基于ICPT的无线电能传输网关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线电能传输技术的实质是泛指一种借助存在于物理空间中的传能介质,如:高频功率磁场、电磁波、微波、RF无线电波等,实现将电能以非接触的形式由源极传输至受电极的电能供给模式。感应耦合电能传输(Inductively Coupled PowerTransfer,以下简称ICPT)技术是基于电磁感应耦合原理的无线电能传输模式,解决了移动电气设备的电源灵活、安全、绿色接入问题,是目前无线电能传输领域的一个研究热点。
     感应耦合电能传输技术的电能传输效率与电能传输空间尺度之间的突出矛盾一直是制约该项技术产业化应用的瓶颈。目前有通过ICPT系统参数优化设计、提高电能发射端谐振频率、电磁共振耦合、增大发射功率等方法以求最大化电能传输距离。通过提升发射磁场频率固然可以适当缓解这一矛盾,在低频时感应耦合电能传输系统的损耗主要集中在电路本身,但随着频率的增大(大尺度传输时频率上GHz级,中尺度传输时上MHz级),此时能量在外界空间中的耗散也将急剧增加,系统传输效率将大幅下降,且EMI干扰将随之增强,对处在该环境内的电子设备造成强烈的干扰。另一方面,众所周知,随着传输距离的增加,系统传输效率将急剧下降(如MIT在2米范围内无线传输60W功率时效率仅约为40%左右),在系统输入功率较小的情况下甚至可能致拾取电能失效。鉴于电路中电子元器件的特性,发射端功率的增加存在一个上限额度,所以此类策略都无法解决ICPT技术提升能量传输效率与扩大传输尺度不可兼得的矛盾问题。此外,借助电磁波、微波、RF无线电波等介质的无线电能传输技术同样存在传输距离、传输功率、及传输方向性等方面的制约。基于此,本文首次提出一种基于无线电能传输技术的无线电能传输网概念,引入具有双向电能传输能力的能量中继节点,凭借能量中继节点的“接力”作用构建能量传输链路通道,若干条如此类型的能量传输链路便组成了一个网内无中心、能量传输节点对等的无线电能传输局域网络,实现能量无线多跳传输,在保证系统电能传输效率的前提下拓展无线电能传输的有效空间尺度。
     论文以国家自然科学基金项目“非接触电能双向推送系统关键技术研究”(基金编号:50807057)及教育部博士点基金项目“非接触电能传输系统关键技术研究”(基金编号:20070611012)为依托,在国内外学者对无线电能传输技术研究的基础之上面向无线电能传输网展开研究工作,旨在论证无线电能传输网的科学性和有效性,并着力解决无线电能传输网的部分关键科学技术问题。
     作者主要研究工作如下:
     1.分析了无线电能传输技术的国内外研究现状及取得的研究成果,针对目前存在的矛盾问题提出并论证无线电能传输网及其基本架构,并阐述本文研究的目的、意义及内容。
     2.论述基于无线电能传输技术的无线电能传输网框架,详细论证无线电能传输节点的基本结构、基本电路拓扑、硬件系统和软件系统,并验证无线电能传输链路的可行性。
     3.提出一种基于能量注入控制方法的移相控制策略以实现对无线电能传输链路系统输出功率的调节。重点论述基于能量注入控制方法的移相控制策略,从能量的角度提出能量注入占空比的概念,为移相控制策略提供理论依据。最后通过仿真试验验证基于能量注入控制方法的移相控制策略对满足负载动态功率需求的有效性。
     4.无线电能传输链路系统的高阶严重开关非线性使得不易对系统进行精确数学建模和有效控制,为此,提出基于神经网络的无线电能传输链路能量传输节点输出稳压控制策略。通过设计基于误差反向传播算法的前馈神经网络并将其作为控制器应用于传输链路系统输出稳压控制。仿真结果论证了神经网络控制器具有一定的可行性,并通过实验研究验证在负载跃变时,神经网络控制策略具有较好的控制作用,自适应性强。
     5.提出基于ICPT技术的无线电能传输链路能量双向传输电路拓扑结构。论述了无线电能双向传输链路工作机制,并从互感耦合原理出发详细阐述电能双向传输链路电路拓扑,获得通过调节能量发射节点输入电压相位和能量接收节点输出电压相位的差值大小控制能量流的流向和传输功率值及在相位差固定的情形下,通过控制能量发射节点输入电压幅值调节系统传输功率的结论。通过仿真和实验验证无线电能双向传输链路电路拓扑结构和控制策略的正确性。
     6.提出了无线电能传输链路优化数学模型,采用动态更新机制对信息素进行更新,以增强蚁群优化算法的全局搜索能力,基于改进蚁群优化算法的无线电能传输链路优化策略能构建效率最大化且链路剩余电能最多的电能传输路径,以达到兼顾延伸电能传输距离和保证电能传输链路稳定性的目的。并研究了无线电能传输链路系统能量传输效率特性。仿真试验验证了改进蚁群优化算法在无线电能传输链路优化方面的优越性。
     本文的创新性贡献:
     (1)提出一种基于无线电能传输技术的无线电能传输网基本架构,通过能量中继节点的“接力”作用建立起能量发射节点与能量接收节点之间的一条由一系列具有路由功能的移动能量传输节点组成的电能传输链路,构建无线电能多跳传输,能量传输链路的集合便形成一种网内无中心、能量传输节点对等的无线电能传输网,并提出无线电能传输链路寿命模型与网络覆盖范围评估模型,为后继研究奠定基础。
     (2)提出集能量发射功能、能量接收功能和能量中继功能于一体的无线电能双向传输节点基本电路拓扑,研究电能双向传输链路电路拓扑,获得了通过调节能量发射节点输入电压相位和能量接收节点输出电压相位差值便可控制能量流的流向和传输功率的结论。
     (3)提出无线电能传输链路优化数学模型,采用改进蚁群优化算法构建兼顾电能传输效率与电能传输链路稳定性的无线电能传输链路,在扩大电能传输空间尺度的同时延长了电能传输链路寿命。
Wireless power transfer technology is a kind of power transmission technologybased on physical medium, such as high-frequency magnetic field, electromagneticwave, microwave, RF radio wave, etc, and is used to regulate the power transfer frompower source to pick-up side across an air-gap. Inductively coupled power transfer(ICPT) technology is a contactless power transmission technology based on inductivelycoupled principle, it has solved the problems on how to supply power to mobile devicessafely, flexibly and cleanly. It is a focus of wireless power transfer technology researchnow.
     The contradiction between power transfer efficiency and power transfer distance iscausing bottlenecks in the ICPT technology field. People have struggled to enlargewireless power transfer distance via heightening resonance frequency, strongly coupledmagnetic resonances, improving input power, optimization parameters of ICPT system,and so on. Power loss is concentrated on the circuit when frequency is low, withfrequency improving the power loss is concentrated in a space, power transferefficiency has been reduced greatly, EMI interfere is increasing, and the electronicdevice is affected. Power transfer efficiency is descending as power transfer distance isenlarged (MIT were able to transfer60watts with~40%efficiency over distances inexcess of2meters), it is unable to supply power to pick up when the primary sidepower is small. The primary side power increasing is limited because of the propertiesof semiconductor components. So the solutions are unable to radically solve the issuebetween power transfer efficiency and power transfer distance. At the same time, thegrowth of wireless power transfer technology based on electromagnetic wave,microwave, RF radio wave, etc has been restricted by power transfer distance, powertransfer efficiency, power transfer directional and so on.The paper has developed anovel concept of wireless power transfer networks based on wireless power transfertechnology, a series of power relay nodes are comprised of a power transfer link,through the power relay nodes the power transfer between the primary node and thepick-up node takes place, some power transfer links can compose the wireless powertransfer networks without a centre in networks, and with the peer to peer power transfernodes, to ensure wireless power transfer efficiency and enlarge wireless power transferdistance synchronously.
     The paper research activity is supported by the National Natural ScienceFoundation of the "Contactless power bi-directional push system key technologies"(Fund No.:50807057) and Research Fund for Doctor Station of Ministry of Education"Contactless power transfer system key technologies"(Fund No.:20070611012).Researching on key technologies of wireless power transfer networks based on wirelesspower transfer technology was implemented to demonstrate the technicality and validityof wireless power transfer networks.
     The main works of the paper include:
     1. The paper has analysed the domestic and foreign research status of wirelesspower transfer technology, a concept of wireless power transfer networks based onwireless power transfer technology has been proposed to resolve existing problems ofwireless power transfer technology, and has expatiated on research purpose, researchsignificance and content.
     2. The basic frame for wireless power transfer networks based on wireless powertransfer technology has been discussed, the paper has demonstrated the basicconfiguration of wireless power transfer node, the basic circuit topology, circuitimpedance analysis, hardware system and software system, and networks system ofwireless power transfer networks in detail. The feasibility of wireless unidirectionalpower transfer link has been validated.
     3. A phase shifting control strategy based on energy injection mode has been putforward for wireless power transfer regulation. Firstly the two operating modes ofwireless power transfer link have been introduced: energy injection mode and freerunning mode, and the paper dissertated the phase shifting control strategy based onenergy injection mode. The energy injection duty cycle concept has been proposed froman energy point of view to provide academic foundation for phase shifting controlstrategy. In the end, the validity for the phase shifting control strategy based on energyinjection mode has been argumented through simulation test.
     4. Because of the severe high-level switch non-linear characteristic of wirelesspower transfer link, it is hard to construct the mathematic model of wireless powertransfer link and control, so the voltage-stabilizing control strategy of wireless powertransfer link system based on neural network was brought forward. Firstly the paper hasanalysised the circuit topology, and designed the neural network based on the backpropagation algorithm for voltage-stabilizing control, the simulation results havetestified the feasibility of neural network controler. Finally the adaptability and robusticity of neural network controller has been verified by experiment results whenthe load changed.
     5. The circuit topology of wireless power bi-directional transfer based on ICPTtechnology was proposed. The operation mechanism of wireless power bi-directionaltransfer link has been discussed in the first place, the circuit topology of wireless powerbi-directional transfer link was expatiated via mutual inductance coupled principle, it isderived that both the amount and direction of power flow between the primary node andthe pick-up node can be regulated by controlling the relative phase angle betweenvoltages generated by primary node and pick-up node reversible rectifiers. For anygiven primary node and pick-up node phase angles, the power output can be regulatedby controlling the voltage magnitude generated by primary node reversible rectifier. Thecorrectness for the control strategy and the circuit topology of wireless powerbi-directional transfer link has been validated by the simulation and experimentalresults.
     6. To enlarge wireless power transfer distance via power relay nodes introducedinto the wireless power transfer networks and ensure wireless power transfer efficiencysynchronously, the novel concept of optimization mathematic model for wireless powertransfer link was proposed. The ant colony optimization has been modified by dynamicupdating mechanism of sociohormone to control prematurity convergence of thealgorithm and search among the feasible field effectively. The routing method ofwireless power transfer networks based on the refined ant colony optimizationalgorithm can construct power transfer route with the maximize power transferefficiency and high stability. Finally the simulation results have verified the advantagesof refined ant colony optimization used in the routing method of wireless power transfernetworks.
     The innovative contributions of this paper are:
     1. A novel concept of wireless power transfer networks based on wireless powertransfer technology has been proposed, through a series of power relay nodes a powertransfer route between the primary node and the pick-up node was constructed to finishpower multi-hop transfer process, some power transfer links can compose the wirelesspower transfer networks without a centre in networks, and with the peer to peer powertransfer nodes, in order to search after ensuring wireless power transfer efficiency andenlarging wireless power transfer distance synchronously. The multi power transfer linklife-span mathematic model and the network cover area evaluation model have been proposed.
     2. A basic circuit topology of wireless power transfer node with the functionality ofpower supply, power pick-up and power relay has been developed, at the same time, thecircuit topology of wireless power bi-directional transfer based on ICPT technology wasproposed. The circuit topology of wireless power bi-directional transfer link has beendemonstrated via mutual inductance coupled principle, it is derived that both the amountand direction of power flow between the primary node and the pick-up node can beregulated by controlling the relative phase angle between voltages generated by primarynode and pick-up node reversible rectifiers.
     3. To construct power transfer route with the maximize power transfer efficiencyand high stability a novel concept of optimization mathematic model for wireless powertransfer link was proposed, the refined ant colony optimization used in the routingmethod of wireless power transfer networks may build a wireless power transfer routethat can enlarge wireless power transfer distance and ensure wireless power transferefficiency synchronously.
引文
[1]夏晨阳.感应耦合电能传输系统能效特性的分析与优化研究[D].重庆:重庆大学,2010.
    [2]周雯琪.感应耦合电能传输系统的特性与设计研究[D].浙江:浙江大学,2008.
    [3] BOYS J T, GREEN A W. Inductively coupled power transmission concept-design andapplication [J]. IPENZ Trans,1995,22(1):1-9.
    [4] GREEN A W, BOYS J T.10kHz inductively coupled power transfer-concept and control [J].Power Electronics and Variable Speed Drives,1994,399:694-699.
    [5] Kurs A, Karatis A, Moffatt R, Joannopoulos J. D., Fisher P, Sljacic M. Wireless PowerTransfer via Strongly Coupled Magnetic Resonances[J]. Science,2007.317(7):83-85.
    [6] Tang Chunsen, Sun Yue, Su Yugang, et al. Determining multiple steady-state ZCS operatingpoints of a switch-mode contactless power transfer system[J].IEEE Transactions on PowerElectronics,2009,24(2):416-425.
    [7] G. A. Covic, J. T. Boys, M. L. G. Kissin, H. G. Lu, A Three-phase Inductive Power TransferSystem for Roadway-Powered Vehicles[J].IEEE Trans. on Ind. Elect.,2007,54(6):3370-3378.
    [8] Thrimawithana Duleepa J., Madawala Udaya K., Shi Yu. Design of a Bi-DirectionalInverter for a Wireless V2G System[C].2010IEEE International Conf. on Sustainable EnergyTechnologies (ICSET),2010:1-5.
    [9]戴欣,余奎,孙跃. CLC谐振型感应电能传输系统的H∞控制[J].中国电机工程学报,2010,30(30):47-54.
    [10]王智慧.基于包络线调制的非接触电能传输模式研究[D].重庆:重庆大学,2009.
    [11] Wu, Hunter H., Covic, Grant A., Boys, John T., Hu, Aiguo P. A1kW inductive chargingsystem using AC processing pickups[C].20116th IEEE Conference on Industrial Electronicsand Applications, pending,2011:1999-2004.
    [12] Hunter Hanzhuo Wu, John T. Boys, Grant Anthony Covic. An AC processing pickup for IPTsystems [J]. IEEE Trans on Power Elect.,2010,25(5):1275-1283.
    [13] M. Kissin, H. Chang-Yu, G. A. Covic, J. T. Boys. Detection of the tuned point of afixed-frequency LCL resonant power supply [J]. IEEE Trans on Power Elect.,2009,24(4):1140-1143.
    [14] A. P. Hu, Chao Liu, L. L. Hao. A novel contactless battery charging system for soccer playingrobot[C]. International Conf. on Mechatronics and Machine Vision in Practice,2008:646-650.
    [15] Madawala U K,Thrimawithana D J,Nihal K.An ICPT-supercapacitor hybrid system forsurge-free power transfer[J].IEEE Transactions on Industrial Electronics,2007,54(6):3287-3297.
    [16] Hao L L,Hu A P,Jinfeng G,et al. Development of a direct AC-AC converter based on aDSPACE platform[C].Power System Technology,2006. Power Con2006.InternationalConference on,2006:1-6.
    [17] Wang C S,Stielau O H,Covic G A.Design considerations for a contactless electric vehiclebattery charger[J].IEEE Transactions on Industrial Electronics,2005,52(5):1308-1314.
    [18] Chwei-Sen W, Covic G A, Stielau O H.Investigating an LCL load resonant inverter forinductive power transfer applications [J]. IEEE Transactions on Power Electronics,2004,19(4):995-1002.
    [19] Boys J T, Covic G A, Elliott G A. Pick-up transformer for ICPT applications [J]. ElectronicsLetters,2002,38(21):1276-1278.
    [20] Covic G A,Elliott G,Stielau O H,et al.The design of a contact-less energy transfersystem-eople mover system[C].2000International Conference on Power System Technology,Vols I-Iii, Proceedings,2000:79-84.
    [21] Hu A P, Covic G A, Boys J T. Direct ZVS start-up of a current-fed resonant inverter[J].IEEETransactions on Power Electronics,2006,21(3):809-812.
    [22] Boys J T,Covic G A,James J E. Switching frequencies in inductively coupled power transfersystems[J].IPEC2003:Proceedings of the6th International Power Engineering Conference,Vols1-2,2003,:686-691.
    [23] Si Ping, A. P. Patrick, S. Malpas, D. Budgettt. A frequency control method for regulatingwireless power to implantable devices [J]. IEEE Trans on Biomedical Circuits and Systems,2008,2(1):22-29.
    [24] Hu A P, Hussmann S.A phase controlled variable inductor designed for frequency stabilizationof current fed resonant converter power supplies [J]. Ipec2003: Proceedings of the6thInternational Power Engineering Conference, Vols1and2,2003:175-180.
    [25] James J, Boys J, Covic G. A variable inductor based tuning method for ICPT pickups [C].Power Engineering Conference,2005.IPEC2005.The7th International,2005:1142-1146.
    [26] Hu A P, Hussmann S. Improved power flow control for contactless moving sensorapplications [J].Power Electronics Letters, IEEE,2004,2(4):135-138.
    [27] Si P,Hu A P,Hsu J W,et al.Wireless power supply for implantable biomedical device based onprimary input voltage regulation[C].Industrial Electronics and Applications,2007.ICIEA2007.2nd IEEE Conference on,2007:235-239.
    [28] Hsu J U, Hu A P,Si P,et al.Power flow control of a3-D wireless power pick-up[C].ICIEA2007.2nd IEEE Conference on Industrial Electronics and Applications,2007:2172-2177.
    [29] Li H L,Hu A P,Covic G A,et al.Optimal coupling condition of IPT system for achievingmaximum power transfer[J].Electronics Letters,2009,45(1):76-77.
    [30] Kacprzak D, Kacprzak D, Covic G A, et al. An improved magnetic design for inductivelycoupled power transfer system pickups [C]. Power Engineering Conference,2005.IPEC2005.The7th International,2005:1133-1136.
    [31] Elliott G A, Covic G A, Kacprzak D, et al. A new concept: asymmetrical pick-ups forinductively coupled power transfer monorail systems [J].IEEE Transactions on Magnetics,2006,42(10):3389-3391.
    [32] Boys J T, Covic G A, Yongxiang X.DC analysis technique for inductive power transferpick-ups[J]. IEEE, Power Electronics Letters,2003,1(2):51-53.
    [33] Covic G A, James J E, Boys J T. Analysis of a series tuned ICPT pick-up using DCtransformer modeling methods [C]. Ipec2003: Proceedings of the6th International PowerEngineering Conference,2003:305-310.
    [34] Boys J T, Hu A P, Covic G A. Critical Q analysis of a current-fed resonant converter for ICPTapplications[J].Electronics Letters,2000,36(17):1440-1442.
    [35] Xu Y X, Boys J T, Covic G A.Modeling and controller design of ICPT pick-ups[C].Proceedings of PowerCon2002.International Conference on Power System Technology,2002:1602-1606.
    [36] Madawala U K, Stichbury J, Walker S. Contactless power transfer with two-waycommunication[C].Industrial Electronics Society,2004.IECON2004.30th Annual Conferenceof IEEE,2004:3071-3075.
    [37] Chwei-Sen W, Covic G A, Stielau O H. Power transfer capability and bifurcation phenomenaof loosely coupled inductive power transfer systems [J].IEEE Transactions on IndustrialElectronics,2004,51(1):148-157.
    [38] Boys J T, Covic G A, Green A W. Stability and control of inductively coupled power transfersystems [J].Electric Power Applications, IEE Proceedings,2000,147(1):37-43.
    [39] Chwei-Sen W,Covic G A,Stielau O H.General stability criterions for zero phase anglecontrolled loosely coupled inductive power transfer systems[C].Industrial Electronics Society,2001.IECON'01.The27th Annual Conference of the IEEE,2001:1049-1054.
    [40] Pratik Raval, Dariusz Kacprzak, Aiguo P. Hu. A wireless power transfer system for lowpower electronics charging applications [C].20116th IEEE Conference on IndustrialElectronics and Applications,2011:520-525.
    [41] Hu A P. Selected resonant converters for IPT power supplies [D].Auckland: The UniversityofAuckland,2001.
    [42] Ping Si. Wireless power supply for implantable biomedical devices [D].Auckland: TheUniversityof Auckland,2008.
    [43] John T. Boys, Grant A. J. Elliott. An appropriate magnetic coupling co-efficient for the designand comparison of ICPT pickups [J]. IEEE transactions on power electronics,2007,22(1):333-335.
    [44] Hunter H. Wu, Grant A. Covic, John T. Boys, Daniel J. Robertson.A series-tunedinductive-power-transfer pickup with a controllable ac-voltage output [J]. IEEE transactionson power electronics,2011,26(1):98-109.
    [45] U.K. Madawala D.J. Thrimawithana. Current sourced bi-directional inductive power transfersystem [J]. IET Power Electronics,2011,4(4):471-480.
    [46] HaloIPT, www.haloipt.com/#n_home-intro.
    [47] Aristeidis Karalis J D J M. Efficient wireless non-radiative mid-range energy transfer [J].Annals of Physics,2008,323(1):34-48.
    [48] Alanson P. Sample, David A. Meyer, Joshua R. Smith. Analysis, experimental results,and range adaptation of magnetically coupled resonators for wireless power transfer [J].IEEE Transactions on Industrial Electronics,2011,58(2):544-554.
    [49] Jesús Sallán, Juan L. Villa, Andrés Llombart, José Fco. Sanz. Optimal design of ICPT systemsapplied to electric vehicle battery charge [J]. IEEE Transactions on Industrial Electronics,2009,56(6):2140-2149.
    [50] Juan L. Villa, Jesús Sallán, José Fco. Sanz, Andrés Llombart. High-misalignment tolerantcompensation topology for ICPT systems [J]. IEEE Transactions on Industrial Electronics,2012,59(2):945-951.
    [51] J. Acero, C. Carretero, I. Lope, R. Alonso, O. Lucía, et al. Analysis of the mutual inductanceof planar-lumped inductive power transfer systems [J]. IEEE Transactions on IndustrialElectronics,2011,(in pressing).
    [52] Sekitani T, Takamiya M, Noguchi Y,et al. A large-area wireless power-transmission sheetusing printed organic transistors and plastic MEMS switches [J].Nature Materials,2007,6(6):413-417.
    [53] Sato F, Matsuki H, Kikuchi S,et al. A new meander type contactless power transmissionsystem-active excitation with a characteristics of coil shape [J].IEEE Transactions onMagnetics,1998,34(4):2069-2071.
    [54] Sato F,Murakami J,Suzuki T,et al. Contactless energy transmission to mobile loads byCLPS-test driving of an EV with starter batteries[J].IEEE Transactions on Magnetics,1997,33(5):4203-4205.
    [55] Murakami J,Sato F,Watanabe T,et al. Consideration on cordless power station-contactlesspower transmission system[J].IEEE Transactions on Magnetics,1996,32(5):5037-5039.
    [56] Hatanaka K, Sato F, Matsuki H, et al. Characteristics of the desk with cord-free powersupply[C].Magnetics Conference,2002. INTERMAG Europe2002.Digest of TechnicalPapers.2002,6.
    [57] Hatanaka K, Sato F, Matsuki H, et al. Power transmission of a desk with a cord-free powersupply [J].IEEE Transactions on Magnetics,2002,38(5):3329-3331.
    [58] Teck Chuan Beh, Takehiro Imura, Masaki Kato, Yoichi Hori. Basic study of improvingefficiency of wireless power transfer via magnetic resonance coupling based on impedancematching [C]. Industrial Electronics (ISIE),2010IEEE International Symposium on,2010:2011-2016.
    [59] Takehiro Imura. Study on maximum air-gap and efficiency of magnetic resonant coupling forwireless power transfer using equivalent circuit [C]. Industrial Electronics (ISIE),2010IEEEInternational Symposium on,2010:3664-3669.
    [60] Takehiro Imura, Hiroyuki Okabe, Yoichi Hori. Basic experimental study on helical antennasof wireless power transfer for electric vehicles by using magnetic resonant couplings [C].Vehicle Power and Propulsion Conference,2009. VPPC '09. IEEE,2009:936-940.
    [61] L. Zou, T. Larsen. Dynamic power control circuit for implantable biomedical devices [J]. IETCircuits, Devices&Systems,2011,5(4):297–302.
    [62] Sanghoon Cheon, Yong-Hae Kim, Seung-Youl Kang, et al. Circuit-model-based analysis of awireless energy-transfer system via coupled magnetic resonances [J]. IEEE Transactions onIndustrial Electronics,2011,58(7):2906-2914.
    [63] Eun-Soo Kim, Hwan-Kook Song, Joo-Hun Kim, et al. Efficiency characteristics of ahalf-bridge series resonant converter for the contact-less power supply[C]. Twenty-ThirdAnnual IEEE Power Electronics Conference and Exposition,2008:1555-1561.
    [64] Seungyoung Ahn and Joungho Kim. Magnetic field design for high efficient and low EMFwireless power transfer in on-line electric vehicle[C]. Antennas and Propagation (EUCAP),Proceedings of the5th European Conference on,2011:3979-3982.
    [65] Zhen Ning Low, Raul Andres Chinga, Ryan Tseng, Jenshan Lin. Design and test of ahigh-power high-efficiency loosely coupled planar wireless power transfer system [J]. IEEETransactions on Industrial Electronics,2009,56(5):1801-1812.
    [66] Manzil Zaheer, Dr Nitish Patel, Dr Aiguo Patrick Hu. Parallel tuned contactless powerpickup using saturable core reactor[C]. Sustainable Energy Technologies (ICSET),2010IEEEInternational Conference on, Kandy, SriLanka,2010:1-6.
    [67] D. Spackman, D. Kacprzak, J. Sykulski. Magnetic Interference in Multi-Pickup MonorailInductively Coupled Power Transfer Systems [J]. Journal of the Japan Society of AppliedElectromagnetics and Mechanics,2007,15(3):238-241.
    [68] Rohan Bhutkar, Sahil Sapre.Wireless energy transfer using magnetic resonance[C].2009Second International Conference on Computer and Electrical Engineering,2009:512-515.
    [69] Kyriaki Fotopoulou, Brian W. Flynn. Wireless power transfer in loosely coupled links: coilmisalignment model [J]. IEEE Transactions on Magnetics,2011,47(2):416-430.
    [70] Artur J. Moradewicz, Marian P. Kazmierkowski. Contactless energy transfer system withFPGA-controlled resonant converter [J]. IEEE Transactions on Industrial Electronics,2010,57(9):3181-3190.
    [71] Saeed Hasanzadeh, Sadegh Vaez-Zadeh. Enhancement of overall coupling coefficient andefficiency of contactless energy transmission systems [C]. Power Electronics, Drive Systemsand Technologies Conference (PEDSTC),20112nd,2011:638-643.
    [72] H. Zenkner, W. Khan-ngern. High power density and high efficient wireless energy transferby resonance coupling [C]. Electrical Engineering/Electronics Computer Telecommunicationsand Information Technology (ECTI-CON),2010International Conference on,2010:1281-1284.
    [73] Marco Dionigi, Mauro Mongiardo. CAD of wireless resonant energy links (WREL)realized by coils [C]. Microwave Symposium Digest (MTT),2010IEEE MTT-SInternational,2010:1760-1763.
    [74] Anil Kumar RamRakhyani, Shahriar Mirabbasi, Mu Chiao. Design and optimization ofresonance-based efficient wireless power delivery systems for biomedical implants [J].IEEE Transactions on Biomedical Circuits and Systems,2011,5(1):48-63.
    [75] Liu X, Hui S Y R. Simulation study and experimental verification of a universal contactlessbattery charging platform with localized charging features [J]. IEEE Transactions on PowerElectronics,2007,22(6):2202-2210.
    [76] Liu X, Hui S Y R. Equivalent circuit modeling of a multilayer planar winding array structurefor use in a universal contactless battery charging platform [J]. IEEE Transactions on PowerElectronics,2007,22(1):21-29.
    [77] Liu X, Chan P W, Hui S Y R. Finite element simulation of a universal contactless batterycharging platform[C].20th Annual IEEE Applied Power Electronics Conference andExposition,2005.1927-1932.
    [78] Liu X, Hui S Y R. An analysis of a double-layer electromagnetic shield for a universalcontactless battery charging platform [C].36th IEEE Power Electronics SpecialistsConference,2005,1767-1772.
    [79] X. Liu, W. M. Ng, C. K. Lee, S. Y. R. Hui. Optimal operation of contactless transformers withresonance at secondary circuit[C].23th IEEE Annual Applied Power Electronics Conference,APEC'08,2008:645-650.
    [80] Liu X, Hui S Y R. Optimal design of a hybrid winding structure for planar contactless batterycharging platform [J]. IEEE Transactions on Power Electronics,2008,23(1):455-463.
    [81] W. P. Choi, W. C. Ho, X. Liu, S.Y.R. Hui. Comparative study on power conversion methodsfor wireless battery charging platform [C].14th International Power Electronics and MotionControl Conference, EPE-PEMC2010,2010:9-16.
    [82] Su Y P, Xun L, Hui S Y R. Mutual inductance calculation of movable planar coils on parallelsurfaces[C]. IEEE Power Electronics Specialists Conference,2008.3475-3481.
    [83] Tang S C, Hui S Y R, Chung H. Characterization of coreless printed circuit board (PCB)transformers[C].30th Annual IEEE Power Electronics Specialists Conference,1999.746-752.
    [84] Tang S C, Hui S Y R, Chung H. Coreless printed circuit board (PCB) transformers with highpower density and high efficiency [J]. Electronics Letters,2000,36(11):943-944.
    [85] S.C. Tang, S.Y.R. Hui, H. Chung. A low-profile wide-band three-port isolation amplifier withcoreless printed-circuit-board (PCB) transformers [J]. IEEE Transactions on IndustrialElectronics,2001,48(6):1180-1187.
    [86] S.C. Tang, S.Y.R. Hui, H. Chung. A low-profile low-power converter using coreless PCBtransformer with ferrite polymer composite [J]. IEEE Transactions on Power Electronics,2001,16(4):493-498.
    [87] Hui S Y R, Ho W C. A new generation of universal contactless battery charging platform forportable consumer electronic equipment [J]. IEEE Transactions on Power Electronics,2005,20(3):620-627.
    [88] Chan P C F, Lee C K, Hui S Y R. Stray capacitance calculation of coreless planar transformersincluding fringing effects [J]. Electronics Letters,2007,43(23).
    [89] Y. P. Su, Xun Liu, C. K. Lee, S. Y. R. Hui. Relationship of quality factor and hollow windingstructure of coreless printed spiral winding (CPSW) inductor [C]. Applied Power ElectronicsConference and Exposition (APEC),2010Twenty-Fifth Annual IEEE,2010:86-91.
    [90] W. X. Zhong, Xun Liu, S. Y. Ron Hui. A novel single-layer winding array and receivercoil structure for contactless battery charging systems with free-positioning and localizedcharging features [J].IEEE Transactions on Industrial Electronics,2011,58(9):4136-4144.
    [91] Chunbo Zhu, Kai Liu, Chunlai Yu, Rui Ma, Hexiao Cheng.Simulation and experimentalanalysis on wireless energy transfer based on magnetic resonances [C]. IEEE Vehicle Powerand Propulsion Conference (VPPC), Harbin, China,2008:1-4.
    [92] Rengui Lu, Tianyu Wang, Yinhua Mao, Chunbo Zhu. Analysis and design of a wirelessclosed-loop ICPT system working at ZVS mode [C].Vehicle Power and PropulsionConference (VPPC),2010IEEE,2010:1-5.
    [93] Wenqi Zhou, Hao Ma. Winding Structure and Circuit Design of Contactless Power Transfer Platform[C]. Industrial Electronics,2008. IECON2008.34th Annual Conference of IEEE,2008:1063-1068.
    [94] Wenqi Zhou, Hao Ma. Design considerations of compensation topologies in ICPT system [C].Applied Power Electronics Conference, APEC2007-Twenty Second Annual IEEE,2007:985-990.
    [95] Wenqi Zhou, Hao Ma. Dynamic analysis of a current source inductively coupled powertransfer system [C]. Power Electronics and Motion Control Conference,2006. IPEMC2006. CES/IEEE5th International,2006,2:1-5.
    [96]马皓,孙轩.原副边串联补偿的电压型耦合电能传输系统设计[J].中国电机工程学报.2010.30(15):48-52.
    [97]周雯琪,马皓,何湘宁.感应耦合电能传输系统不同补偿拓扑的研究[J].电工技术学报,2009,24(1):133-139.
    [98]周雯琪,马皓,何湘宁.基于动态方程的电流源感应耦合电能传输电路的频率分析[J].中国电机工程学报.2008,28(3):119-124.
    [99]马皓,周雯琪.电流型松散耦合电能传输系统的建模分析[J].电工技术学报,2005,20(10):66-71.
    [100] Wenqi Zhou, Hao Ma, Steady-state analysis of the inductively coupled power transfersystem[C]. IEEE Industrial Electronics, IECON2006-32nd Annual Conference on,2006:2438-2443.
    [101] Tan Linlin, Huang Xueliang, Li Hui, Huang Hui. Study of wireless power transfer systemthrough strongly coupled resonances [C].2010International Conference on Electrical andControl Engineering,2010:4275-4278.
    [102]黄辉,黄学良,谭林林,丁晓辰.基于磁场谐振耦合的无线电力传输发射及接收装置的研究[J].电工电能新技术,2011,30(1):32:35.
    [103] Zou Yuwei, Huang Xueliang, et al. Current research situation and developing tendency aboutwireless power transmission[C].2010International Conference on Electrical and ControlEngineering,2010:3507-3511.
    [104]唐春森,孙跃,等.感应电能传输系统多谐振点及其自治振荡稳定性分析[J].物理学报,2011,60(4):048401-1-048401-9.
    [105]戴欣,孙跃,等.感应电能传输系统能量注入控制方法研究[J].电子科技大学学报,2011,40(1):69-89.
    [106]王智慧,孙跃,等.DC-AC型非接触电能传输系统变换器设计[J].重庆大学学报(自然科学版),2011,34(2):38-43.
    [107]戴欣,孙跃,等.感应电能传输系统参数辨识与恒流控制[J].重庆大学学报(自然科学版),2011,34(6):98-104.
    [108]杨芳勋,孙跃,等.基于改进粒子群算法的ICPT配电系统规划[J].华中科技大学学报(自然科学版),2011,39(1):118-122.
    [109] Chenyang Xia, Yue Sun, Yu-gang Su, and Xin Dai. Analysis and optimization on powertransfer capability of contactless power transfer systems with multi-load[C]. Proceedings ofthe8th World Congress on Intelligent Control and Automation, Jinan,China,2010:3336-3141.
    [110]戴欣,孙跃,苏玉刚,等.非接触电能双向推送模式研究[J].中国电机工程学报,2010,30(18):55-61.
    [111]孙跃,夏晨阳,戴欣,苏玉刚.感应耦合电能传输系统互感耦合参数的分析与优化[J].中国电机工程学报,2010,30(33).44-50.
    [112]孙跃,夏晨阳,苏玉刚,戴欣. CPT系统效率分析与参数优化[J].西南交通大学学报,2010,45(6):836-842.
    [113]孙跃,夏晨阳,戴欣,苏玉刚.导轨式非接触电能传输系统能效的分析与优化[J].华南理工大学学报,2010,38(10):123-129.
    [114]孙跃,李砚玲.非接触传输系统的广义状态空间平均法分析[J].同济大学学报,2010,38(10):1521-1524.
    [115] DAI Xin, SUN Yue, et al. Dynamic parameters identification method for inductively coupledpower transfer system [C]. IEEE ICSET2010, Kandy, Sri Lanka,2010:1-5.
    [116]胡友强,戴欣.基于电容耦合的非接触电能传输系统模型研究[J].仪器仪表学报,2010,31(9):2133-2139.
    [117]孙跃,王智慧.电流型CPT系统传输功率调节方法[J].重庆大学学报(自然科学版),2009,32(12):1386-1391.
    [118]苏玉刚,唐春森,孙跃等.非接触供电系统多负载自适应技术[J].电工技术学报,2009,24(1):153-157.
    [119]苏玉刚,王智慧,孙跃等.非接触供电移相控制系统建模研究[J].电工技术学报,2008,23(7):92-97.
    [120]孙跃,陈国东,戴欣等.非接触电能传输系统恒流控制策略[J].重庆大学学报(自然科学版),2008,31(7):766-769.
    [121] Wang Z H, Sun Y, Su Y G, et al. Study on soft-switched inversion topology of contactlesspower transfer system[C].7th World Congress on Intelligent Control and Automation,Chongqing, China,2008,3136-3139.
    [122]戴欣,黄席樾,孙跃.自治分段线性振荡系统的离散映射数值建模与稳定性分析[J].自动化学报,2007,33(1):72-77.
    [123] Su Y G, Tang C S, Wu S P, et al. Research of LCL resonant inverter in wireless power transfersystem[C]. International Conference on Power System Technology, Chongqing, China,2006,794-799.
    [124] Su Y G, Deng B, Tang C S, et al. Study on phase shift control method in contactless powertransfer system [J]. Dynamics of Continuous Discrete and Impulsive Systems-Series B-Applications&Algorithms,2006,13E:3281-3284.
    [125] Sun Y, Hu A P, Dai X, et al. Discrete time mapping modeling and bifurcation phenomenonstudy of a ZVS converter[C]. International Conference on Power System Technology,2004.1015-1018.
    [126]孙跃,卓勇,苏玉刚等.非接触电能传输系统拾取机构方向性分析[J].重庆大学学报(自然科学版),2007,30(04):87-90.
    [127]戴欣,黄席樾,孙跃.电流型全桥软开关变换器的频率跃变现象分析[J].电工技术学报,2006,21(6):78-82.
    [128] Dai X, Huang X. Y. Study on dynamic accurate modeling and nonlinear phenomena of apush-pull soft switched converter[C].1st IEEE Conference on Industrial Electronics andApplications. Singapore:2006.1-4.
    [129] Dai X, Huang X. Y, Sun Y. A generalized mapping modeling method for piecewise smoothautonomous vibration system[C]. International Conference on Sensing, Computing andControl. Chongqing, China,2006.
    [130]武瑛,严陆光,徐善刚.新型无接触电能传输系统的稳定性分析[J].中国电机工程学报,2004,24(5):63-66.
    [131]武瑛,严陆光,徐善纲.运动设备无接触供电系统耦合特性的研究[J].电工电能新技术,2005,24(3):5-8.
    [132]傅文珍,张波,丘东元,等.自谐振线圈耦合式电能无线传输的最大效率分析与设计[J].中国电机工程学报,2009,29(18):21-26.
    [133] Wenzhen Fu, Bo Zhang, Dongyuan Qiu, Wei Wang. Analysis of transmission mechanism andefficiency of resonance coupling wireless energy transfer system [C]. Electrical Machines andSystems,2008. ICEMS2008. International Conference on,2008:2163-2168.
    [134] Wenzhen Fu, Bo Zhang, Dongyuan Qiu. Study on frequency-tracking wireless power transfersystem by resonant coupling[C]. Power Electronics and Motion Control Conference,2009.IPEMC '09. IEEE6th International,2009:2658-2663.
    [135]毛赛君.非接触感应电能传输系统关键技术研究[D].南京航空航天大学,2006.
    [136]张巍,陈乾宏,等.新型非接触变压器的磁路模型及其优化[J].中国电机工程学报,2010,30(27):108-116.
    [137]刘志宇.感应充电实验系统研究[D].北京:清华大学,2004.
    [138]刘志宇,都东.感应充电技术的发展与应用[J].电力电子技术,2004,38(3):92-94.
    [139]杨庆新,陈海燕,等.无接触电能传输技术的研究进展[J].电工技术学报,2010,25(7):6-13.
    [140] Tso Sheng Chan, Chern Lin Chen. LLC resonant converter for wireless energy transmissionsystem with PLL control [C]. Sustainable Energy Technologies,2008. ICSET2008. IEEEInternational Conference on,2008:136-139.
    [141]韩腾,卓放,闫军凯等.非接触电能传输系统频率分叉现象研究[J].电工电能新技术,2005,24(2):45-47,76.
    [142]董慧芬.感应电能传输技术的研究[D].天津:河北工业大学,2002.
    [143]马三清.并联谐振型ICPT系统分析与设计[D].郑州大学,2006.
    [144] Guozheng Yan, Dongdong Ye, Peng Zan, Kundong Wang, Guanying Ma. Micro-robot forendoscope based on wireless power transfer [C]. Proceedings of the2007IEEE InternationalConference on Mechatronics and Automation, Harbin, China,2007:3577-3581.
    [145]孙跃,戴欣,等.分布式无线电能传输网[J].电力电子,2010,3:59-61,84.
    [146]王殊,阎毓杰,等.无线传感器网络的理论及应用[M].北京:北京航空航天大学出版社,2007.
    [147]张金荣.无线传感器网络能效与安全研究[D].重庆:重庆大学,2008.
    [148] CHEN G, SUN Y, DAI X, et al. On piecewise control method of contactless powertransmission system[C].27th Chinese Control Conference. Piscataway, NJ, United States:Institute of Electrical and Electronics Engineers Computer Society,2008:72-75.
    [149] Hu A P,Boys J T,Covic G A.Frequency analysis and computation of a current-fed resonantconverter for ICPT power supplies [C]. Proceedings of the International Conference on PowerSystem Technology,Perth,Australia,2000:327-332.
    [150] H.L.Li, A.P.Hu, G.A.Covic, et al. A new primary power regulation method for contactlesspower transfer [C]. IEEE International Conference on, Industrial Technology,2009.
    [151]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005:69-90.
    [152] D. J. Thrimawithana, U. K. Madawala. A novel matrix converter based bi-directional iptpower interface for V2G applications[C]. IEEE Int. Energy Conf. and Exhibition,2010:495-500.
    [153]孙跃,杨芳勋,等.基于改进型蚁群算法的无线电能传输网组网[J].华南理工大学学报(自然科学版),2011,39(10):146-151.
    [154]黄席樾,张著洪,等.现代智能算法理论及应用[M].北京:科学出版社,2005:286-287.
    [155] Song Y H,Irving M R.An overview of heuristic optimization techniques for power systemexpansion planning and design [J].Power Engineering Society General Meeting,2004,1(6):933.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700