心环空中幂律流体层流螺旋流流动规律的研究[J].大庆石油学院学报,1995,(3):4-7
    [131]林建忠.湍动力学[M].杭州:浙江大学出版社.2000
    [132]崔海青,韩洪升等.非Newton流体力学[M].哈尔滨工业大学出版社.1992
    [133]M.Haciislamoglu,J.Langlinais,1990,"Non-Newtonian flow in eccentric annuli",Journal of Energy Ressources pp 163,169
    [134]T.D.Reed,Conoco Inc,A.A.Pilehvari,U.of Tulsa,1993,"A new model for laminar,transitionnal,and turbulent flow of Drilling muds",Society of Petroleum Engineers,SPE25456:39-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700