变速恒频双馈机风力发电的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源枯竭与环境污染问题日益严重的今天,风力发电已经成为绿色可再生能源的一个重要途径。双馈电机变速恒频(VSCF)发电是通过对转子绕组的控制来实现的,而转子回路流动的功率是由发电机运行范围所决定的转差功率,因而可以将发电机的同步转速设定在整个运行范围的中间。如果系统运行的转差率范围为±30%,则最大转差功率仅为发电机额定功率的30%,因此交流励磁变换器的容量可大大减小,从而降低成本。该变换器如果加上良好的控制策略,则系统运行将具有优越的稳态和暂态运行性能,非常适用于风能这种随机性强的能源形式。本文对变速恒频双馈机风力发电系统的若干关键技术,如空载柔性并网、带载柔性并网、解列控制、最大功率点跟踪、电网电压不平衡运行、低电压故障穿越等问题进行了深入研究。论文的主要工作如下:
     根据交流励磁变速恒频风力发电的运行特点,将电网电压定向的矢量控制方法应用在双馈发电机的并网发电控制上。研究了一种基于电网电压定向的双馈机变速恒频风力发电柔性并网控制策略,在变速条件下实现无电流冲击并网和输出有功、无功功率的解耦控制,建立了交流励磁发电机柔性并网及稳态运行的控制模型,对柔性并网及其逆过程的解列分别进行了仿真和实验研究。
     提出了一种以向电网输送净电能最多为目标的最大功率点跟踪控制策略,在不检测风速情况下,能够自动寻找并跟随最大功率点,且不依赖风力机最佳功率特性曲线,提高了发电系统的净输出能力,具有良好的动、静态性能。仿真和实验结果证明了本控制策略的正确性和有效性。
     对网侧变换器分别进行了幅相控制和直接电流控制策略的研究。结果表明:幅相控制策略简单实用,可以得到正弦波电流,且波形谐波小,实现了单位功率因数运行,但响应速度相对较慢;而直接电流控制策略具有网侧电流闭环控制,使网侧电流动、静态性能得到提高,实现对系统参数的不敏感,增强了电流控制系统的鲁棒性,但算法相对复杂。
     在电网不平衡条件下,如果以传统的电网电压平衡控制策略设计PWM整流器,会使系统出现不正常的运行状态。为了提高三相PWM整流器的运行性能,本文对电网电压不平衡情况下三相PWM整流器运行控制策略进行了改进,研究了消除负序电流和抑制输入功率二次谐波的控制策略,实现了线电流正弦、负序输入电流为零及总无功功率输入为最小的目标。
     为了提高VSCF风力发电系统的运行能力,本文对电网故障时双馈风力发电系统低电压穿越控制(LVRT)进行了研究,在不改变系统硬件结构的情况下,通过改变励磁控制策略来实现LVRT;在电网故障时使电机和变换器安全穿越故障,保持不脱网运行,提高系统的稳定性和安全性。
Nowadays the problems of energy lack and environment pollution are more and more serious, wind power generation becomes an important approach as green regenerative energy. Variable speed constant frequency (VSCF) wind power generation of doubly fed induction generator (DFIG) is realized by controlling the rotor circuits. Power flows through rotor circuits is decided by slip, so synchronous speed can be set in the middle of running range of speed. If slip range is±30% , the maximum slip power is 30% of generator rated power. Thus, the capability of AC excited converters is reduced greatly, cost is decreased considerably.If good control strategy is added to the converter, superior steady-state and transient-state operation characteristics will be obtained. So it is especially suitable for the renewable energy generation such as wind power generation. In this paper some key technologies,such as flexible cutting in and off, maximum power point tracking(MPPT) control strategy for variable-speed constant-frequency wind power generation and PWM rectifier operating in unbalanced voltage condition, fault ride-through are studied deeply. The contributions of this dissertation are as follows:
     According to characteristic of AC-excited variable speed constant frequency wind power generation, vector control technique is applied in doubly fed induction generator. Flexible cutting-in control strategy is studied based on grid voltage orientation without overshoot current, decoupling control of active power and reactive power is obtained. The modes of flexible cutting in and running in ready state are established. Flexible cutting in and its inverse process cutting off are studied by simulations and experiments.
     A novel maximum power point tracking control strategy is presented in this paper to deliver the most power to grid. The maximum power point can be tracked automatically not measuring wind speed in this control strategy and the control is independent of optimal turbine power curve, which has excellent dynamic, static performance. Simulation and experimental results confirm the accuracy and validity of this control strategy.
     Direct current control and phase-amplitude control strategies are investigated on grid-connected power converter. The algorithm of phase-amplitude control strategy is simple and practical, by which sinusoidal current can be get, harmonic components are small, unity power factor operation is achieved. But speed of response is relatively slow. Direct current control with current closed-loop control makes the dynamic and static performances of grid side current improved, is not sensitive to system parameters, and the robustness of control system is enhanced. But the algorithm is relatively complex.
     Under the unbalanced voltage condition, PWM rectifier designed according to balanced condition can not operate in normal state. To enhance the operating performance of the three-phase PWM rectifier, the control strategies in unbalanced input case are improved in this paper, which aims to suppress negative-sequence current and the secondary harmonic of input instantaneous power, to assure that line current is sinusoidal, component of negative sequence is zero, total reactive power is minimum.
     In order to improve the running performance of VSCF wind power generation, low voltage ride-through is investigated in this paper. A excitation control strategy is proposed for the rotor side converter in a doubly fed induction generator(DFIG) to allow the system to ride through a grid fault without changing system hardware. The machine and converter remain in the safe operating state, the stability and the security of system is thus enhanced.
引文
[1]袁玉琪,杨校生.风-风能-风力发电-21世纪新型清洁能源[J].太阳能, 2002(2):7-9.
    [2]中华人民共和国国家发展和改革委员会.可再生能源发展规划[EB/OL].2007-09-28[2008-02-28].http://www.ndrc.gov.cn/fzgh/ghwh/115zhgh/P0200709304919147302047.pdf.
    [3]孟庆和.风力发电技术[J].风力发电, 2002(2):24-29.
    [4]江泽民.对中国能源问题的思考[J]上海交通大学学报,2008,42(3):345-359.
    [5] S. Y. Yang, X. Zhang, C. W. Zhang, et al. Development of a variable-speed wind energy conversion system based on doubly-fed induction generator. IEEE, 2007,1-4244-0714-1/07.
    [6]赵群,王永泉,李辉.世界风力发电现状与发展趋势[J]机电工程,2006,23(12):16- 18.
    [7] Eduard Muljadi, C. P. Butterfield, Brian Parsons, et al. Effect of Variable Speed Wind Turbine Generator on Stability of a Weak Grid[J].IEEE Trans.Energy Convers., 2007,22(1): 29-36.
    [8] F. Michael Hughes, Olimpo Anaya-Lara, Nicholas Jenkins, et al. A power system stabilizer for DFIG-Based wind generation[J]. IEEE Trans. Power Syst.,2006, 21(2): 763-772.
    [9] Harri Vihriala. Control of variable speed wind turbines[D], Doctoral Thesis, 2002.
    [10] L.H.Hansen,L.Helle, F.Blabjerg, E, Ritchie and etc.Conceptual Survey of Generators and Power Electronics for Wind Turbines[J]. Riso National Laboratory, Roskilde, Denmark, 2001.12.
    [11]芮晓明,梁双印,许宝成.世界风力发电状况及对我国发展风电技术的思考[J].现代电力, 1997,14(04):102-106.
    [12]王野平,高俊,李金东.风力发电的现状[J].机械设计与制造,2006,5:154-156.
    [13]邢运民,张文娟.新能源与可再生能源发电技术的发展[J].西华大学学报(自然科学版),2007,26(1):50-53.
    [14]陈雷,邢作霞,潘建,钟明舫.大型风力发电机组技术发展趋势[J].可再生能源, 2003,107(1):27-30.
    [15] JIANG Ze-min. Reflections on Energy Issues in China[J] Journal of Shanghai Jiaotong University(science), 2008, 13(3): 257-274.
    [16]李俊峰.风力12在中国[M].北京:化学工业出版社, 2005.
    [17]王长贵,崔容强,周篁.新能源发电技术[M].北京:中国电力出版社,2003.
    [18]吴蓂高.风力发电的现状与展望[J].水利水电科技进展, 2000,20(03):25-28.
    [19]严陆光,李安定,孟宪淦.我国新能源和可再生能源[J].太阳能, 2002,06: 3-7.
    [20]邓小凌、冯志文.我国风力发电产业发展的现状、问题与对策.电力环境保护[J],2001,17(3):48-50.
    [21]郭全英,中国风力发电成本研究[D],沈阳工业大学硕士学位论文,2002.
    [22]杨金明,吴捷,杨俊华,董萍.风力发电技术探讨[J].太阳能,2003,03:12-15.
    [23]陈国呈. PWM逆变技术及其应用[M].北京:中国电力出版社,2007.
    [24]郭家虎.变速恒频双馈风力发电系统控制技术的研究[D].上海:上海大学博士论文,2008.
    [25]叶杭冶风力发电机组的控制技术(第二版)[M].北京:机械工业出版社, 2006.
    [26]马洪飞,徐殿国,苗立杰.几种变速恒频风力发电系统控制方案的对比分析.电工技术杂志, 2000,10:1-4.
    [27]林成武,王风翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究[J].中国电机工程学报.2003,23(11):122-125.
    [28]郑康,潘再平.变速恒频风力发电系统中的风力机模拟[J].机电工程,2003,20(6):40-43.
    [29]钱坤,谢寿生,高梅艳.自适应控制在变速风力发电系统中的应用[J].控制工程,2004,11(1):76-78.
    [30] Sergei Peresada, Andrea Tilli et al.Indirect Stator Flux-oriented Output Feedback Control of a Doubly Fed Induction Machine [J]. IEEE Trans. On Control System Technology, 2003, 11 ( 6 ):875-888.
    [31] Yi Wang,Lie Xu. Control of DFIG-Based Wind Generation Systems under Unbalanced Network Supply[C] IEEE EMDC,2007: 430 - 435.
    [32]迟永宁,工伟胜,刘燕华,等.大型风电场对电力系统暂态稳定性的影响[J].电力系统自动化.2006,30( 5): 10- 14.
    [33]樊绝芳.电压不平衡与风电厂运行之间相互影响的研究[J].电力系统及其自动化学报, 2002, 14( 4):58-60, 71.
    [34] Woo-Cheol Lee, Taeck-Kie Lee. A Three-Phase Parallel Active Power Filter Operating With PCC Voltage Compensation With Consideration for an Unbalanced Load [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2002, 17(5): 807- 814.
    [35] Ruben Pena,Roberto Cardenas. Control System for Unbalanced Operation of Stand-Alone Doubly Fed Induction Generators[J]. IEEE TRANSAC- TIONS ON ENERGY CONVERSION,2007,22(2):544-545
    [36] Hong-seok Song, Dual Current Control Scheme for PWM Converter Under Unbalanced Input Voltage Conditions[J], IEEE Trans. Ind. Electron. 1999, 46(5): 953-959
    [37] P. Verdelho, An Antive Power Filter and Unbalanced Current Compensator[J], IEEE Trans. Ind. Electron.1997,44(3):321-328.
    [38]关宏亮,赵海翔,迟永宁,等.电力系统对并网风电机组承受低电压能力的要求[J].电网技术,2007,31( 7): 78- 82.
    [39] Holdsworth L,Wu X G,Ekanayake J B, et al.Comparison of fixed speed and doubly-fed induction wind turbines during power system disturbances[J]. IEE Proceedings-Generation, Transmission and Distribution, 2003, 150(3):343-352.
    [40] Xiang D W,Li R,Tavner P J, et al. Control of doubly fed induction generation in a wind turbine during grid fault ride-through[J].IEEE Trans on Energy Conversion, 2006, 21(3):652- 662.
    [41] Abbey C, Joos G. Effect of low voltage ride through(LVRT) characteristic on voltage stability[C]//2005 IEEE Power Engineering Soceiety General Meeting, San Francisco, CA, USA:2005.
    [42] Abbey C,Morneau J, Mahseredjian J, et al. Modeling requirements for transient stabilitv studies for wind parks[C] //2006 IEEE Power Engineering Society General Meeting, Montreal, canada: 2006.
    [43] Morren J, de Haan S W H. Ride through of wind turbines with doubly-fed induction generator during a voltage dip[J].IEEE Trans on Energy Conversion, 2005, 20(2):435-441.
    [44] E.ON Netz GmbH, Grid code for high and extra high voltage, l . August 2003.
    [45] AKHMATOV V. Variable-Speed wind turbines with doubly-fed induction generators: PartⅣuninterrupted operation futures at grid faults with converter control coordination.Wind Engineering ,2003 ,27(6):519-529.
    [46]胡家兵,孙丹,贺益康,等.电网电压骤降故障下双馈风力发电机建模与控制[J]电力系统自动化,2006,30( 8):21-26.
    [47] Timbus A V, Teodorescu R,Blaabjerg F, et al. PLL algorithm for Power generation systems robust to grid voltage faults[C]// 2006 IEEE Power Electronics Specialists Conference,Jeju, South Korea:2006.
    [48]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的系统仿真研究[J]中国电机工程学报,2006, 26 ( 10):130-135.
    [49] Niiranen J. Voltage dip ride through of a doubly-fed generator equipped with an active crowbar[C]//Proceedings of Nordic Wind Power Conference, Chalmers University of Technology, Sweden: 2004.
    [50] Morern J, De Haan S W H. Ridethrough of wind turbines with doubly-fed induction generator during a voltage dip [J].IEEE Trans on Energy Conversion, 2005, 20(2):435-441.
    [51] Zhan C, Barker C D. Fault ride-through capability investigation of a doubly-fed induction generator with an additional series-connected voltage source converter[C]// The 8th IEE International Conference on AC and DC Power Transmission, London, U K: 2006.
    [52] BING XIE, FOX B, FLYNN D. Study of fault ride-through for DFIG based wind turbines[J]. IEEE Trans on Electric Utility Deregulation, 2004(1) :411-416
    [53] MAGUEED F A,SANNINO A,Svensson J. Transient performance of voltage source converter under unbalanced voltage dips[C]. PESC04,2004(2):1163-1168
    [54] Ekanayake J B, Lee Holdsworth L,Wu X G, et al. Dynamic modeling of doubly fed induction generator wind turbines[J].IEEE Trans on Power Systems, 2003, 18(2):803-809.
    [55] Mitsutoshi Yamamoto, Osamu Motoyoshi. Active and reactive power control for doubly-fed wound rotor induction generator [J]. IEEE Trans on Power Electronics,1991,6(4):624-629
    [56] Pena R, Clare J C, Asher G M. Doubly fed induction using back-to-back PWM and its application to variable speed wind energy generation [J]. IEEE Proceedings-Electric Power Applications,1996, 143(3): 231-241.
    [57] Pens R., Cardenas R., Clare J. Control Strategy of Doubly Fed Induction Generators for a Wind Diesel Energy System [C]. IECON 2002, 4: 3297~3302
    [58] Peresada S., Tilli A., Tonielli A.Dynamic Output Feedback Linearlizing Control of a Doubly-fed Induction Motor [C]. ISIE 1999, 3: 1256-1260
    [59] Sergei Peresada, Andrea Tilli et al.Indirect Stator Flux-oriented Output Feedback Control of a Doubly Fed Induction Machine [J]. IEEE Trans. On Control System Technology, 2003, 11 ( 6 ):875-888
    [60]廖勇,杨顺昌.交流励磁发电机励磁控制[[J].中国电机工程学报, 1998, 18 ( 2 ) :87-90
    [61]廖勇,杨顺昌.交流励磁发电机参数变化时的解耦励磁控制[J].中国电机工程学报,1998, 19 (2):37-46
    [62] Lie xu, Phillip Cartwright. Direct Active and Reactive Power Control of DFIG for Wind Energy Generation [J]. IEEE Transactions on Energy Conversion, 2006,21(3), 750-758
    [63]赵永祥,夏长亮,宋战锋,等.变速恒频风力发电系统风机转速非线性PID控制[[J].中国电机工程学报,2008,28(11):133~138
    [64]娄素华,李志恒,高苏杰,等.风电场模型及其对电力系统的影响[J].电网技术,2007, 31(2): 330-333.
    [65]申洪,王伟胜,戴慧珠.变速恒频风力发电机组的无功功率极限[J].电网技术,2003, 27(11): 60-63.
    [66] Serban I, Andreescu G D, Tutelea L, et al. New state observers and sensorless control of wound rotor induction generator at power grid with experimental characterization[C]//IECON. Pairs, France. 2006: 4260~4265.
    [67] Datta R,Ranganathan V T. A Simple position sensorless algorithm for rotor side field oriented control of wound rotor induction machine[J]. IEEE Transactions on Industrial Electronics,2001,148(4):786~793.
    [68]吴国祥,马祎炜,陈国呈,俞俊杰.双馈变速恒频风力发电空载并网控制策略[J]电工技术学报,2007,22(7):169-175.
    [69] Chai Chompoo-inwai, Lee Wei-jen, Fuangfoo P, et al. System impact study for the interconnection of wind generation and utility system[J]. IEEE Trans on Industry Applications, 2005, 41(1) :163-168
    [70] Erlich, I., Bachmann, U. Grid code requirements concerning connection and operation of wind turbines in Germany[C].Power Engineering Society General Meeting IEEE, 2005:1253– 1257.
    [71]李建林,许鸿雁,梁亮,等. VSCF-DFIG在电压瞬间跌落情况下的应对策略[J].电力系统自动化,2006, 30( 19):65-68.
    [72] LEDESMA,USAOLA J. Doubly fed induction generator model for transient stability analysis[J]. IEEE Trans on Energy Conversion, 2005, 20(2): 388-397
    [73] O.Anaya-Lara, N. Jenkins. Fault current contribution of DFIG wind turbines[C]. IEE Conf. on Reliability of Transmission and Distribution Networks.London UK. February 2005.
    [74] Sun T, Chen Z, Blaabjerg F.Voltage recovery of grid-connected wind turbines with DFIG after a short-circuit fault[C]// 2004 IEEE 35th Annual Power ElectronicsSpecialists Conference, Aachen,Germany:2004.
    [75] Sun T, Chen Z, Blaabjerg F. Transient stability of DFIG wind turbines at an external short-circuit fault [J].Wind Energy, 2005, 8(3):345-360.
    [76] Erlich I,Winter W, Dittrich A. Advanced grid requirements for the integration of wind turbines into the German transmissions system [C]// 2006 IEEE Power Engineering Society General Meeting, Montreal,Canada:2006.
    [77] Johan Morren, Sjoerd W.H. de Haan. Ridethrough of Wind Turbines with Doubly-Fed Induction Generator During a Voltage Dip[J]. IEEE Trans on Energy Conversion, 2005, 20 (1): 435-441
    [78] PERDANA A , CARLSON O , PERSSON J. Dynamic response of grid-connected wind turbine with doubly fed induction generator during disturbances[C]// Proceedings of Nordic Workshop on Power and Industrial Electronics, Jun 12-14, 2004, Trondheirn, Norway.
    [79]姚骏,廖勇,唐建平.电网短路故障时交流励磁风力发电机不脱网运行的励磁控制策略[J]中国电机工程学报,2007,27(30):64-71.
    [80]姚骏.交流励磁发电机及其励磁电源的控制策略研究[D].重庆:重庆大学博士学位论文, 2007.
    [81]向大为.双馈感应风力发电机特殊运行工况下励磁控制策略的研究.[D]].重庆:重庆大学博士学位论文,2006.
    [82]王锋,姜建国.风力发电机用双PWM变换器的功率平衡联合控制策略研究[J].中国电机工程学报,2006,26(22):134-139.
    [83] Jesus Lopez, Eugenio Gubia, Pablo Sanchis , et al. Wind Turbines Based on Doubly Fed Induction Generator Under Asymmetrical Voltage Dips [J]. IEEE TRANS ON ENERGY CONVERSION, 2008,23(1):321~330.
    [84] http://www.gepower.com/prod_serv/products/wind_turbines/en/downloads/gea 14595_windPwrPlant_v3r8.pdf
    [85] B. Han, S. Baek, and H. Kim. New controller for single-phase PWM converter without AC source sensor[J]. IEEE Transactions on Power Delivery, 2005,20(2):1453-1458.
    [86] Malinowski. M, Kazmierkowski. M P. Simulation study of virtual flux based direct power control for three-phase PWM rectifiers[C] 26th Annual Confjerence of the IEEE, Warsaw Poland , 2000,4: 2620- 2625.
    [87] P Enjeti , S A Choudhury. A new control strategy to improve the performance of a PWM ac to dc converter under unbalanced operating conditions[C]. PESC’91Record.22nd Annual IEEE, June 1991:382-389.
    [88]张崇巍,张兴. PWM整流器及其控制策略[M].北京:机械工业出版社,2003.
    [89] A V Stankovic,T A Lipo. A novel control method for input output harmonic elimination of the PWM boost type rectifier under unbalanced operating conditions[J].IEEE Transactions on Power Electronics ,2001,16(5):603-611.
    [90]游小杰,李永东,Victor Valouch,等.并联型有源电力滤波器在非理想电源电压下的控制[J].中国电机工程学报. 2004,24(2):55-60.
    [91]林资旭.变速恒频风力发电机网侧变换器在输入电压不平衡时控制技术的研究[D].硕士学位论文,中国科学院电工研究所, 2006.
    [92]辛颂旭,李刚,文劲宇,等.柔性功率调节器用变换器故障状态运行特性分析[J].中国电机工程学报.2007,27(25):67-72.
    [93]张兴,季建强,张崇巍,等.基于内模控制的三相电压型PWM整流器不平衡控制策略研究[J].中国电机工程学报.2005,23(13):51-56.
    [94]王锋,姜建国.风力发电机用双PWM变换器的功率平衡联合控制策略研究[J].中国电机工程学报,2006,26(22):134-139.
    [95] Gu B G, Nam K. A DC link capacitor minimization method through direct capacitor current control[J]. IEEE Transaction on Industry Applications, 2006, 42(2):573-581.
    [96] R. Karki, P Hu, and R. Billinton. A simplified wind power generation model for reliablility evaluation[J]. IEEE Trans. Energy Conversion, pp.533-540, vol.2l, Jun. 2006.
    [97] A. G. Abo-Khalil, and D. Lee. "Dynamic modeling and control of wind turbines for grid-connected wind generation system", in Proc. of IEEE PESC, pp.2755-2760, Jun. 2006, Jeju Korea.
    [98] A.E. Feijoo, J. Cidras, and J. L.G Dornelas. "tend speed simulation in wind farms for steady-state security assessment of electrical power systems". IEEE Trans. Energy Conversion, pp.1582-1588, vo1.14, Dec. 1999.
    [99] I.Abouzahr, and R.Ramakumar. "An approach to assess the performance of utility-interactive wind electric conversion systems". IEEE Trans. Energy Conversion, pp.627-636, vol.6, Dec. 1991.
    [100]阮受元.电工高新技术丛书,第二分册(风力发电)[M].北京:机械工业出版社,2000.
    [101]赵仁德.变速恒频双馈电机风力发电系统的研究[D].杭州:浙江大学博士论文,2004.
    [102]张新房,徐大平,柳亦兵,王国平.风力发电技术的发展及相关控制问题综述[J],华北电力技术,2005,(5):42-45
    [103] Changhong Shao, Xiangjun Chen, Zhonghua Liang. Application Research of Maximum Wind-energy Tracing Controller Based Adaptive Control Strategy in WECS, IPEMC 2006.
    [104] H.Li, Z.Chen. Optimal power control strategy of maximizing wind energy tracking and conversion for VSCF doubly fed induction generator system. IEEE, 2006,1-4244-0449-5/06.
    [105] Zhang Xinfang, Xu Daping , Liu Yibing. Predictive functional control of a doubly fed induction generator for variable speed wind turbines[c]. Proceedings of the5 th World Congresson Intelligent Control and Automation, Hangzhou, P.R. China,2004.
    [106]刘其辉,贺益康,卞松江.变速恒频风力发电机空载并网控制研究[J].中国电机工程学报.2004,4(3):6-11.
    [107]刘其辉,贺益康,赵仁德,变速恒频风力发电系统最大风能追踪控制[J],电力系统自动化,2003,27(20):62-67.
    [108]吴国祥,陈国呈,蔚兰.变速恒频风力发电柔性并网及解列控制[J]华中科技大学学报(自然科学版),2009,37(3):94~97.
    [109]赵斌,许洪华.大型风力发电机组的软并网控制系统[J].新能源,2000,22(12):45-47.
    [110]沈沉,吴佳耘,乔颖,等.电力系统主动解列控制方法的研究[J].中国电机工程学报,2006,26(13):1~6.
    [111] Yazhou Lei, Alan Mullane, Gordon Lightbody, et al. Modeling of the wind turbine with a doubly fed induction generator for grid integration studies[J]. IEEE Trans.Energy convers., 2006,21(1):257-264.
    [112] C.C. inwai, W.J. Lee, P. Fuangfoo, et al. System impact study for the interconnection of wind generation and utility system[J].IEEE Trans.industry application.,2005,41(1):163-168.
    [113] Li Hui, SHI K L,MeLAREN P. Neural network based sensorless maximum wind energy capture with compensated power coefficient[C]. Conference record of the 39 thIEEE industry apphcanons conference. Vol 4, Seattle(WA, USA): 2004,2600 -2608.
    [114] Tan K, Islan S. Mechanical sensorless robust control of wind turbine driven permanent magnet synchronous generator for maximum power operation[J].International Journal of Renewable Energy Engineering, 2001,3(2).
    [115] Pan C T, Shieh J J.A family of closed-form duty cycle control laws for three-phase boost AC/DC converter[J]. IEEE Trans.On IE,1998,45(4):530-542
    [116] Dixon W J Ooi B T.Indirect current control of an unity power factor sinusoidal current boost type three phase rectifer[J] IEEE Trans.On Ind.1988,35(4): 508-514
    [117] Rim C T. Jong G.B, Cho G H. A state-space modeling of non-linear DC-DC converters[C]//Power Electronics Specialists Conference, PESC’88 Record,19th Annual IEEE 1988:943-950.
    [118] Domingos S. L. Simonetti, Jose Luiz F.Vieira. Modeling of the high- power-factor discontinous boost rectifiers[J]. IEEE Transactions on Industrial Electronics,1999, 46(4):788-795.
    [119]大西德生.力率制御方式三相電圧型PWM制御電力变换装置.日本電気学会論文誌 D分册, 1990, 110(7):821~830.
    [120]長井真一郎,佐藤伸二等.高効率、低ノイズリンクDC共振三相インバータと換流制御.電気学会論文誌 D,2000,120(3):417~422.
    [121]陈国呈,金东海.在最优化PWM模式控制下变频器的输出特性.中国交流电机调速传动学术会议论文集,北戴河,1989:1,204~207.
    [122]屈克庆,陈国呈,孙承波.基于幅相控制方式的零电压软开关三相PWM变流器.电工技术学报,2004,19(5):15-20.
    [123]陈国呈,谷口胜则,中村博人,张晓东.软开关三相变频器的PWM方法.电工技术学报.2000, 5(6):23-27.
    [124]王茂海,孙元章.三相电路中功率现象的解释及无功功率的分类[J].中国电机工程学报,2002,23(10):63-66.
    [125]徐金榜,何顶新,赵金,等.电压不平衡情况下PWM整流器功率分析方法[J]中国电机工程学报,2006,26(16):80-85.
    [126]徐金榜.三相电压源PWM整流器控制技术研究[D].武汉:华中科技大学博士论文,2004.
    [127] Stankovic A V, Lipo T A. A novel control method for input output harmonic elimination of the pwm boost type rectifier under unbalanced operating conditions[C]. in Conf. Rec. APEC,New Orleans, LA,USA, 2000, I:413-419.
    [128]王成元,夏加宽,杨俊友,孙宜标编著.电机现代控制技术[M].北京:机械工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700