直驱式风力发电变流系统拓扑及控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球能源危机与环保问题的日益突出,以风能、太阳能等可再生能源为代表的新能源开发利用越来越受到人们的重视。由于全球风能资源丰富加上风力发电成本较低,因此风力发电已成为二十一世纪最具大规模开发利用的新能源之一。与传统风力发电系统相比,直驱式风力发电系统由于采用了多极低速永磁同步发电机从而取消了增速齿轮箱,降低了维护费用,提高了可靠性,而且利用变速恒频发电方式能大大提高风能利用率,所以更加适合于目前对风力发电系统高效率、大容量、高可靠性的要求。因此,直驱式风力发电系统正逐渐得到人们的青睐,各国学者争相研究。本文对几种直驱式风力发电系统变流器的拓扑及其控制策略进行了深入研究,建立起一套仿真与实验平台,进行了相应的仿真和实验验证。
     文章首先对国内外风力发电系统及变速恒频风力发电技术的研究现状和发展趋势做了全面综述。分析了风力机的基本特性和最大风能捕获的基本思路,提出了在实验室条件下利用变频器驱动的异步机来定性模拟风力机的方法,为相关实验研究提供了基础。对直驱式风力发电系统所用的全功率网侧三相PWM逆变器的控制策略进行了深入细致研究,阐述了幅相控制的基本原理,并针对逆变器启动时刻并网冲击电流大和动态响应较慢的不足,提出了开启电压预测控制和电流前馈控制两种方法,实验证明提出的方法能有效抑制并网瞬间的电流冲击,实现柔性并网。详细地阐述了一种固定开关频率的直接电流控制策略,推导了网侧电压型PWM变换器在同步旋转坐标系下的数学模型,对SAPWM调制波做了傅立叶分析,在此基础上提出了一种零轴谐波注入法以提高直流母线电压利用率,进行了仿真和实验验证。阐述了基于虚拟电网磁链的网侧PWM变换器无电压传感器控制策略,提出了一种虚拟电网磁链观测稳态误差补偿方法。根据机侧整流装置的不同,分别对发电机输出接无源整流装置和接有源整流装置两类拓扑结构进行研究,对于前者,首先分析了其工作特性,然后分别研究了基于boost升压电路和基于Z源逆变器的直驱式风力发电系统拓扑及其控制方法、最大功率点跟踪策略等,并给出了仿真和实验结果。对于后者,在详细分析了永磁同步机数学模型的基础上设计了转子磁链定向矢量控制系统和使发电机效率尽量优化的最大功率点跟踪策略,并进行了仿真和实验。最后,针对发电机采用无源整流结构时由于整流桥特性及交流电抗引起的发电机电流谐波大、功率因数低、效率低等缺点,研究了一种基于磁能恢复开关的发电机交流电抗补偿方法,仿真结果证明该补偿方法效果良好。
With the increasingly serious global energy crisis and environmental pollution, the development and utilization of renewable energy sources such as wind energy and solar energy are attracting more and more attention. For the relatively lower cost and abundant global resources, wind power generation has become one of the most promising renewable energy that could be applied on a large scale. A low speed multi-polar Permanent Magnet Synchronous Generator (PMSG) is utilized in the Direct-Drive (DD) Wind Power Generation System (WPGS) to eliminate the up-speed gearbox that is always included in traditional WPGS. The DD-WPGS has advantages such as low maintenance costs, high reliability. Furthermore, it can greatly improve the wind power capturing capability when it works in Variable Speed Constant Frequency (VSCF) mode. The PMSG-WPGS meets the requirements such as high efficiency, large capacity, high reliability and it is becoming a research hotspot in many countries. In this dissertation, couple of topology and their control strategy of the converter for DD-WPGS are comprehensively investigated. A simulation and experimental platform is built up and a lot of simulation and experimental results are obtained based on it.
     At the beginning of this dissertation, the domestic and overseas research status of WPGS structure and VSCF technology are summarized compendiously. Then the performance characteristic of wind turbines (WT) and the operation principle of optimum utilization of wind energy are addressed, and a method of using Asynchronous motor to qualitatively simulate WT is presented, which establishes foundation for relevant experimental study. This dissertation carries on the deep study on the control strategies of the grid-side three-phase PWM inverter. The vector regulating principle of the phase and amplitude control for three-phase grid-connected inverters is represented. To solve the problem of heavy impact current and slow dynamic response, the start voltage prediction control and the current feed-forward control are proposed, which improve the dynamic performance of the system in the phase and amplitude control. The experimentation carried out on a three-phase grid-connected inverter proved the validity of proposed methods. A direct current control strategy with fixed switching frequency is studied. The mathematic model of three-phase grid-connected inverter in synchronous rotating coordinate system is built. Based on Fourier analysis of Saddle Pulse Width Modulation (SAPWM) wave, a 0-axis harmonic injection method is presented for enhancing DC link voltage utilities. The simulation and experiment has been presented to verify the proposed theories. A virtual-flux-based sesorless control strategy of three-phase PWM converter is studied, and a teady-state error compensation method for virtual flux observer is proposed. Then, the dissertation does research on two kinds of the WPGS topology. One is the topology including PMSG linked the passive rectifier, and the other is topology including PMSG linked the active rectifier. For the former, the performance characteristic of the passive rectifier is analyzed at first. Then the system structure, control method and the MPPT strategy are researched for the topology respectively based on boost converter and Z-source inverter. Simulation and experimental results is provided. For the latter, by analyzing the mathematic model of PMSG, a rotor flux oriented vector control strategy and a MPPT strategy based on optimizing the efficiency of PMSG is designed. The simulation and experimental results prove the validity and feasibility of the presented control method. At last, to solve the problems of high harmonic and low power factor for the PMSG in the first kind of topology, a method of compensating PMSG’s reactance voltage based on a novel circuit called Magnetic Energy Recovery Switch (MERS) is researched, and the simulation results prove that it has good compensation effect.
引文
[1]文继英,李青霞.全球变暖问题浅探[J].科协论坛(下半月), 2007, (4): 355-356
    [2]刘其辉.变速恒频风力发电系统运行与控制研究[D].浙江大学博士学位论文, 2005
    [3]庄林.减缓温室效应不妨资源化利用二氧化碳[J].资源与人居环境, 2007(13): 52-55
    [4]周孝信,曹一家.我国发展大规模非水可再生能源发电的前景[J].电力科学与技术学报, 2008, 23(1): 21-7
    [5]张希良主编.风能开发利用[M].北京:化学工业出版社,2005
    [6] GWEC. Global Wind Energy Outlook 2008[R]. GLOBAL WIND ENERGY COUNCIL, October, 2008
    [7] GWEC. Global Wind 2007 Report[R]. GLOBAL WIND ENERGY COUNCIL, May, 2008
    [8] AWEA. Wind Power Outlook 2008[R]. America Wind Energy Council, 2008
    [9]国家发展改革委员会.可再生能源发展“十一五”规划[R].国家发展改革委员会, 2008
    [10]叶杭冶编著.风力发电机组的控制技术[M].北京:机械工业出版社,2006
    [11]盛双文,许洪华,赵斌,温冰.失速型风力发电机组双速电机切换过程的仿真分析[J].太阳能学报, 2002, 23(5):604-609
    [12] Chedid R, Mrad F, Basma M.Intelligent control of a class of wind energy conversion systems [J]. IEEE Transactions on Energy Conversion, 1999, 14(4):1597-1604
    [13] Eduard Muljadi, Butterfield C P. Pitch-controlled variable-speed wind turbine generation [J]. IEEE Transactions on Industry Applications, 2001, 37(1):240-246
    [14]邹占武.美国100kW风力发电机组变桨距系统的改进[J].内蒙古电力技术, 1998, (1): 17-20
    [15]李强,姚兴佳,陈雷.兆瓦级风电机组变桨距机构分析[J].沈阳工业大学学报, 2004, 26(2): 146-148
    [16]林勇刚,李伟,崔宝玲.基于SVR风力机变桨距双模型切换预测控制[J].机械工程学报, 2006, 42(8): 101-106
    [17]林勇刚,李伟,崔宝玲等.风电机组电液比例变桨距技术研究[J].太阳能学报, 2007, 28(6): 658-661
    [18]单光坤,刘颖明,姚兴佳.大型风力发电机组变桨距机构分析与实验研究[J].沈阳工业大学学报, 2007, 29(2): 209-212
    [19]姚兴佳,温和煦,邓英.变速恒频风力发电系统变桨距智能控制[J].太阳能学报,沈阳工业大学学报, 2008, 30(2): 159-162
    [20]耿华,杨耕.基于逆系统方法的变速变桨距风机的桨距角控制[J].清华大学学报(自然科学版)I, 2008, 48(7): 1221-1224
    [21]耿华,杨耕.变速变桨距风电系统的功率水平控制[J].中国电机工程学报, 2008, 28(25): 130-137
    [22]夏常亮,宋战锋.变速恒频风力发电系统变桨距自抗扰控制[J].中国电机工程学报, 2007, 27(14): 91-95
    [23]马洪飞,徐殿国,苗立杰.几种变速恒频风力发电系统控制方案的对比分析[J].电工技术杂志, 2000, (10): 1-4
    [24] Tomohiko Nakamura, Shigeo Morimoto, Masayuki Sanada, et al. Optimum Control of IPMSG for Wind Generation System [C]. Power Conversion Conference, Osaka 2002, 3:1435-1440
    [25] Rong-Jong Wai, Chung-You Lin. Implementation of Novel Maximum-Power-Extraction Algorithm for PMSG Wind Generation System without Mechanical Sensors [C]. 2006 IEEE Conference on Robotics, Automation and Mechatronics, 2006, 1-6
    [26]尹明,李庚银,张建成等.直驱式永磁同步风力发电机组建模及其控制策略[J].电网技术, 2007, 31(15): 61-65
    [27] Yifan Tang, Longya Xu. A Flexible Active and Reactive Power Control Strategy for a Variable Speed Constant Frequency Generating System [J]. IEEE Transactions on Power Electronics, 1995, 10(4): 472-478
    [28] Pena R, Clare J C, Asher G M. Doubly Fed Induction Generator Using Back-to-back PWM Converter and Its Application to Variable-speed Wind-energy Generation [C]. IEE Proceedings of Electric Power Applications, 1996, 143(3): 231-241
    [29] Marques J, Pinheiro H. Dynamic Behavior of the Doubly-Fed Induction Generator in Stator Flux Vector Reference Frame [C]. IEEE 36th Power Electronics Specialists Conference,2005: 2104-2110
    [30]赵仁德.变速恒频双馈风力发电机交流励磁电源研究[D].浙江大学博士学位论文, 2005
    [31] Cardenas R, Pena R, Asher G, et al. Sensorless control of induction machines for wind energy applications [C]. IEEE 33rd Annual Power Electronics Specialists Conference, 2002, 1: 265-270
    [32] Abo-Khalil A G, Hyeong-Gyun Kim, Dong-Choon Lee, et al. Maximum Output Power Control of Wind Generation System Considering Loss Minimization of Machines [C]. The 30th Annual Conference of the IEEE Industrial Electronics Society, 2004, 2: 1676-1681
    [33] Karrari M, Rosehart W, Malik O P. Comprehensive Control Strategy for a Variable Speed Cage Machine Wind Generation Unit [C]. IEEE Transactions on Energy Conversion, 2005, 20(2): 415-423
    [34] Fengge Zhang, Ningze Tong, Huijun Wang, et al.Modeling and Simulation of Variable Speed Constant Frequency Wind Power Generation System with Doubly Fed Brushless Machine [C]. 2004 International Conference on Power System Technology, 2004, 1: 801-805
    [35]黄守道,王耀南,王毅等.无刷双馈电机有功和无功功率控制研究[J].中国电机工程学报, 2005, 25(4): 87-93
    [36] Valenciaga F, Puleston P F. Variable Structure Control of a Wind Energy Conversion System Based on a Brushless Doubly Fed Reluctance Generator [J]. IEEE Transactions on Energy Conversion, 2007, 22(2): 499-506
    [37]赵仁德,贺益康,黄科元.变速恒频风力发电机用交流励磁电源的研究[J].电工技术学报, 2004, 19(6): 1-6
    [38]贺益康,何鸣明,赵仁德等.双馈风力发电机交流励磁用变频电源拓扑浅析[J].电力系统自动化, 2006, 30(4): 105-112
    [39]卞松江.变速恒频风力发电关键技术研究[D].浙江大学博士学位论文, 2003
    [40]林勇刚.大型风力机变桨距控制技术研究[D].浙江大学博士学位论文, 2005
    [41]伍小杰,柴建云,王祥珩.变速恒频双馈风力发电系统交流励磁综述[J].电力系统自动化, 2004, 28(23): 92-96
    [42]苑国锋,柴建云,李永东.变速恒频风力发电机组励磁变频器的研究[J].中国电机工程学报, 2005, 25(8): 90-94
    [43]乔嘉赓,鲁宗相,严慧敏等.双馈感应风力发电机功率控制器的建模与仿真[J].电力系统自动化, 2007, 31(24): 34-37
    [44]包能胜,徐军平,倪维斗等.大型失速型风力发电机动态特性研究[J].太阳能学报, 2007, 28(12): 1329-1333
    [45]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究[J].中国电机工程学报, 2003, 23(11): 122-125
    [46]张凤阁,王惠军,佟宁泽等.新型无刷双馈变速恒频风力发电系统的建模与数字仿真[J].太阳能学报, 2007, 28(12): 660-664
    [47]王正,王凤翔,张凤阁.基于转差频率旋转坐标系的无刷双馈电机数学模型[J].电机与控制学报, 2007, 11(3): 231-235
    [48]郎永强,张学广,徐殿国等.双馈电机风电场无功功率分析及控制策略[J].中国电机工程学报, 2007, 27(9): 77-82
    [49]王立国,徐殿国,张华强等.风力发电中Buck-Boost变换器参数设计的动力学建模方法[J].电力系统自动化, 2005, 29(17): 45-48
    [50]郎永强,徐殿国, Hadianmrei S.R等.交流励磁双馈电机分段并网控制策略[J].中国电机工程学报, 2006, 26(19): 133-138
    [51]程鹏,李伟力,孙秋霞等.变速恒频双馈感应发电机的空载特性[J].电机与控制学报, 2007, 11(2): 101-106
    [52]王伟,孙明冬,朱晓东.双馈式风力发电机低电压穿越技术分析[J].电力系统自动化, 2007, 31(23): 84-89
    [53]李东东,陈陈.风力发电机组动态模型研究[J].中国电机工程学报, 2005, 25(3): 115-119
    [54]李东东,陈陈.风力发电系统动态仿真的风速模型[J].中国电机工程学报, 2005, 25(21): 41-44
    [55]王锋,姜建国.风力发电机用双PWM变换器的功率平衡联合控制策略研究[J].中国电机工程学报, 2006, 26(22): 134-139
    [56]张新房.大型风力发电机组的智能控制研究[D].华北电力大学博士学位论文, 2004
    [57]刘其辉,贺益康,张建华.并网型交流励磁变速恒频风力发电系统控制研究[J].中国电机工程学报, 2006, 26(23): 109-114
    [58]刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机的运行控制及建模仿真[J].中国电机工程学报, 2006, 26(18): 43-50
    [59]尹明,李庚银,赵辉等.双馈式感应风力发电机组建模及其控制研究[J].华北电力大学学报, 2007, 34(5): 17-21
    [60]王东风,贾增周,孙剑等.变桨距风力发电系统的滑模变结构控制[J].华北电力大学学报, 2008, 35(1): 1-8
    [61]陆城,许洪华.风力发电用双馈感应发电机控制策略的研究[J].太阳能学报, 2004, 25(5): 606-611
    [62]李建林,高志刚,赵斌.直驱型风电系统大容量Boost PFC拓扑及控制方法[J].电工技术学报, 2008, 23(1): 104-109
    [63]郭金东,赵栋利,林资旭等.兆瓦级变速恒频风力发电机组控制系统[J].中国电机工程学报, 2007, 27(6): 1-6
    [64]付旺保,赵栋利,潘磊等.基于自抗扰控制器的变速恒频风力发电并网控制[J].中国电机工程学报, 2006, 26(3): 13-18
    [65]李建林,高志刚,胡书举等.并联背靠背PWM变流器在直驱型风力发电系统的应用[J].电力系统自动化, 2008, 32(5): 59-62
    [66] Yang Junhua, Wu Jie, Yang Jinming, et al. Apply Intelligent Control Strategy in Wind Energy Conversion System [C]. Fifth World Congress on Intelligent Control and Automation, 2004, 6: 5120 - 5124
    [67] Dolan D S L, Lehn P W. Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow [J]. IEEE Transaction on Energy Conversion, 2006, 21(3): 717-724
    [68] Simoes M G, Bose, B K, Spiegel R J. Design and performance evaluation of a fuzzy-logic-based variable-speed wind generation system [J]. IEEE Transactions onIndustry Applications, 1997, 33(4): 956-965
    [69] Eel-Hwan Kim, Jae-Hong Kim, Gil-Su Lee. Power Factor Control of a Doubly Fed Induction Machine Using Fuzzy Logic [C]. Proceedings of the Fifth International Conference on Electrical Machines and Systems, 2001, 2: 747-750
    [70] Prats M M, Carrasco J M, Galvan E, et al. A New Fuzzy Logic Controller to Improve the Captured Wind Energy in a Real 800 kW Variable Speed-Variable Pitch Wind Turbine [C].IEEE 33rd Annual Power Electronics Specialists Conference, 2002, 1: 101-105
    [71] Shuhui Li, Wunsch D C, O'Hair E A, et al. Using neural networks to estimate wind turbine power generation [J]. IEEE Transaction on Energy Conversion, 2001, 16(3): 276-282
    [72] Kelouwani S, Agbossou K. Nonlinear model identification of wind turbine with a neural network [J]. IEEE Transaction on Energy Conversion, 2004, 19(3): 607-612
    [73] Senjyu T, Yona A, Urasaki N. Application of Recurrent Neural Network to Long-Term-Ahead Generating Power Forecasting for Wind Power Generator [C]. IEEE PES Power Systems Conference and Exposition, 2006: 1260-1265
    [74] Hui Li, Da Zhang, Foo S Y. A Stochastic Digital Implementation of a Neural Network Controller for Small Wind Turbine Systems [C]. IEEE Transactions on Power Electronics, 2006, 21(5): 1502-1507
    [75] Xing Jia Yao, Guang De Liu, Ying Ming Liu. The neural network self-adaptive algorithm application on mechanism pitch-adjust system of wind turbine [C]. International Conference on Electrical Machines and Systems, 2007:320-323
    [76] Damousis I G, Dokopoulos P. A fuzzy expert system for the forecasting of wind speed and power generation in wind farms [C]. 22nd IEEE Power Engineering Society International Conference on Power Industry Computer Applications, 2001: 63-69
    [77]任腊春,张礼达.基于模糊理论的风力机故障诊断专家系统构建[J].机械科学与技术, 2007, 26(5): 581-584
    [78]金玉洁,毛承雄,王丹等.直驱式风力发电系统的应用分析[J].能源工程, 2006,(3): 29-33
    [79] Spooner E, Williamson A C, Catto G. Modular design of permanent-magnet generators forwind turbines [C]. IEE Proceedings of Electric Power Applications, 1996, 143(5): 388-395
    [80] Muljadi E, Butterfield C P, Yih-Huie Wan. Axial-Flux Modular Permanent-Magnet Generator with a Toroidal Winding for Wind-Turbine Applications [J]. IEEE Transactions on Industry Applications, 1999, 35(4): 831-836
    [81] Ki-Chan Kim, Ju Lee. The Dynamic Analysis of a Spoke-Type Permanent Magnet Generator With Large Overhang [J]. IEEE Transactions on Magnetics, 2005, 41(10): 3805-3807
    [82] Spooner E,Gordon P,Bumby J R.Light weight ironless-stator PM generators for direct-drive wind turbines[J].IEE Proceedings on Electric Power Applications,2005,152(1):17-26
    [83] Ying Fan, Chau K T, Ming Cheng. A New Three-Phase Doubly Salient Permanent Magnet Machine for Wind Power Generation [J]. IEEE Transactions on Industry Applications, 2006, 42(1): 53-60
    [84] Khan M A, Chen Y, Pillay P. Application of Soft Magnetic Composites to PM Wind Generator Design [C]. IEEE Power Engineering Society General Meeting, 2006:1-4
    [85] Lewis C, Muller J. A Direct Drive Wind Turbine HTS Generator [C]. IEEE Power Engineering Society General Meeting, 2007:1-8
    [86] Seung-Ho Song, Shin-il Kang, Nyeon-kun Hahm. Implementation and Control of Grid Connected AC-DC-AC Power Converter for Variable Speed Wind Energy Conversion System [C]. Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2003, 1: 154-158
    [87] Tafticht T, Agbossou K, Cheriti A. DC Bus Control of Variable Speed Wind Turbine Using a Buck-Boost Converter [C]. IEEE Power Engineering Society General Meeting, 2006:1-5
    [88] Chen Z. Compensation Schemes for a SCR Converter in Variable Speed Wind Power Systems [J]. IEEE Transactions on Power Delivery, 2004, 19(2): 813-821
    [89] Hong Huang, Liuchen Chang. A New DC Link Voltage Boost Scheme of IGBT Inverters for Wind Energy Extraction [C]. 2000 Canadian Conference on Electrical and Computer Engineering, 2000, 1: 540-544
    [90]马小亮.变速风力发电机组动力驱动系统方案比较[J].变频器世界, 2007, 4:42-48
    [91]陈国呈. PWM逆变技术及其应用[M].中国电力出版社, 2007
    [92] Thiringer T, Linders J. Control by variable rotor speed of a fixed-pitch wind turbine operating in a wide speed range [J], IEEE Transactions on Energy Conversion, 1993, 8(3): 520–526
    [93] mis M, Ertan H B, Akpinar E, et al. Autonomous wind energy conversion systems with a simple controller for maximum-power transfer[J], IEE Proceedings B of Electric Power Applications, 1992, 139(5): 421–428
    [94]许洪华,倪受元.独立运行风电机组的最佳叶尖速比控制[J].太阳能学报,1998,19(1):163~168
    [95] Chen Z, Gomez S A, McCormick M. A fuzzy logic controlled power electronic system for variable speed wind energy conversion systems [C]. IEE Eighth International Conference on Power Electronics and Variable Speed Drives, 2000: 114-119
    [96]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制[J].电力系统自动化, 2003,27(20):62-67
    [97] Eftichios Koutroulis, Kostas Kalaitzakis. Design of a Maximum Power Tracking System for Wind-Energy-Conversion Applications [J].IEEE Transctions on Industrial Electronics, 2006, 53(2):486-494
    [98] Jia Yaoqin, Yang Zhongqing, Cao Binggang. A new maximum power point tracking control scheme for wind generation [J]. International Conference on Power System Technology, 2002, 1: 144-148
    [99] Moor G D, Beukes H J. Maximum Power Point Trackers for Wind Turbines [C]. IEEE 35th Annual Power Electronics Specialists Conference, 2004, 3: 2044-2049
    [100] Quincy Wang, Liuchen Chang. An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems [J]. IEEE Transactions on Power Electronics, 2004, 19(5): 1242-1249
    [101]郑康,潘再平.变速恒频风力发电系统中的风力机模拟[J].机电工程, 2003, 20(6): 40-43
    [102]卞松江,潘再平,贺益康.风力机特性的直流电机模拟[J].太阳能学报, 2003, 24(3): 360-364
    [103]贾要勤.风力发电实验用模拟风力机[J].太阳能学报, 2004, 25(6): 735-739
    [104]刘其辉,贺益康,赵仁德.基于直流电动机的风力机特性模拟[J].中国电机工程学报, 2006, 26(7): 134-139
    [105]贺益康,胡家兵.风力机特性的直流电动机模拟及其变速恒频风力发电研究中的应用[J].太阳能学报, 2006, 27(10): 1006-1013
    [106]汤蕴璆,史乃编著.电机学(第2版) [M].北京:机械工业出版社, 2006
    [107]温春雪,张利宏,李建林等.三电平PWM整流器用于直驱风力发电系统[J].高电压技术, 2008, 34(1):191-195
    [108]李建林,许鸿雁,胡书举等.适合直接驱动型风力发电系统的飞跨电容型变流器[J].电力自动化设备, 2008, 28(6): 85-89
    [109] Malinowski M, Kolomyjski W, Kazmierkowski M P. Control of Variable-Speed Type Wind Turbines Using Direct Power Control Space Vector Modulated 3-Level PWM Converter [C]. IEEE International Conference on Industrial Technology, 2006: 1516-1521
    [110]许春雨,陈国呈,孙承波等. ZVT软开关三相PWM逆变器控制策略研究[J].电工技术学报, 2004, 19(11): 36-41
    [111]屈克庆,陈国呈,孙承波.基于幅相控制方式的零电压软开关三相PWM变流器[J].电工技术学报, 2004, 19(5): 15-20
    [112]张华强,王立国,徐殿国等.矩阵式电力变换器的控制策略综述[J].电机与控制学报, 2004, 8(3): 237-241
    [113] Arias A, Saltiveri D, Caruana C, et al. Position estimation with voltage pulse test signals for Permanent Magnet Synchronous Machines using Matrix Converters [C]. CPE’07-Compatibility in Power Electronics, 2007, 48(3): 1-6
    [114] Melicio R, Mendes V M F, Catalao J P S. Modeling and simulation of a wind energy system: Matrix versus multilevel converters [C]. The 14th IEEE Mediterranean Electrotechnical Conference, 2008: 604-609
    [115] Jingya Dai, Dewei Xu, Bin Wu. A Novel Control System for Current Source ConverterBased Variable Speed PM Wind Power Generators [C]. IEEE Power Electronics Specialists Conference, 2007: 1852-1857
    [116] Dixon J W, Ooi B T. Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier [J]. IEEE Transctions on Industrial Electronics, 1988, 35(4):508-515
    [117] Wu R S, Dewan S B, Slemon G R. Analysis of an ac-to-dc Voltage Source Converter Using PWM with Phase and Amplitude Control [J]. IEEE Transactions on Industry Applications, 1991, 27(2):355-364
    [118] Jae-Ho Choi, Hyong-Cheol Kim, Joo-Sik Kwak. Indirect Current Control Scheme in PWM Voltage-Sourced Converter [C]. Proceedings of the Power Conversion Conference, 1997, 1: 277~282
    [119] Habetler T G. A Space Vector-based Rectifier Regulator for AC/DC/AC Converters [J]. IEEE Transactions on Power Electronics, 1993, 8(1):30-36
    [120]黄科元,贺益康.三相PWM整流器空间矢量控制的全数字实现[J].电力电子技术, 2003, 37(3): 79-82
    [121] Wu R S, Dewan S B, Slemon G R . A PWM AC-to-DC converter with fixed switching frequency [J].IEEE Transactions on Industry Applications, 1990, 26 (5):880-885
    [122] Malesani L, Tenti P. A novel hysteresis control method for current-controlled voltage-source PWM inverters with constant modulation frequency [J]. IEEE Transactions on Industry Applications, 1990, 26 (1):88-92
    [123] Lee D C. Advanced Nonlinear Control of Three-phase PWM Rectifier [J]. IEE Proceedings of Electric Power Applications, 2000, 147 (5): 361-366
    [124]李正熙,王久和,李华德.电压型PWM整流器非线性控制策略综述[J].电气传动, 2006, 36 (1):9-13
    [125]郭文杰,林飞,郑琼林.三相电压型PWM整流器的级联式非线性PI控制[J].中国电机工程学报, 2006, 26(2):138-142
    [126] Smedley K M, Cuk S. One-Cycle Control of Switching Converters [J]. IEEE Transactions on Power Electronics, 1995, 10(6):625-633
    [127] Taotao Jin, Keyue Ma Smedley, Smedley K M. A Universal Vector Controller for Four-Quadrant Three-Phase Power Converters [J]. IEEE Transactions on Circuits and Systems, 2007, 54(2):377-390
    [128] Kwon B H, Youm J H, Lim J W, et al. Three-phase PWM synchronous rectifiers without line-voltage sensors [C]. IEE Proceedings of Electric Power Applications, 1999, 146(6): 632-636
    [129] Hansen S, Malinowski M, Blaabjerg F, et al. Sensorless control strategies for PWM rectifier [C]. IEEE Fifteenth Annual Applied Power Electronics Conference and Exposition, 2000, 26: 832-838
    [130] Dong-Choon Lee, Dae-Sik Lim. AC Voltage and Current Sensorless Control of Three-Phase PWM Rectifiers [J]. IEEE transactions on power electronics, 2002, 17(6): 883-890
    [131]张承慧,李珂,杜春水等.基于幅相控制的变频器能量回馈控制系统[J].电工技术学报, 2005, 20(2):41-45
    [132] Qu Keqing, Chen Guocheng, Sun Chengbo. A PAC Based Current Feed forward Control for Three-Phase PWM Voltage Type Converter[J]. Journal of Shanghai University (English Edition),2004,8(1):90-95.
    [133]张崇巍,张兴编著. PWM整流器及其控制[M].北京:机械工业出版社,2003
    [134]胡寿松.自动控制原理[M].北京:科学出版社,2001
    [135]陈国呈编著.新型电力电子变换技术[M].北京:中国电力出版社,2004
    [136]中华人民共和国国家标准.电能质量:公用电网谐波[S]. GB/T 14549-93
    [137] Malinowsk M, Kazmierkowski M P, Hansen S, et al. Virtual-flux-based direct power control of three-phase PWM rectifiers [J]. IEEE Transactions on Industry Applications, 2001, 37(4): 1019-1027
    [138] Malinowsk M, Kazmierkowski M P. Direct power control of three-phase PWM rectifier using space vector modulation-simulation study [C]. Proceedings of the 2002 IEEE International Symposium on Industrial Electronics, 2002, 4: 1114-1118
    [139]王久和,李华德,王立明.电压型PWM整流器直接功率控制系统[J].中国电机工程学报, 2006, 26(18):54-60
    [140] Huibin Zhu, Arnet B, Haines L, et al. Grid synchronization control without AC voltage sensors [C]. Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2003, 1: 172-178
    [141] Chattopadhyay S, Ramanarayanan V. Digital implementation of a line current shaping algorithm for three phase high power factor boost rectifier without input voltage sensing [J]. IEEE Transactions on Power Electronics, 2004, 19(3): 709-721
    [142] Agirman I, Blasko V. A novel control method of a VSC without AC line voltage sensors [J]. IEEE Transactions on Industry Applications, 2003, 39(2): 519-524
    [143] Duarte J L, Van Zwam A, Wijnands C, et al. reference frames fit for controlling PWM rectifiers [J]. IEEE Transactions on Industrial Electronics, 1999, 46(3): 628-630
    [144]赵仁德,贺益康.无电网电压传感器三相PWM整流器虚拟电网磁链定向矢量控制研究[J].中国电机工程学报, 2005, 25(20):56-61
    [145]许大中.交流电机调速理论[M].浙江:浙江大学出版社,1991
    [146] Jun Hu, Bin Wu. New Integration Algorithms for Estimating Motor Flux over a Wide Speed Range [J]. IEEE Transactions on Power Electronics, 1998, 13(5): 969-977
    [147] Idris N R N, Yatim A H M. An improved stator flux estimation in steady-state operation for direct torque control of induction machine [J]. IEEE Transactions on Industry Applications, 2002, 38(1): 110-116
    [148]张星,瞿文龙,陆海峰.一种能消除直流偏置和稳态误差的电压型磁链观测器[J].电工电能新技术, 2006, 25(1): 39-42
    [149] Esmaili R, Xu Longya. Sensorless Control of Permanent Magnet Generator in Wind Turbine Apllication [C]. 41st IAS Annual Meeting-Industry Applications Conference, 2006, 4:2070-2075
    [150] F. Z. Peng. Z-Source Inverter [J]. IEEE Transaction on Industry Application, 2003, 39 (2), 504-510
    [151] F. Z. Peng, X. Yuan, X. Fang, et al. Z-source inverter for adjustable speed drives[J]. IEEE Power Electron. Lett, 2003, 1, (2), .33-35
    [152] F. Z. Peng, M.S. Shen, Z.M. Qian. Maximum boost control of the Z-Source inverter[J]. IEEE Transaction on Power Electronics, 2005, 20(4), 833-838
    [153] M.S. Shen, Jin Wang, Alan Joseph, et al. Constant boost control of the Z-source inverter to minimize current ripple and voltage stress [J]. IEEE Transactions on Industry Applications, 2006, 42 (3): 770-778
    [154] X.P. Ding, Z.M. Qian, Y.Y. Xie, et al. Transient modeling and control of the novel ZVS Z-source rectifier[C]. Power Electronics Specialists Conference, 2006. PESC '06. 37th IEEE, 2006, 1-5
    [155] Fan Zhang, X.P. Fang, F.Z. Peng, et al. A new three-phase AC-AC Z-source converter [C]. APEC '06. Twenty-First Annual IEEE, 2006:123-126
    [156]房绪鹏.基于电流型Z源交流调压器的电机调速系统[J].电工技术学报, 2007, 22 (7):165-168
    [157] P. C. Loh, F. Blaabjerg, C. P. Wong. Comparative evaluation of pulsewidth modulation strategies for Z-source neutral-point-clamped inverter [J]. IEEE Transaction on Power Electronics, 2007, 22(3):1005-1013
    [158] D. M. Vilathgamuwa, P. C. Loh, M. N. Uddin. Transient modeling and control of Z-source current type inverter[C]. Industry Applications Conference, 2007. 42nd IAS Annual Meeting, 2007:1823-1830
    [159] P. C. Loh, D. M. Vilathgamuwa, C. J. Gajanayake, et al. Z-source current-type inverters: digital modulation and logic implementation[C]. Industry Applications Conference, 2005. Fourtieth IAS Annual Meeting, 2005, 2:940-947
    [160] Richard Badin, Yi Huang, F. Z. Peng, et al. Grid interconnected Z-source PV system[C]. PESC 2007. IEEE, 2007:2328-2333
    [161] M.S. Shen, Alan Joseph, Jin Wang, et al. Comparison of traditional inverters and Z-source inverter[C]. Power electronics specialists, 2005 IEEE 36th conference on .2005:1692-1698
    [162]房绪鹏. Z源逆变器研究[D].浙江大学博士学位论文, 2005
    [163]王成元,夏加宽,杨俊友等编著.电机现代控制技术[M].北京:机械工业出版社,2006
    [164] Morimoto S, Tong Y, Takeda Y, et al. Loss Minimization Control of Permanent Magnet Synchronous Motor Drives [J]. IEEE Transactions on Industrial Electronics, 1994, 41 (5): 511-517
    [165] Teck Ming Hong Nicky, Kelvin Tan, Syed Islam. Mitigation of Harmonics in Wind Turbine Driven Variable Speed Permanent Magnet Synchronous Generators [C]. The 7th International Power Engineering Conference, 2005, 2:1159-1164
    [166] Taku Takaku, Takanori Isobe, Jun Narushima, et al. Power Supply for Pulsed Magnets With Magnetic Energy Recovery Current Switch[J]. IEEE Transactions on Applied Superconductivity, 2004, 14(2): 1794-1797
    [167] Taku Takaku., Gen Homma., Takanori Isobe., et al. Improved Wind Power Conversion System Using Magnetic Energy Recovery Switch (MERS)[C]. Fourtieth IAS Annual Meeting-Industry Applications Conference, 2005, 3: 2007-2012
    [168] Takanori Isobe, Taku Takaku, Takeshi Munakata, et al. Voltage Rating Reduction of Magnet Power Supplies Using a Magnetic Energy Recovery Switch [J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 1646-1649
    [169]Taku Takaku, Gen Homma, Takanori Isobe, et al. Application of Magnetic Energy Recovery Switch(MERS) to Improve Output Power of Wind Turbine Generators[J]. IEEJ Trans. IA. 2006, 126(5): 599-604
    [170]郜登科,杨喜军,雷淮刚等.基于磁能恢复开关的单相串联补偿器的研究[J].华东电力, 2008, 36 (3):47-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700