基于模型的压缩天然气发动机电控关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压缩天然气(Crushed Natural Gas,CNG)发动机因其低排放、低成本被广泛应用做代用燃料汽车动力总成。发动机电控技术通过精确控制进气流量、燃料喷射和点火,大幅提升发动机综合性能,是动力总成技术的核心和热点之一。目前国内燃气发动机电控核心技术缺失,主要产品及平台均被国外公司垄断,严重制约了自主品牌及核心产业的发展。
     本文针对CNG发动机电控中的建模、控制、排放优化及开发平台等关键技术进行了全面、深入的分析研究。根据发动机多输入多输出非线性混杂系统特征,建立了面向发动机控制、仿真、排放标定的高集成度CNG发动机平均值模型;基于模型和线性反馈技术,采用一种改进的非线性变换架构进行解耦;针对转速控制回路,提出基于非线性回退方法(Backstepping)的CNG发动机转速控制算法;基于离散滑模非线性观测器,提出一种离散变结构空燃比控制方法。建立了基于V模式和虚拟仪器技术的CNG发动机电控单元开发平台,基于平台完成建模仿真、代码生成、虚拟标定和排放优化,开发了控制器快速原型。
     本文主要工作如下:
     (1)针对离散变结构时滞系统,提出一种基于变指数趋近律调节因子的趋近律,使系统运动快速收敛且抖振幅度较小,为离散滑模应用于非线性发动机控制奠定良好基础。通过合理选择指数收敛项的变调节因子和平移项幅值关联因子,系统运动到达准滑动模态区前符合指数趋近律;进入滑动模态区后,抖振幅值遵循指数规律收敛。证明了采取双曲正切及反双曲正切函数作为趋近律调节因子的可行性,提出参数估值方法。将此趋近律应用于离散状态时滞系统,实验结果表明具有较好的收敛特性及低抖振频率。
     (2)针对目前CNG发动机实时模型价格昂贵且底层接口不开放,建立了高集成度、面向电控开发用CNG发动机平均值模型。模型集成了涡轮增压、电子节气门、进气歧管、动力输出及排放等子系统,能够描述EGR、中冷器、缸内工作过程、CNG供给、减压阀及传感器组等辅助环节。基于温差气体定容混合过程的CNG发动机进气歧管方程和燃料喷射延时计算方法建模,具有较高精度及实时性,大幅降低开发成本,接口开放,满足二次开发需要。
     (3)针对CNG发动机的转速与空燃比控制进行了研究,提出一种基于离散滑模进气流量观测器的空燃比学习控制算法。首先采用一种基于李导数的解耦方法对CNG发动机进行转速与空燃比解耦控制。对CNG发动机仿射非线性模型进行变换,满足相对阶数向量及输出方程李括号矩阵非奇异的条件,通过线性反馈实现解耦。其次,提出一种基于非线性模型和Backstepping方法的滑模变结构转速控制。选择转速误差与进气流量误差组成二维滑模面,利用虚拟控制变量和分层子系统,保证系统条件稳定性的前提下设计控制律。实验结果表明,相比自适应PID控制,具有较高度响应速度及鲁棒性。采用离散滑模进气流量观测器和进气流量延时补偿,设计CNG喷射控制律,实现空燃比瞬态过程进气流量的补偿与学习,与量产ECU广泛采用的PI控制相比,具有更高控制精度和鲁棒性。
     (4)针对目前排放优化与控制参数标定主要依靠台架实验的现状,提出一种基于混沌粒子群优化的CNG发动机控制参数虚拟标定和排放优化方法。通过混沌的随机不确定性和粒子群空间寻优快速收敛的特性,第一轮优化基于台架数据,校验排放模型。第二轮优化基于开发平台和排放模型进行虚拟标定,优化控制参数,对发动机工况点进行了控制参数优化。与传统的13点工况法相比,排放优化效率大幅提高,有效降低优化费用。
     (5)建立了一个基于虚拟仪器技术和V模式的CNG发动机电控ECU开发专用平台。平台支持Matlab/Simulink建模、硬件在环仿真、代码生成、标定和ECU功能测试功能,提供可定制化的界面及测试流程,实现了逻辑层与驱动层分离。利用平台完成了32位ECU原型的建模仿真、HIL测试、功能测试、虚拟标定和代码生成工作。建立了一套CNG发动机ECU控制软件的实时逻辑。利用Matlab/Simulink软件建立了进气,CNG喷射和点火系统控制逻辑,对控制算法进行实时性工程化处理。逻辑具备诊断、跛行回家等功能。通过自动代码生成工具,支持第三方开发的ECU原型,实现了逻辑层与任务调度层、驱动层及硬件分离的结构。平台大幅度提升了CNG发动机ECU的开发效率,降低了开发成本。
     论文的主要创新点:1、提出一种新的面向电控开发的CNG发动机平均值模型。2、提出一种基于CNG发动机进气流量离散滑模观测器和线性反馈的空燃比控制方法。将仿射非线性的精确线性化反馈解耦和基于模型的CNG发动机转速非线性算法应用于CNG发动机控制。3、建立了CNG发动机电控ECU开发平台。基于专用平台进行建模、仿真、虚拟标定及代码生成,开发了ECU快速原型。将一种改进的混沌粒子群算法应用于CNG发动机虚拟标定和排放优化。
     综上所述,论文对CNG发动机的建模、控制、优化和ECU开发平台理论及应用进行了深入研究,控制模型精度较高,控制算法鲁棒性及实时性优于现有产品,建模方法、控制算法及开发平台为CNG发动机ECU产业化奠定良好基础。针对开发过程中遇到的实际问题和不足,提出了未来改进的方向。
CNG (Crushed Natural Gas) is an effective alternative fuel due to its highcombustion efficiency, low emissions and minimum reconstruction to traditional SparkIngnition engines. Combined with signal processing, modern control and optimizationtechnology, ECU (Electronic Control Unit) greatly promoted comphrehensive engineperformance. Precise fuel injection and spark ignition timing control is the milestone oflow emission and fuel consumption. Although it is well developed and applied to manyengines in Europe and American, it has more technology and industry potential in China.Domestic enterprises need to carry out research on the nature of engine control schemeand ECU development platform.
     This paper focuses on the aspects such as engine modeling, simulation, controlalgorithm, emissions optimization, platform building and applicaitions of CNG enginecontrol. CNG engine is analyzed as a continuous and discrete hybrid, nonlinear andtime-delay system. First, a MVEM (Mean Value Engine Models) of CNG engineorienting for control and diagnostics is built and verified. Secondly, a nonlineardecoupling algorithm is applied to facilitate fast, stable speed and A/F (air/fuel) ratiocontrol. Based on Backstepping method, a nonlinear engine speed control algorithm isproposed to acquire excellent disturbance rejection performance. An A/F Ratio controlscheme aiming for high control frequency bandwidth as well as accuracy is presented,in which a DVSC (Discrete Variable Structure Control) observer is built. Finally, anintegrated ECU development platform is introduced as a virtual instrument. A prototypeECU is developed to demonstrate the efficiency and effectiveness of the platform,which is deployed according to V mode flow: modeling, simulation, calibration andoptimization. The main innovative works are as follows:
     (1) A new reaching law of the DVSC control is proposed, in which alternativeregulate factor is adopted. Two variable regulate factors are added in exponentialconvergence part and correlation term of amplitude. Its trajectory is convergenced byexponential law before it reaches the quasi-sliding mode area. After it enters theboundary layer, the chattering amplitude is convergenced according to exponential law.It is proved that the hyperbolic tangent function is feasible to act as the regulate factor.Furthermore, a factor estimation method is presented. A simple performance analysis iscarried out to prove that it achieves good balance of convergence speed and chatteringamplitude.
     (2) A MVEM of CNG egine is constructed which integrates Electronic Throttle,Turbo, Exhaust Gas Recycler, Inter-cooler, emission subsyst. This scheme overcomesthe disadvantages of commercial CNG engines models, such as expensive costs,poorinterface and hardware support. A new manifold pressure model is presented that isbased on an adiabatic assumption rather than an isothermal one. Furthermore, a newtime delay estimation method is proposed to calculate the time-delay of fuel injectionand prevent sudden deteriorations of transient A/F ratio.
     (3) Sevral algorithms are prsented to promote the stability of CNG engine speedand A/F ratio control. A nonlinear transformation decouple scheme is propsed, which isbased on nonlinear mean value model linearization policy through Lie derivative. Acontrol law for CNG engine speed control is derived from nonlinear model. Enginespeed error and intake air mass flow error are selected as2-D sliding surface, a virtualcontrol variable subsystem is used to prove the system stability by the Backsteppingmethod. The experiment performance data shows that it achieves the goals of goodresponse time and robustness. A DSMC observer is adopted to estimate the intake portair mass flow, intake manifold pressure and mass folw through throttle. Working withfeedforward and feedback control channel, a self-study control scheme is verified byreal-time contol logics to prove its high bandwidth and control accuracy in A/F controlthan PI control, which is widely used in ECU product.
     (4) An emission optimization policy based on Chaos particle swarm method isproposed. Firstly, the parameters of emission MVEM are verified and refined toappropriate value. The second round optimization is carried out on the ECU developplatform along with Virtual Calibration. The effectiveness of the optimization policy isproved through a CNG engine emission optimization procedure, which saved muchmore time and reduced expenses than traditional bench policy.
     (5) A CNG engine ECU develop platform is constructed to provide developmentflexibility through virtual instrument technology. A prototype ECU is developed on theplatform according to V mode workflow: modeling, simulation, hardware-in-loop test,code generation and ECU function test. Basic control logic is built to verify the realtimeperformance of engine control algorithm, which is independent of task scheduling,driver layer and hardware layer. The top layer models cover regular work conditions aswell as fundmental fault tolerant functions. Based on Matlab/Simulink, automatic Ccode generation is supported; therefore it can be easily modified to evaluate the codereliatility, resource consumption, scheme effectiveness and model sharpness.
     The main creative points focus on belows:1、A new mean value models of CNG engine is presented for ECU development.2、An algorithm based on DSMC Observerand linear feedback for A/F Ratio control is proposed. A decoupling method based onLie derivative precise linearization and Backstepping methods is adopted for enginespeed control.3、A virtual instrument develop platform for CNG engine ECU isconstructed. It consists of modeling, simulation, virtual calibration and codeauto-generation subsystem. A swarm particles algorithm is proposed for CNG enginevirtual calibration and emission optimization.
     The performance of MVEM, algorithm and development platform is showed bythe data of simulation and experiment analysis. The realtime quality, stability,roboustness and low development expense of proposed scheme make it possible to bewidely used for ECU industrialization. In the end of this paper, future technologytrends of the CNG engine control are summarized in the fields of algorithms, platformperformance and practice requirements.
引文
[1]2010年中国汽车保有量情况分析,中国行业研究院,http://www.18report.com/news/13408.htm,2011.
    [2]中国统计年鉴,中国国家统计局,http://www.stats.gov.cn/tjsj/ndsj/2009/indexch.htm,2009.
    [3]颜祥,美国汽车燃料经济性法规评述[J].世界标准化与质量管理,2007,(1):44-48.
    [4] Average Carbon Dioxide Emissions Resulting From Gasoline and Diesel Fuel[R],USA:EPA420-F-05-001,2009.
    [5]丁祖荣,气候变暖与国际社会的责任—兼论《京都议定书》的意义与作用[J].浙江理工大学学报,2007,l24(3):278-282.
    [6]李勤,现代内燃机排气污染物的测量与控制[M].北京:机械工业出版社,1998,20-30.
    [7]秦文新,汽车排气净化与噪声控制,人民交通出版社[M].1999,1.
    [8]刘巽俊,内燃机的排放与控制[M].北京:机械工业出版社,2003,20.
    [9]杨忠敏,汽车环保打造惠民工程绿色未来引领新时代性[J].现代零部件,2008,(4):27–28.
    [10]刘德镒,彭璐,石油、天然气漫话[J].资源与生活,2007,(4):67-69.
    [11]石舒娅,混合动力汽车市场发展阶段研究,北京汽车[J].2010,(3):5-9.
    [12]张正芳,黄海波.CNG/汽油两用燃料发动机排放试验研究[J].西华大学学报(自然版),2005,24(3):22-24.
    [13] Umiersky,M,,and Huchtebrock,B, CNG concepts for Passenger Cars and Light-Duty VehicleChallenging Diesel Powertrains[C].SAE_NA Paper2003-01-45.
    [14]刘永峰,张幽彤,裴普成,天然气发动机汽车的优势和发展现状[J].现代化工,2006,(26):395-397.
    [15] HountalasD.T,PapagiannakisR, Development of a Simulation Model for Direct Injection DualFuel Diesel Natural Gas Engines,SAE PaPer2000-01-0286,2000.
    [16] DouvileB,OuelleReP,T ouehetteA,Performance and Emissons of a Two Stroke Engines FueledUsing high-pressure Direct Injection of Natural Gas,SAEPaper981160,1998.
    [17] Silviu Dumitreseu,Philip G,H,,Effects on Injection Changes on efficiency and Emission of aDiesel Engnie Fueled by Direct Injection of Natural Gas, SAEPaper2000-01-1805,2000.
    [18] M,P,Poonia, A,Ramesh and R,R,Gaur, Experimental Investigation of the Factors Affecting thePerformance of a LPG-diesel Dual Fuel Engine[J]. SAE Paper1999-01-1123, SAETransactions, Journal of Fuels and Lubricants,1999:499.
    [19]孙济美,天然气和液化石油气汽车[M].北京理工大学出版社,1999.
    [20]尧命发,段家修,覃军,许斯都,付晓光.双燃料发动机燃烧放热规律分析及燃烧特性的研究[J].内燃机学报,2002,20(4):312~316.
    [21]郑清平,压燃式天然气发动机的技术现状及展望,农业机械学报[J].2004,(35):215-19.
    [22]邓泽英,天然气汽车及其在国外的发展与特点[J].环保与安全,2006,(3):33-36
    [23]林在犁,杨学杰,世界能源状况及车用天然气发动机技术发展[J],柴油机.2005,(4):5-8.
    [24]汪卫东,燃气汽车的现状及发展,北京汽车[J].2005,(4):36-45.
    [25]周怡沛,周志斌,中国CNG汽车市场发展现状、趋势与策略,国际石油经济[J].2009,(4):44-48.
    [26] Yongsheng He, Development and Application of a Lean NOx Trap Model [C].SAE Paper2006-01-0686.
    [27] Mostafa Kamel and Edward Lyford-Pike,et al, An Emission and Performance Comparison ofthe Natural Gas Cummins Westpot Inc,C-Gas Plus Versus Diesel in Heavy-Duty Trucks[C].SAE Paper2002-01-2737.
    [28] James P,chiu,James Wegrzyn and Kenneth E,Murphy, Low Emissions Class8Heavy-DutyOn-Highway Natural Gas and Gasoline Engine[C].SAE Paper2004-01-2982.
    [29] Byoung Hyouk Min,Ki Hon Bang,Ho Young Kim, Effects of Gas Composition on thePerformance and Hydrocarbon Emissions for CNG Engines[C].SAE Paper981918.
    [30] Mostafa Kamel and Edward Lyford-Pike, An Emission and Performance Comparison of theNatural Gas Cummins Westport Inc,C-Gas Plus Versus Diesel in Heavy-Duty Trucks,SAEPaper2002-01-2737,2002.
    [31] Jim Cowart.A Comparison of Transient Air-Fuel Measurement Techniques[C].SAE Paper2002-01-2753.
    [32] Clark,N,N,Mott,G.E.,Atkinson,CM.,DeJong,R,Atkinson,R.J.,Latvakoski,T.and Traver,M.L.Effect of Fuel Composition on the Operation of a Lean-Burn Natural Gas Engine[C]. SAEPaper952560.
    [33]贾友昌,黄海波,油机改装单燃料天然气发动机关键技术分析[J].轻型汽车技术,2006(60):11-16.
    [34] Kichiro Kato,Kohei Igarashi,et al. Development of Engine for Natural GasVehicle.SAE Paper1999-01-0574.
    [35] Shijo Thomas and R, P, Sharma, Model Based Control of Engines, SAE Paper No,2007-26-025.
    [36] Raymod Turin, Rong Zhang and Man-Feng Chang, Systematic Model-Based Engine ControlDesign, SAE international,2008-01-0994.
    [37] Shane Halbach, Phillip Sharer, Sylvain Pagerit, Aymeric P, Rousseau and Charles Folkerts,Model Architecture, Methods, and Interfaces for Efficient Math-Based Design and Simulationof Automotive Control Systems, SAE International,2010-01-0241.
    [38]解茂昭,内燃机计算燃烧学[M].大连理工大学出版社,2005.
    [39] ShigaS,ozones,MachaconHTC,KarasawaTetal. A study of the combustion and emissioncharacteristics of Compressed-natural-gas direct-injection stratified combustion using arapid-compression-machine. Combustion and Flame,2002,129(l-2):l-10.
    [40] WallestenJ,LIPainikovAN,ChomiakJetal. Turbulent Flame Speed Closure Model: FurtherDevelopment and ImPlementation for3D Simulation of Combustion in51Engine.SAE982613,1998.
    [41] TatsehlR, PachlerK, WinklhofeW. AComprehensive Dl Diesel Combustion Model forMultidimensional Engine Simulation. Proc.of COMODIA98-Int.SymPosium on Diagnosticsand Modelling of Combustion Engines,Kyoto,Japan,1994:141-148.
    [42] WallestenJ,LIPainikovAN,ChomiakJetal, Turbulent Flame Speed Closure Model: FurtherDevelopment and ImPlementation for3D Simulation of Combustion in51Engine,SAE982613,1998.
    [43]窦慧莉,电控喷射稀燃天然气发动机的关键技术研究[D].吉林大学博士学位论文,2006.
    [44] Donald J,Dobner A1, Mathematical Engine Model for Development of Dynamic EngineControl [C] SAE800541.
    [45] Woermann RJ, Hardware in the Loop Simulation for Test and Development of AutomotiveControl Units [C] SAE961019.
    [46] Hendricks E,Sorenson C1, Mean Value Modeling of Spark Ignition Engine[C].SAE900616.
    [47] Kao M, Moskwa JJ, Nonlinear Cylinder and Intake Manifold Pressure Observers for EngineControl and Diagnostics[C]. SAE940375.
    [48] Hendricks E1, Engine Modeling for Control Applications: A Critical Survey [J] Mechanic1997,32:387~396.
    [49] Moskwa, J.J,“Estimation of Dynamic Fuel Parameters in Automotive Engines,” ASME J, ofDynamic Systems, Measurement and Control, December1994.
    [50] David Dyntar, Christopher Onder and Lino Guzzella, Modeling and Control of CNG Engines,SAE2002World Congressetroit, Michigan,SAE International,2002March4-7,2002-01-1295.
    [51] Guzzella L, Onder C H, Introduction to Modeling and Control of Internal Combustion EngineSystems[M]. ETH-Zentrum,Switzerland:2010Springer-Verlag Berlin Heidelberg,2010.
    [52]汽车新闻,凤凰网,http://auto.ifeng.com/roll/20091209/168165.shtml,2009-12.
    [53]邓义斌,基于冷却液温度MAP的天然气发动机电控冷却系统研究[D].华中科技大学,2011.
    [54]袁华智,电控汽油/CNG两用燃料发动机故障模拟试验及诊断研究[D].长安大学,2010.
    [55]郑尊清,尧命发,林志强等,满足国-IV排放的电控稀燃天然气发动机燃烧系统开发[J].内燃机工程,2009,(5):7-11.
    [56]焦运景,稀燃天然气发动机燃烧过程研究和燃烧系统开发[D].天津大学,2009.
    [57]彭忆强,黎薇,李静波,基于快速控制原型技术的压缩天然气直喷发动机控制[J].四川:西南交通大学学报,2010,45(2):218-221.
    [58]陈齐平,黎辉,电控CNG发动机A/F控制算法的研究与仿真[J].计算机应用技术,2009,(36):4-36.
    [59] Ivan Arsie,Ivan Criscuolo,Luigi De Simio,Sabat Iannaccone,"Optimization of ControlParameters for a Heavy-Duty CNG Engine via Co-Simulation Analysis",SAE Technical Paper2011-01-0704,2011,doi:10,4271/2011-01-0704.
    [60] Bozza,F, Gimelli, A, Fontanesi,S, Severi,E,"1D and3D CFD Investigation of Burning Processand Knock Occurrence in a Gasoline or CNG fuelled Two-Stroke SI Engine",SAE paper2011-32-0526
    [61] Mirko Baratta, Nicola Rapetto,Ezio SpessaAlois Fuerhapter,Harald Philipp,“Numerical andExperimental Analysis of Mixture Formation and Performance in a Direct Injection CNGEngine”,SAE Technical Paper2012-01-0401,2012, doi:10,4271/2012-01-0401.
    [62] Piotr Bielaczyc, Andrzej Szczotka, Antoni Swiatek and Joseph Woodburn,“A Comparison ofAmmonia Emission Factors from Light-Duty Vehicles Operating on Gasoline, LiquefiedPetroleum Gas(LPG) and Compressed Natural Gas (CNG)”,SAE Technical Paper2012-01-1095,2012, doi:10,4271/2012-01-1095.
    [63] Sunthorn Predapitakkun,Boon Ping Chia,Chetwana Rungwanitcha,Tristan Tang,“Development of New CNG-Gasoline (Bi-fuel)Lubricant, by Taxi Fleet Screening Test and Field Trialin Thailand”,SAE Technical Paper2012-01-1622,2012, doi:10,4271/2012-01-1622.
    [64] Jahirul, M,I,,Masjuki, H,H,,Saidur, R,“Comparative engine performance and emission analysisof CNG and gasoline in a retrofitted car engine”,Applied Thermal Engineering, v30, n14-15,p2219-2226, October2010.
    [65] Jung M, Mean-Value Modelling and Robust Control of the Airpath of a Turbocharged DieselEngine[M]. Cambridge,United Kingdom: Department of Engineering University of Cambridge,2003,2.
    [66] Withit Chatlatanagulchai,Nitirong Pongpanich,Krisada Wannatong,Shinapat Rhienprayoon,“Quantitative Feedback Control of Air Path in Diesel-Dual-Fuel Engine”,SAE paper2010-01-2210.
    [67] Paolino Tona, Philippe Moulin, Stéphane Venturi and Richard Tilagone,“AMT Control for aMild-Hybrid Urban Vehicle with a Downsized Turbo-Charged CNG Engine”,SAE paper2007-01-028.
    [68] Lars Eriksson and Lars Nielsen,“Non-Linear Model-Based Throttle Control”,SAE TechnicalPaper2000-01-0261,2000.
    [69] Carlo Rossi, Andrea Tilli, and Alberto Tonielli, Robust Control of a Throttle Body for Driveby Wire Operation of Automotive Engines, IEEE TRANSACTIONS ON CONTROLSYSTEMS TECHNOLOGY, VOL,8, NO,6, NOVEMBER2000.
    [70] Alessandro Beghi, Lorenzo Nardo, and Marco Stevanato, Observer-Based Discrete-TimeSliding Mode Throttle Control for Drive-By-Wire Operation of a Racin g Motorcycle Engine,IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL,14, NO,4,JULY2006.
    [71] Bader Badreddine, Alex Zaremba and Jing Sun,Feng Lin,“Adaptive Active Damping ofEngine Idle Speed Oscillation by Applying Pid Control”,SAE Technical Paper2001-01-0261,2001.
    [72] Jo ko Deur, Vladimir Ivanovi and Danijel Pavkovi,Martin Jansz,“Identification and SpeedControl of SI Engine for Idle Operating Mode”,SAE Technical Paper2004-01-0898,2004.
    [73] P,F,Puleston, S,Spurgeon and G,Monsees, Automotive engine speed control: A robustnonlinear control framework, IEE Proc,-Control Theory Appl, Vol,148, No, I, January2001.
    [74] Tong Yi, Lu Xiaodong and Yang Minggao,"Model Simplification and Sliding Mode Controlof Automotive Powertrain",SAE Technical Paper2002-01-0201,2002.
    [75] Xiaoqiu Li and Stephen Yurkovich, Sliding Mode Control of Delayed Systems WithApplication to Engine Idle Speed Control, IEEE Transactions On Control Systems Technology,Vol9, No.6, Nov2001.
    [76] Feng-Chi Hsieh, Bo-Chiuan Chen and Yuh-Yih Wu,“Adaptive Idle Speed Control forSpark-Ignition Engines”,SAE Technical Paper2007-01-1197,2007.
    [77] Yuji Yasui, Kanako Shimojo, Mitsunobu Saito and Yutaka Tamagawa,“Rapid Engine SpeedControl for AMT Using Two-Degree-Sliding of-Freedom Mode Algorithm”,SAE TechnicalPaper2005-01-1592,2005.
    [78] Joseph J S, Buckland J H, Freudenberg J S, Reference Feed forward in the Idle Speed Controlof a Direct-Injection Spark-Ignition Engine[J]. in IEEE Transactions On Control SystemsTechnology, Vol54,January,2005.
    [79] Leonessa A, Haddad W M, Hayakawa T, Nonlinear Model Predictive Control for Idle SpeedControl of SI Engine[C] The48th IEEE Conference on Decision and Control,2009:6590–6595.
    [80] N, P, Fekete,U, Nester and I, Gruden,J, D, Powell,"Model-Based Air-Fuel Ratio Control of aLean Multi-Cylinder Engine", SAE Technical Paper No,950846,1995.
    [81] Per B, Jensen, Mads B, Olsen, Jannik Poulsen, Elbert Hendricks,Michael Fons, and ChristianJepsen,"A New Family of Nonlinear Observers for SI Engine Air/Fuel Ratio Control", SAETechnical Paper No,970615,1997.
    [82] Alain Chevalier,Christian Winge Vigild,Elbert Hendricks,”Predicting the Port Air Mass Flowof SI Engines in Air/Fuel Ratio Control Applications”,SAE Technical Paper2000-01-0260,2000.
    [83] Weihua Xu, Vincent W,K, Yuen and James K, Mills,“Application of NonlinearTransformations to A/F Ratio and Speed Control In a IC Engine”,SAE Technical Paper1999-01-0858,1999.
    [84] Jeffrey M, Pfeiffer and J, Karl Hedrick,“Nonlinear Algorithms for Simultaneous SpeedTracking and Air-Fuel Ratio Control in an Automobile Engine”,SAE Technical Paper1999-01-0547,1999.
    [85] Metin Gokasan, Seta Bogosyan,and Douglas J, Goering,Sliding Mode Based PowertrainControl for Efficiency Improvement in Series Hybrid-Electric Vehicles, IEEE Transactions onPower Electronics, Vol,21, No,3, MAY2006.
    [86] Giovanni Fiengo, Luigi Glielmo, and Francesco Vasca, Control of Auxiliary Power Unit forHybrid Electric Vehicles, IEEE Transactions On Control Systems Technology, VOL,15, NO,6, NOVEMBER2007.
    [87] Junmin Wang, Hybrid Robust Air-Path Control for Diesel Engines Operating Conventionaland Low Temperature Combustion Modes, IEEE Transactions On Control SystemsTechnology VOL,16, NO,6, NOVEMBER2008.
    [88] John R, Wagner, Darren M, Dawson,and Liu Zeyu, Nonlinear Air-to-Fuel Ratio and EngineSpeed Control for Hybrid Vehicles, IEEE TRANSACTIONS ON VEHICULARTECHNOLOGY, VOL,52, NO,1, JANUARY2003.
    [89]葛召炎,汽车发动机变结构控制[D].湖南大学博士学位论文,2003.
    [90] N, Singh,R, Vig,J, K, Sharma,“ICE Idle Speed Control Using Fuzzy Idle”,SAE TechnicalPaper2002-01-1151,2002.
    [91] Kiriakos Kiriakidis,el,Modeling, Plant Uncertainties, and Fuzzy Logic Sliding Control ofGaseous Systems, IEEE Transations on Control Systems Tchnology, VOL,7, NO,1,JANUARY1999.
    [92] zhang xinzheng, adaptive PID-like fuzzy variable structure control for uncertain MIMOsystems,Information Technology Journal10;1793-1800,2011,
    [93]王莉,准均值稀薄燃烧发动机的建模与控制[D].天津大学博士学位论文,2004.
    [94]邵千钧,电控LPG发动机及其缸内直接喷射技术研究[D].浙江大学博士学位论文,2003.
    [95] Swaroop J K D, and Hedrick, Yip P P, Gerdes J C, Dynamic Surface Control for a Class ofNonlinear Systems [J]. IEEE Transactions on Automatic Control,2008:1893–1899.
    [96] B,-C Zheng, quantised feedback stabilisation of planar systems via switching-basedsliding-mode control, IET control theory and applications.2010,vol24,no3
    [97] Muhammad Iqbal, Robust Parameter Estimation of Nonlinear Systems Using Sliding-ModeDifferentiator Observer, IEEE TTransacitons on Industrial Electronics, Vol58,No.2,FEBRUARY2011.
    [98] Qingsong Xu, MicroNanopositioning using model predictive output integral discrete slidingmode control, IEEE Transacitons on Industrial Electronic,Vol59,No.2,FEBURARY2012.
    [99] Qingsong,Xu, Model predictive discrete-time sliding mode control of a nanopositioningpiezostage without modeling hysteresis, IEEE Transacitons on Control Systems Technology,Vol.20, No.4, JULY2012.
    [100] Przemyslaw Ignaciuk, sliding mode dead-beat control of perishable inventory systems withmultiple suppliers,IEEE Transacitons on Automation Science and Engineering,Vol,9,No,2,APRIL,2012.
    [101] Nick J, Killingsworth, Salvador M, Aceves, Daniel L, Flowers, Francisco Espinosa-Loza, andMiroslav Krstic′, HCCI Engine Combustion-Timing Control: Optimizing Gains and FuelConsumption Via Extremum Seeking Control Systems Technology, IEEE Transactions on,2009,Page(s):1350-1361.
    [102] Tenoch Gonzalez, variable gain super-twisting sliding mode control, IEEE Transacitons onAutomatic Control,Vol,57,No,8,AUGUST2012.
    [103] Andrew White, Guoming (George) Zhu, and Jongeun Choi, Hardware-in-the-Loop Simulationof Robust Gain-Scheduling Control of Port-Fuel-Injection Processes IEEE Transactions onControl Systems Technology,2011,Page(s):1433-1443.
    [104]冯春时,群智能优化算法及其应用[D].中国科技大学博士学位论文,2009.
    [105]陈晋音,生物启发计算若干关键问题应用与研究[D],浙江大学博士学位论文,2009.
    [106] Vivek Jaikamal, Model-based ECU development–An Integrated MiL-SiL-HiL Approach,SAE International,2009-01-0153.
    [107] Rajesh Kumar Katyal and Srinath S, Virtualization for ECU Platform Software Testing inAutomotive Embedded, SAE International,2011-01-1265.
    [108]张子龙,朱庆华,杨涤等,基于xPC卫星系统硬件在回路实时仿真研究[J].系统仿真学报,2005,(17):61-63.
    [109]高为炳,滑模控制的理论及设计方法[M].北京:科学出版社,1998.
    [110]翟长连,一种离散时问系统的交结构控制方法[J].上海交通大学学报,2000,34(5):719-722.
    [111]刘豹,现代控制理论[M].北京:机械工业出版社,2006.
    [112] Milosavljevic D.General conditions for the existence of a quasi-sliding mode on the switchinghyper plane in discrete variable structure systems[J]. Automatic Remote Control,1985,46(3):pp307-314.
    [113] Dot Y,Holf R G.Microprocessor based sliding mode controller for DC motor drives[c]. TheIndustrial Application Society Annual Meeting.Cincinnati,1980,2:154-161.
    [114] Sapturk S z,Istefanopulos Y,Kaynak O.On the stability of discrete-time sliding mode controlsystems[J].IEEE Trans on Automatic Control,1987,32(10):930-932.
    [115] Puruta K.Sliding mode control of a discrete systems [J].Systems and Control Letters,1990,14(2):145-152.
    [116]姚琼荟,宋立忠,温洪离散滑模控制系统的比例-等速-变速控制[J].控制与决策,2000,15(3):329-332.
    [117]李文林.离散时间系统变结构控制的趋近律问题[J].控制与决策,2004,19(11):1267-1270.
    [118]周德文,高存臣,一种离散变结构控制趋近律[J].控制与决策,2008,23(3):306-309.
    [119] Cheng Chih-Chiang,Lin Ming-Hsiung,Hsiao Jia-Ming.Sliding mode controllers design forlinear discrete-time systems with time delay[J].Automatica,2000,36(11):1205-1211.
    [120]米阳,李文林,基于幂次趋近律的一类离散时间系统的变结构控制[J].控制与决策,2008,6(23):643-646.
    [121]朱齐丹,新的离散时间系统变结构趋近律[J].计算机工程与应用,2009,45(8):l3-l5.
    [122]周靖林,离散变结构控制系统的广义变速趋近律[J].电机与控制学报,2005,9(6):625-629.
    [123]宋立忠,基于趋近律方法的离散时间系统变结构控制[J].控制理论与应用,2008,25(3):525-528.
    [124]高存臣,不确定离散变结构控制系统的趋近律方法[J].控制理论与应用,2009,26(7):781-785.
    [125]解云鹏,关于滞后不确定系统的变结构控制与仿真[J].计算机仿真,2011,28(4):163-180.
    [126]蔡国梁,不确定离散系统全程滑膜变结构控制[J].江苏大学学报,2010,(5):34-37.
    [127] Zhengfang Zhang, Haibo Huang, Research on Exhaust of CNG and Gasoline Dual Engine[J].Journal of Xihua University,2005,24(3):22-24.
    [128]帅英梅,高世伦,涡轮增压柴油机的平均值模型及仿真[J].柴油机设计与制造,2004,(2):19-23.
    [129]林杰伦.内燃机工作过程数值计算[M].西安交通大学出版社.1986.45-78.
    [130] R.W.Bilger. Future Progress in Turbulent Combustion Research[J]. Progress in energy andcombustion science.2000.3.
    [131] Howell M,N,, Best M,C, On-line PID tuning for engine idle-speed control using continuousaction reinforcement learning automata, Journal of Control Engineering practice8(2000)147-154.
    [132] L, Loron, Tuning of PID Controllers by the non-symmetrical Optimum Method,” Automatica,vol33, no.1:103-107,1997.
    [133] R, Brandt and F, Lin,"Adaptive interaction and its application to neural networks,"Information Sciences121,1999, pp210-215.
    [134] F, Lin, R, Brandt, and G, Saikalis,“Self Tuning of PID Controller by Adaptive Interaction,”Proceedings of the American Control Conference Chicago, Illinois, June2000:3676-3681.
    [135]陈冲,非线性状态反馈的输入输出解耦控制[J],福州大学学报,1998,(26):35-39.
    [136]王红,非线性控制系统与状态空间的几何结构[J].控制理论与应用,2001,(18):702-708.
    [137] Lars Eriksson and Lars Nielsen,“Non-Linear Model-Based Throttle Control”,SAE TechnicalPaper2000-01-0261,2000.
    [138] OZGUNER U,Discrete-time sliding mode control of electronic throttle valve [C]. in Proc,40thIEEE Conf, Decision Control, Orlando, FL,2001:1819–1824.
    [139] EIJI HASHIMOTO,High Reliability Electronic Throttle System Design[C].2003SAE WorldCongress,Detroit, Michigan, March3-6,2003.
    [140]马乐等,电子节气门控制系统的构建[J].内燃机工程,2005,26(4):33-35.
    [141]陶国良,电子节气门变结构滑模控制及仿真与试验[J].内燃机工程,2005,26(3):41-49.
    [142] ZHANG Peizhi,YIN Chengliang, Sliding mode control with sensor fault tolerant for electronicthrottle [C]in Proceeding of the2006IEEE International Conference on Automation Scienceand Engineering Shanghai, China, October7-10,2006.
    [143] Deur J,An electronic throttle control strategy including compensation of friction and limp–home effects[C]. IEEE International Conference on Electric Machines and Drives,2003,vol,1,200-206.
    [144] Nakano K,Modelling and observer-based sliding-mode control of electronic throttle systems[C]ECTI Trans, Electr, Eng, Electron, Commun,2006,vol,4:22–28.
    [145]郭辉,模糊滑模控制的电子节气门仿真[J].小型内燃机与摩托车,2007,36(2):21-24.
    [146] Yaodong Pan,Variable-Structure Control of Electronic Throttle Valve[J].Industrial Electronics,IEEE Transactions on,2008,55(11):3899–3907.
    [147] Xiaofang Yuan,SVM-Based Approximate Model Control for Electronic Throttle Valve [J].Vehicular Technology, IEEE Transactions on,2008,57(5):2747-2756.
    [148]孙文凯,基于模糊逻辑的混合动力汽车节气门快速控制原型[J].小型内燃机与摩托车,2009,38(4):36-39.
    [149]刘金琨著,滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [150] G, De Nicolao, C, Rossi, R, Scattolini, M, Suffritti,"Identification and Idle Speed Control ofInternal Combustion Engines", Control Engineering Practice, Vol,7:1061-1069,1999.
    [151] MANZIE C,PALANISWAM M i,RALPH D,et a1.Model predictive control of a fuel injectionsystem with a radial basis function network observer[J]. Journalof Dynamic SystemsMeasurement and Control.2002,124(4).
    [152] J, Deur, D, Hrovat, J, Petri,, itum,"A control-oriented polytropic model of SI engineintake manifold", Proceedings of2003ASME International Mechanical Engineering Congressand Exposition (IMECE2003), Vol,2, Washington, D,C,2003.
    [153] J, Deur and V, Ivanovi,"Further Results on Analysis of Mean Value Engine Model withEmphasis on Pumping Feedback Influence", Internal memorandum08/02/03, University ofZagreb, Croatia,2003.
    [154] Stephen Y, Melinda S, Comparative Analysis for Idle Speed Control: A Crank Angle DomainViewpoint, In1997American Control Conference Albuquerque, NM,1997.
    [155] Agostino Gambarotta and Gabriele Lucchetti lng, Control-Oriented “Crank-Angle” BasedModeling of Automotive Engines, SAE International,2011-24-0144.
    [156] Struwe, M, and Vigild, C, Robust H-infinity Control of an SI Engines, Air/Fuel Ratio, MastersThesis, IAU and LfE, DTU,1997.
    [157]腾勤,马标灯,煤层气发动机稳态空燃比前馈控制脉谱生成[J].农业机械学报,2008,39(11):13-17.
    [158]李国岫,张欣,夏渊等,电控喷射天然气发动机空燃比控制策略的研究[J].内燃机学报,2004,(22):457-461.
    [159]邹博文.基于模型的汽油机空燃比控制技术研究[D].杭州:浙江大学机械与能源工程学院,2006.
    [160]姜耀华,顾明等,基于宽域氧传感器的发动机空燃比测试系统设计,农业工程学报,2009,25(12):124-127.
    [161]么居标,小型LPG喷射发动机过渡工况空燃比的控制研究[D].北京工业大学博士论文,2009.
    [162]齐万强等,缸内直喷式汽油机冷起动控制策略[J].农业机械学报,2012,43(7):7-12.
    [163] He B, Shen T L, Kako J, Input Observer-Based Individual Cylinder Air-Fuel Ratio Control:Modelling, Design and Validation[J]. IEEE Transactions on Control Systems Technology,2008,16:1057–1065.
    [164] Kenneth R, Muske, James C, Peyton Jones, and E.M, Franceschi, Adaptive AnalyticalModel-Based Control for SI Engine Air–Fuel Ratio,Control Systems Technology, IEEETransactions on,2009,Page(s):763-768.
    [165] Kenji Suzuki, Tielong Shen, Junichi Kako, and Shozo Yoshida, Individual A/F Estimation andControl With the Fuel–Gas Ratio for Multicylinder IC Engines,Vechicular Technology, IEEETransactions on,2009,Page(s):4757-4768.
    [166] Qadeer Ahmed, Estimating SI Engine Efficiencies and Parameters in Second-Order SlidingModes, IEEE Transacitons on Industrial Electronics,Vol,58,No,10,102011.
    [167] Yeong-Hwa Chang, Fuzzy sliding-mode formation control for multirobot systems:design andimplementation,IEEE Transacitons on Systems Man and Cybernetics-Part B: Cybernetics,Vol42, No,2, Apr2012.
    [168] Jason Meyer, Stephen Yurkovich, and Shawn Midlam Mohler, Air-to-Fuel Ratio SwitchingFrequency Control for Gasoline Engines, IEEE Transactions on Control Systems Technology,2012, Page(s):1-13.
    [169] Marius Postma and Ryozo Nagamune,Air-Fuel Ratio Control of Spark Ignition Engines Usinga Switching LPV Controller,IEEE Transactions on Control Systems Technology,2012,Page(s):1175-1187.
    [170] Maria Letizia, A quasi-sliding mode approach for robust control and speed estimation of PMsynchronous motors[J]. IEEE Transacitons on Industrial Electronics,Vol59,No2,2,2012.
    [171] Derong Liu, Hossein Javaherian, Olesia Kovalenko, and Ting Huang, Adaptive CriticLearning Techniques for Engine Torque and Air–Fuel Ratio Control, Systems, Man, andCybernetics, Part B: Cybernetics, IEEE Transactions on,2008, Page(s):988-993.
    [172] Gerhardt, J, Benninger, N, and Hess, W,"Torque-Based System Structure of an ElectronicEngine Management System as a New Base for Drive Train Systems (Bosch ME7System)",6,Aachener Kolloqium, Fahrzeug-und Motorentechnik, Aachen, Germany,20,-22, Oct,1997,
    [173] Amir Fazeli, Application of adaptive sliding mode control for regenerative braking torquecontrol [J]. IEEE Transcations on Mechatronics,Vol.17,No.4,Aug2012.
    [174]洪木南,欧阳明高,基于汽油机平均值模型的在线转矩估计[J].机械工程学报,2009,45(4):290-294
    [175] Satou S, Nakagawa S, Kakuya H, An Accurate Torque-based Engine Control by LearningCorrelation between Torque and Throttle Position[C]2008World Congress Detroit, Michigan,USA: SAE International,2008,April14-17:2008–01–1015.
    [176]杜常清,颜伏伍,李劲松,侯献军,发动机性能测试及扭矩控制原型建立方法研究[J].内燃机工程,2010,31(1):33-36,
    [177] Kara Togun, Necla; Baysec, Sedat, Prediction of torque and specific fuel consumption of agasoline engine by using artificial neural networks[J]. Applied Energy, v87, n1, p349-355,January2010.
    [178] Rakotomamonjy, A; Le Riche, R; Gualandris, D; Harchaoui, Z, A comparison of statisticallearning approaches for engine torque estimation[J]. Control Engineering Practice, v16, n1, p43-55, January2008.
    [179] Liu, Derong, Javaherian, Hossein, Kovalenko, Olesia, Huang, Ting, Adaptive critic learningtechniques for engine torque and air-fuel ratio control[J]. IEEE Transactions on Systems, Man,and Cybernetics, Part B: Cybernetics, v38, n4, p988-993, August2008.
    [180]杜常清,颜伏伍,严运兵,杨平龙,用于控制的发动机转矩估计方法研究[J].内燃机学报,2008,26(5):41-46.
    [181] Togun, Necla; Baysec, Seda, Genetic programming approach to predict torque and brakespecific fuel consumption of a gasoline engine[J]. Applied Energy, v87, n11, p3401-3408,November2010,.
    [182] Hong, Munane; Shen, Tielong; Ouyang, Minggao; Kako, Junichi, Torque observers designfor spark ignition engines with different intake air measurement sensors[J]. IEEE Transactionson Control Systems Technology, v19, n1, p229-237, January2011.
    [183] Hong, M; Ouyang, M; Shen, T, Torque-based optimal vehicle speed control[J]. InternationalJournal of Automotive Technology, v12, n1, p45-49, February2011.
    [184] Jan Macek, Milo Polá ek, Zbyněk ika,Michael Valá ek, Martin Florián and Old ich Vítek,Transient Engine Model as a Tool for Predictive Control,2006SAE World Congress Detroit,Michigan, SAE International,2006April3-6,2006-01-0659.
    [185] Damrongrit Piyabongkarn, John Grogg, Qinghui Yuan and Jae Lew, Rajesh Rajamani,Dynamic Modeling of Torque-Biasing Devices for Vehicle Yaw Control, SAE AutomotiveDynamics, Stability&Controls Conference and Exhibition Novi, Michigan, SAEInternational,2006February14-16,2006-01-1963.
    [186] Machiko Katsumata, Yukio Kuroda and Akira Ohata, Development of an Engine TorqueEstimation Model: Integration of Physical and Statistical Combustion Model,2007SAEWorld Congress Detroit, Michigan, SAE International,2007April16-19,2007-01-1302.
    [187] Guéna l Le Solliec, Fabrice Le Berr and Gilles Corde, Guillaume Colin, Downsized SI EngineControl: A Torque-based Design from Simulation to Vehicle,2007SAE World CongressDetroit, Michigan, SAE International,2007April16-19,2007-01-1506.
    [188] Suganthan, P,N, Particle swarm optimiser with neighbourhood operator, Proceedings of theIEEE Congress on Evolutionary Computation (CEC), Piscataway, NJ,1999,1958-1962.
    [189] J Kennedy, Stereotyping: improving particle swarm performance with cluster analysis, Proc ofIEEE Conf on Evolutionary Computation,2000:1507-1512.
    [190] Van den Bergh F, Engelbrecht A P, Trainning Product Unit Networks Using CooperativeParticle Swarm Optimizers[C]. In, Proc of the third Genetic and Evolutionary ComputationConference, San Francisco, USA,2001, Microprocessors and Microsystems26(2002):363-371.
    [191] Van den Bergh, F, Engelbrecht, A, P, Effects of Swarm Size on Cooperative Particle SwarmOptimisers, In: Proceedings of the Genetic and Evolutionary Computation Conference(GECCO),San Francisco, USA,2001.
    [192]唐贤伦,混沌粒子群优化算法理论及应用研究[D].重庆大学博士学位论文,2007.
    [193] Isermann R, Hardware-in-the-loop Simulation for the Design and Testing of Engine-controlSystems[J]. Control Engineering Practice,1997(7).
    [194]杨福源,电控柴油机匹配标定技术研究[D].清华大学博士学位论文,2005.
    [195]刘巨江,基于模型的发动机ECU开发[J].汽车工程,2007,(11):23-26.
    [196]冯皓明等,基于V模式的发动机嵌入式ECU开发[J].系统仿真,2008,(4):11-13.
    [197]曾科,刘兵等,汽油机电子控制单元(ECU)的开发[J].内燃机工程,2005,26(5):27-31.
    [198]邹博文,吴锋,俞小莉,汽油机分组喷射和点火定时同步控制策略研究[J],内燃机工程,2006,27(1):15-17.
    [199]杨涤,李立涛,杨旭,系统实时仿真开发环境与应用[M]].北京:清华大学出版社,2002.
    [200]王宇明,张付军,刘波澜,便携式发动机工况模拟器的设计与开发[J],内燃机工程,2006,27(6):63-67.
    [201] CAO Yun-peng, TENG Wan-qing, ZHANG H u-i jie, Dynamic modeling and hardware-in-the-loop simulation testing for LPG engine [C].Proceedings of the2007IEEE InternationalConference on Mechatronics and Automation, Harbin: IEEE,2007:2093-2098.
    [202]苗立东,邹广德,石沛林,等,基于xPC的汽车测控系统的开发[J],汽车工程,2008,30(3):235-238.
    [203]陈建松,陈南,殷国栋,任祖平,基于dSPACE的4WS车辆硬件在环控制仿真研究[J].系统仿真学报,2010,(22):1622-1626.
    [204] Yukihide Niimi, Takayuki Ono and Naoya Tsuchiya, Virtual Development of Engine ECU byModeling Technology, SAE International,2012-01-0007.
    [205] Akira Watanabe and Asuka Sotome, Functional Development Methodology for On-BoardDistributed ECU Systems for Production Vehicle Application, SAE International,2012-01-0929.
    [206] NI7813R Specifications [M]. http://www,ni,com,2007.
    [207] NI651X Specifications [M]. http://www,ni,com,2007.
    [208] NI6722/6723Specifications [M]. http://www,ni,com,2007.
    [209]薛炜,李广军等,增强型eDMA的结构与典型应用[J].单片机与嵌入式系统应用,2009,(1):12-14.
    [210] Freescale Semiconductor,Rev1, Enhanced Time Processing Unit (eTPU) PreliminaryReference Manual[S], Germany,2004,1-346.
    [211] Yuri Surzynskyj, and Jorge Luiz Tomaz de Brito, Torque Management System, XVICongresso e Exposi o Internacionais da Tecnologia da Mobilidade S o Paulo, Brasil28a30de novembro de2007, SAE International,2007-01-2742.
    [212] Huang Kaisheng, Wang Shuaiyu, Jin Zhenhua and Jiang Dinan, Engine Torque ObserverBased Real-time Optimization Control Strategy of Parallel Hybrid Electric Bus,14th AsiaPacific AutomotiveEngineering Conference Hollywood, California, USA August5-8,2007,SAE International,2007-01-3486.
    [213] Shinya Satou, Shinji Nakagawa, Hiromu Kakuya, Toshimichi Minowa, Mamoru Nemoto andHitoshi Konno, An Accurate Torque-based Engine Control by Learning Correlation betweenTorque and Throttle Position,2008World Congress Detroit, Michigan, SAEInternational,2008April14-17,2008-01-1015.
    [214] Sehyun Chang, Tim J, Gordon, Improvement of Vehicle Dynamics using Model-basedPredictive Control, SAE International,2009-01-0427.
    [215] Tae-Kyung Lee and Zoran Filipi, Nonlinear Model Predictive Control of Advanced EnginesUsing Discretized Nonlinear Control Oriented Models, SAE International,2010-01-2216.
    [216] Agostino Gambarotta and Gabriele Lucchetti lng, Control-Oriented “Crank-Angle” BasedModeling of Automotive Engines, SAE International,2011-24-0144.
    [217] Jiamei Deng, Richard Stobart, Cunjia liu and Edward Winward, Explicit Model PredictiveControl of the Diesel Engine Fuel Path, SAE International,2012-01-0893.
    [218] Vincent Acary, Chattering-Free digital sliding-mode control with state observer anddisturbance rejection, IEEE Transcations on Mechatronics,Vol57,No.5,May2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700