用于变频调速装置的三相PWM整流器若干技术问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PWM整流器用于变频调速装置既可以实现能量的双向流动,又具有网侧单位功率因数控制、谐波含量少、动态响应快等优点,减小了对电网的污染,同时可以达到节能的效果。本文对PWM整流器的数学模型及其控制策略进行研究,采用基于Markov链的随机PWM技术减小PWM整流器的传导EMI和高频噪音,并对其混沌行为进行分析和验证;对三电平PWM整流器,研究了新型的拓扑结构、数学模型及控制策略。
     对三相两电平PWM整流器的拓扑结构与工作模式进行了分析,建立了PWM整流器的低频时域模型和高频时域模型;针对PWM整流器的整流状态,提出了一种基于12区间的PWM整流器双单输入单输出(DSISO)模型,将PWM整流器等效为两个与传统单相升压变换器类似的电路结构,大大简化了对PWM整流器的分析;基于该模型,推导了小信号模型,建立了三相PWM整流器从控制到输出的传递函数;对系统受到干扰时系统参数的变化进行了分析,从输入输出功率相等的角度,提出了系统参数设计需满足的条件;根据空间电压矢量调制和伏秒特性理论,提出了开关信号由两相静止坐标系到三相静止坐标系变换时的控制策略;仿真和实验结果验证了12区间DSISO模型及其控制策略的可行性。为了简化系统结构、提高系统可靠性,结合12区间DSISO模型的特点,提出了一种基于12区间DSISO模型的无交流电压传感器PWM整流器控制策略;设计了一种区间自同步控制器,它可以根据对指定物理量的判断对区间做出正确的选择;仿真结果验证了无交流电压传感器控制策略的有效性。
     为了解决基于12区间的DSISO模型能量不能双向流动的问题,提出了一种基于6区间的三相PWM整流器DSISO模型,仍然是基于α-β静止参考坐标系,将三相PWM整流器等效为两个单相全桥PWM整流器,该模型能够实现能量的双向流动,并对其控制策略进行了研究。完成了电阻负载条件下的PWM整流运行、电机空载条件下的能量回馈实验和电机带载条件下的能量回馈实验,实验结果验证了基于6区间DSISO模型及其控制策略的有效性。
     研究了Markov过程与Markov链的工作原理与特点,并对两状态Markov链和三状态Markov链进行了详细的分析;提出了一种基于两状态Markov链的PWM整流器随机PWM技术,能够使随机数均匀地分布在期望随机数的周围,并使随机开关频率分布更加均匀,从而使输入电流频谱分布更加均匀,减小了PWM整流器的传导EMI和高频噪音,而且与常规随机PWM相比,输入电流的纹波明显减小,该方法有效地解决了常规随机PWM技术产生的时域与频域之间的矛盾。仿真和实验结果验证了算法的有效性。
     研究了三相三电平PWM整流器的新型拓扑,分析了四线制三桥臂非对称三电平PWM整流器和三相两桥臂中性点二极管箝位PWM整流器的数学模型和工作模式。对于三相两桥臂三电平中性点二极管箝位PWM整流器,系统分析了数学模型和工作模式,针对其PWM整流状态,提出了一种基于12区间的DSISO模型,在两相静止坐标系中将三相两桥臂三电平PWM整流器简化为两个与传统单相升压变换器类似的电路结构。根据空间矢量调制和伏秒特性理论,分析了各开关信号由两相静止坐标系到三相静止坐标系变换时的控制策略。通过仿真结果验证了三相两桥臂三电平PWM整流器及其DSISO控制策略的有效性。
     基于三相两电平PWM整流器的6区间DSISO模型,以混沌动力学理论为基础,采用相空间重构法对PWM整流器的非线性特性进行了深入研究,依据相图法和绘制功率谱进行定性混沌分析,对单变量的时间序列求取最大Lyapunov指数和关联维数进行定量混沌分析。通过分析、计算和仿真,验证了PWM整流器具有典型的混沌特征。
The PWM rectifier can be applicated to the frequency control system to implement bi-directional power flow, for its advantages of unit power factor control, low harmonics and fast dynamic response. It can not only reduce the harmonic pollution to the power line, but also save enegy. The mathematical model and control strategy of PWM rectifier are studied in this paper, the random PWM technology based on Markov chain is used in order to reduce the high-frequency noise and electromagnetic interference of PWM rectifier, and its nonlinear phenomenon is analyzed. The circuit topology, mathematical model and control strategy of PWM rectifier are studied for the three-level PWM rectifier.
     The topology and working modes of three-phase two-level PWM rectifier are analyzed, and the low-frequency time-domain model and the high-frequency time-domain model are established. For the rectifying state, a novel dual single-input single-output (DSISO) model based on twelve intervals is proposed. In this model, the a-axis model andβ-axis equivalent model are shown to be similar to two traditional single-phase boost converters, which is much easier to analyze three-phase PWM rectifier. Based on this model, the small signal model is derived, the control-to-output transfer function is deduced, and a detailed analysis of the parameter conditions required for system stability is presented. Meanwhile, the control strategy is analyzed to determine switching control signals in a switching period. Simulation and experimental results confirm the validity of the DSISO model and its control strategy. In order to simplify the system structure and increase reliability, a novel control strategy without AC voltage sensors based on the twelve interval DSISO model for the PWM rectifier is proposed. An interval self-synchronous controller is design, and the interval can be selected correctly according to the assigned physical quantity. Simulation results confirm the validity of the control strategy without AC voltage sensors.
     In order to sovle the problem of unidirectional power flow for the DSISO model based on twelve intervals, a DSISO model based on six intervals is proposed, and the three-phase PWM rectifier is equivalent to two single-phase full-bridge PWM rectifiers, which can implement bi-directional power flow. Based on the DSISO model and space vector modulation, the control strategy is analyzed to determine switching control signals in a switching period. The resisitor experiment, motor experiment without load, and motor experiment with load are carried out, and the experimental results confirm the validity of the DSISO model based on six intervals and its control strategy.
     The work principle of Markov process and Markov chain is studied, and the two-state Markov chain and three-state Markov chain are analyzed in detail. A novel random PWM technology of PWM rectifier based on two-state Markov chain is proposed, and the random cycle values can be evenly distributed around the cycle expectations. And therefore, the input current spectrum is also distributed evenly and the high-frequency noise and electromagnetic interference of PWM rectifier are reduced. Compared to the conventional random PWM, the input current ripples are reduced. The new algorithm solves the contradiction between time-domain and frequency-domain caused in the conventional random PWM. The simulation and experimental results verify the validity of the novel algorithm.
     The novel topologies of three-level PWM rectifier are studied, and the mathematical model and working modes of four-line three-arm three-level NPCPWM rectifier and the three-phase two-arm three-level NPC PWM rectifier are analyzed. For the three-phase two-arm three-level NPC PWM rectifier, a novel DSISO model based on a-P stationary reference frame is proposed, in which the a-axis andβ-axis equivalent model are shown to be similar to two traditional single-phase boost converters. Switching strategy is analyzed to determine switching control signals in a switching period based on space vector modulation and volt-second characteristic. The simulation results verify the validity of three-phase two-arm three-level PWM rectifier and its DSISO control strategy.
     According to the DSISO model based on six intervals, the nonlinear characteristics of PWM rectifier are studied in detail with phase-space reconstructing algorithm. Quantitative chaos analysis is implemented by phase graph and power spectrum, and qualitative chaos analysis is implemented by calculating the maximum Lyapunov exponent and correlation dimension. By analysis, calculation and simulation, the chaotic characteristics of PWM rectifier are verified.
引文
[1]孟庆春,何鹏德,王志勇.一种节能型交流电动机实验系统[J].辽宁工程技术大学学报(自然科学版),2001,20(6):785-787.
    [2]王枢华.新型循环变频器[J].电气传动自动化,1998,20(2):16-18.
    [3]赵淑兰.再生发电制动技术在钻机绞车刹车上的应用[J].石油机械,2004,32(10):67-70.
    [4]张燕宾.变频调速的四象限运行.技术讲座.
    [5]张纯,张纯宪,徐晓宇等.四象限交流变频调速技术在电牵引采煤机上的应用[J].煤矿机电,2002(4):1-4.
    [6]徐金榜.三相电压源PWM整流器控制技术研究[D].博士论文,武汉,华中科技大学,2004.
    [7]Hyeoun-Dong Lee, Seung-Ki Sul. A Common Mode Voltage Reduction in BoostRectifier/Inverter System by Shifting Active VoltageVector in a Control Period[J]. IEEE Transactions on Power Electronics,2000,15(6):1094-1101.
    [8]Hasan Komurcugil, Osman Kukrer. A Novel Current-Control Method for Three-Phase PWM AC/DC Voltage-Source Converters[J]. IEEE Transactions on Power Electronics,1999,46(3):544-553.
    [9]Hengchun Mao, Fred C. Y. Lee, Dushan Boroyevich. Review of High-Performance Three-Phase Power-Factor Correction Circuits[J]. IEEE Transactions on Industrial Electronics,1997,44(4): 437-446.
    [10]Seung-Gi Jeong, Myung-Ho Woo. DSP-Based Active Power Filter with Predictive Current Control[J]. IEEE Transactions on Power Electronics,1997,44(3):329-336.
    [11]J. Fernando Silva. Sliding-Mode Control of Boost-Type Unity-Power-Factor PWM Rectifiers[J] IEEE Transactions on Industrial Electronics,1999,46(3):594-603.
    [12]Liu zhiqiang, Lu hongli, Hexu Sun, et al. A Simple Scheme Based on Space-Vector Pulse-width Modulation for Three-phase Rectifier[C]. PCC'02, IEEE, Osaka,2002:1262-1266.
    [13]Joong-Ho Song, Sung-Joon Cho, Ick Choy, et al. New PWM method for single-phase three-level PWM rectifiers[C]. ISIE'97, IEEE, Portugal,1997:283-287.
    [14]Keliang Zhou, Danwei Wang. Digital Repetitive Controlled Three-Phase PWM Rectifier[J][J]. IEEE Transactions on Power Electronics,2003,1 (18):309-316.
    [15]Ana Vladan Stankovic, Thomas A. Lipo. A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions[J]. IEEE Transactions on Power Electronics,2001,16(5):603-611.
    [16]Leon M. Tolbert, Fang Zheng Peng, Tim Cunnyngham. Charge Balance Control Schemes for Cascade Multilevel Converter in Hybrid Electric Vehicles[J]. IEEE Transactions on Industrial Electronics, 2002,49(5):1058-1064.
    [17]David J. Perreault, John G. Kassakian. Design and Evaluation of a Cellular Rectifier System With Distributed Control[J]. IEEE Transactions on Industrial Electronics,1999,46(3):495-503.
    [18]Leon M. Tolbert, Fang Zheng Peng. Multilevel PWM Methods at Low Modulation Indices[J]. IEEE Transactions on Power Electronics,2000,15(4):719-725.
    [19]Jun Kikuchi, Thomas A. Lipo. Three-Phase PWM Boost-Buck Rectifiers With Power-Regenerating Capability[J]. IEEE Transactions on Industrial Applications,2002,38(5):1361-1369.
    [20]Sheng-Hua Li, Chang-Ming Liaw. On the DSP-Based Switch-Mode Rectifier With Robust Varying-Band Hysteresis PWM Scheme[J]. IEEE Transactions on Power Electronics,2004,19(6):1417-1425.
    [21]S. Kwak, H. A. Toliyat. Optimised power distribution to minimize power rating of paralleled rectifiers[J]. Electronics Letters,2004,40(5):17-19.
    [22]Jose R. Rodriguez, Juan W. Dixon. PWM Regenerative Rectifiers:State of the Art[J]. IEEE Transactions on Industrial Electronics,2005,52(1):5-22.
    [23]C. H. Bae, K. B. Lee, K. W. Lee. Sinusoidalisation of the input current in boost-type rectifier using sigma-delta modulation schemes[J]. Power Applications, IEEE,2004,151(6):679-684.
    [24]Chongming Qiao, Keyue M. Smedley. A General Three-Phase PFC Controller for Rectifiers With a Parallel-Connected Dual Boost Topology[J]. IEEE Transactions on Power Electronics,2002,17(6): 925-934.
    [25]Toshihiko Tanaka, Shinji Fujikawa, Shigeyuki Funabiki. A New Method of Damping Harmonic Resonance at the DC Link in Large-Capacity Rectifier-Inverter Systems Using a Novel Regenerating Scheme[J]. IEEE Transactions on Industrial Applications,2002,38(4):1131-1138.
    [26]Sunt Srianthumrong, Hideaki Fujita, Hirofumi Akagi. Stability Analysis of a Series Active Filter Integrated With a Double-Series Diode Rectifier[J]. IEEE Transactions on Power Electronics,2002, 17(1):117-124.
    [27]Ramesh K. Tripathi, Shyama P. Das, Gopal K. Dubey. Mixed-Mode Operation of Boost Switch-Mode Rectifier for Wide Range of Load Variations[J]. IEEE Transactions on Power Electronics,2002, 17(6):999-1009.
    [28]Ana Borisavljevic, M. Reza Iravani, Shashi B. Dewan. Digitally Controlled High Power Switch-Mode Rectifier[J]. IEEE Transactions on Power Electronics,2002,17(6):913-924.
    [29]Abraham D. le Roux, Hendrik du T. Mouton, Hirofumi Akagi. Digital Control of an Integrated Series Active Filter and Diode Rectifier With Voltage Regulation[J]. IEEE Transactions on Industrial Applications,2003,39(6):1814-1820.
    [30]A. Maswood. Optimal harmonic injection in thyristor rectifier for power factor correction[J]. Power Applications, IEEE,2003,150(5):615-622.
    [31]Marcus Ziegler, Daniel Domes, Wilfried Hofmann. A new rectifier timed topology for electrical drives:S-A-X-Converter[C]. PESC'04, IEEE, Germany,2004:2924-2928.
    [32]Ma Fengmin, Yang Tao, Bu LePing, et al. A Novel Simplified SVPWM Control Scheme for3 phase AC/DC Voltage-Source Converters[C]. CEEM'00, IEEE, Shanzhai,2000:242-246.
    [33]Malinowski M, et al. New direct power control of three-phase pwm boost rectifiers under distorted and imbalanced line voltage conditions[C]. ISIE'03, IEEE,2003:438-443.
    [34]Mariusz Malinowski, Marek Jasin'ski, Marian P. Kazmierkowski. Simple Direct Power Control of Three-Phase PWM Rectifier Using Space-Vector Modulation (DPC-SVM)[J]. IEEE Transactions on Industrial Applications,2004,51(2):447-454.
    [35]CHEN Su, JOOS G. Direct power control of active filters with averaged switching frequency regulation[C]. IEEE PESC'04. Hamburo, Germany,2004:1187-1194.
    [36]Yasser Abdel-Rady Ibrahim Mohamed, EhabF. EI-Saadany. An Improved Deadbeat Current Control Scheme With a Novel Adaptive Self-Tuning load Model for a Three-Phase Voltage-Source Inverter[J][J]. IEEE Transactions on Power Electronics,2007,54 (2):747-759.
    [37]Haithem Abu-Rub, Jaroslaw Guzinski, Hamid A Toliyat. Predictive current control of voltage-source inverters[J]. IEEE Transactions on Industrial Electronics,2004,51 (3):585-593.
    [38]G. H. Bode, P. C. Loh, M. J. Newman, et al. An improved robust predictive current regulation algorithm[J][J]. IEEE Transactions on Industrial Applications,2005,41 (6):1720-1733.
    [39]G-K Hung, C-C Chang, C-L Chen. Analysis and implementation of a delay-compensated deadbeat current controller for solar inverters.IEE Proc. Circuits, Devices and Systems,2001,148 (5):279-286.
    [40]K. Nishida,M. Rukonuzzman, M. Nakaoka. Advanced current control implementation with robust deadbeat algorithm for shunt single-phase voltage-source type active power filter. IEE Proceedings-Electric Power Applications,2004,151 (3):283-288.
    [41]Hong-Seok Song, In-Won Too, Kwanghee Nam. Source voltage sensorless estimation scheme for PWM rectifiers under unbalanced conditions[J]. IEEE Transactions on Industrial Electronics,2003, 50(6):1238-1245.
    [42]C. Cecati, A. Dell'Aquila, et al. A current-sensorless three-phase active rectifier with fuzzy-logic control[C]. IAS'2004, IEEE, Coimbra,2004,2609-2614.
    [43]M. Malinowski, W. Szczygiel, M. P. Kazmierkowski, et al. Sensorless Operation of Active Damping Methods for Three-Phase PWM Converters[C]. ISIE' 05, IEEE, Dubrovnik,2005:775-780.
    [44]T. S. Lee. Nonlinear state feedback control design for three-phase PWM boost rectifiers using extended linearization[J]. IEEE Transactions on Power Applications,2003,150(5):546-554.
    [45]Lee, T. S. Input-output linearization and zero-dynamics control of three-phase AC/DC voltage-source converters[J]. IEEE Transactions on Power Electronics,2003,18(1):11-22.
    [46]Bo Yin, Ramesh Oruganti, S. K. Panda. Experimental Verification of a Dual Single-Input Single-Output Model of a Three-Phase Boost-Type PWM Rectifier[C]. the 31st IEEE Conf. Industrial Electronics Society, North Carolina, USA,2005:1030-1035.
    [47]毛鸿,沈琦,吴兆麟.PWM整流器的电压控制策略研究[J].电气传动,2000,VOL(3):21-23.
    [48]何新霞,张加胜,王平.电压型PWM可逆整流器建模与系统仿真[J].石油大学学报(自然科学版),
    1999,23(3):93-95.
    [49]詹长江,韩郁,赵良炳等.基于电压空间矢量PWM脉宽调制方式的新型三电平高频整流器研究[J].电工技术学报,1999,14(2):60-64.
    [50]熊健,康勇,段善旭等.三相电压型PWM整流器控制技术研究[J].电力电子技术,1999,VOL(2):5-7.
    [51]熊健,张凯,裴雪军等.一种改进的PWM整流器间接电流控制方案仿真[J].电工技术学报,2003,18(1):57-63.
    [52]鞠儒生,陈宝贤,陈燕.一种新型PWM整流器[J].电工技术学报,2003,17(6):48-52.
    [53]屈克庆,陈国呈,孙承波.基于幅相控制方式的零电压软开关三相PWM变流器[J].电工技术学报,2004,19(5):15-20.
    [54]黄科元,贺益康,胡奇峰.交流励磁用三相PWM整流器的研究[J].浙江大学学报(工学版),2004,38(1):48-51.
    [55]张纯江,顾和荣,王宝诚.基于新型相位幅值控制的三相PWM整流器数学模型[J].中国电机工程学报,2003,23(7):28-31.
    [56]徐小品,黄进,杨家强.瞬时功率控制在三相PWM整流中的应用[J].电力电子技术,2004,38(2):30-31.
    [57]李玉玲,张仲超.基于空间矢量的电流型整流器的功率因数校正技术研究[J].电气传动,2005,35(5): 21-23.
    [58]卢至锋,张波,邓卫华.三相电压型PWM整流器非线性解耦控制研究[J].电力电子技术,2005,39(1):40-44.
    [59]张纯江,郭忠南,王芹等.基于新型相位幅值控制的三相PWM整流器双向工作状态分析[J].中国电机工程学报,2006,(11):167-171.
    [60]王久和,李华德.一种新的电压型PWM整流器直接功率控制策略[J].中国电机工程学报,2005,(16):47-52.
    [61]邓卫华,张波,丘东元等.三相电压型PWM整流器状态反馈精确线性化解耦控制研究[J].中国电机工程学报,2005,(07):97-103.
    [62]方宇,裘迅,邢岩等.基于预测电流控制的三相高功率因数PWM整流器研究[J].中国电机工程学报,2006,(20):69-73.
    [63]王儒,方宇,邢岩.三相高功率因数PWM变换器可逆运行研究[J].电工技术学报,2007,(08):46-51.
    [64]张加胜,张磊.四象限变流器的一种统一性建模及分析方法研究[J].中国电机工程学报,2004,(08):39-44.
    [65]周雒维,罗全明.基于DQ变换三相三开关Boost型开关整流器的DC和AC分析[J].中国电机工程学报,2002,(07):71-75.
    [66]王英,张纯江,陈辉明.三相PWM整流器新型相位幅值控制数学模型及其控制策略[J].中国电 机工程学报,2003,(11):85-89.
    [67]陈道炼,严仰光.三相单支全控开关高功率因数低谐波整流器的研究进展[J].电工电能新技术,1997,(03):20-25.
    [68]王永,沈颂华,关淼.新颖的基于电压空间矢量三相双向整流器的研究[J].电工技术学报,2006,21(1):104-110.
    [69]赵振波,李和明,董淑惠.采用电流滞环调节器的电压矢量控制PWM整流器系统[J].电工技术学报,2004,19(1):31-34.
    [70]张纯江,顾和荣,赵清林.单周期控制无乘法器三相电压型PWM整流器[J].电工技术学报,2003,18(6):28-32.
    [71]杨培志,张晓华,陈宏钧.三相电压型PWM整流器模型准线性化[J].电工技术学报,2007,22(8):28-34.
    [72]乔树通,姜建国.三相Boost型PWM整流器输出误差无源性控制[J].电工技术学报,2007,22(2):68-73.
    [73]赵葵银.PWM整流器的模糊滑模变结构控制[J].电工技术学报,2006,21(7):49-53.
    [74]郭文杰,林飞,郑琼林.三相电压型PWM整流器的级联式非线性PI控制[J].中国电机工程学报,2006,26(2):138-142.
    [75]赵绍刚,李秀娟,漆随平.基于逆系统方法的三相PWM整流器控制[J].电力自动化设备,2006,26(11):46-49.
    [76]陈耀军,钟炎平.基于合成矢量的电压型PWM整流器电流控制研究[J].中国电机工程学报,2006,26(2): 143-148.
    [77]毛鸿,吴兆麟.基于三相PWM整流器的无死区空间矢量调制策略[J].中国电机工程学报,2001,21(11):100-104.
    [78]张兴,季建强,张崇巍等.基于内模控制的三相电压型PWM整流器不平衡控制策略研究[J].中国电机工程学报,2005,25(12):51-56.
    [79]尹明,李庚银,张建成,等.直驱式永磁同步风力发电机组建模及其控制策略[J].电网技术,2007,31(15): 61-65.
    [80]徐科,胡敏强,郑建勇,等.风力发电机无速度传感器网侧功率直接控制[J].电力系统自动化,2006,30(23):43-47.
    [81]李晶,方勇,宋家骅,等.变速恒频双馈风电机组分段分层控制策略的研究[J].电网技术,2005,29(9):15-21.
    [82]李晶,王伟胜,宋家骅.变速恒频风力发电机组建模与仿真[J].电网技术,2003,27(9):14-17.
    [83]苑国锋,柴建云,李永东.新型转子电流混合控制的变速恒频异步风力发电系统[J].电网技术,2005,29(15):76-80.
    [84]Akagi, H., Fujita, H.. A new power line conditioner for harmonic compensation in power systems[J]. IEEE Transactions on Power Delivery,1995,10(3):1570-1575.
    [85]Zhang Z.-C, Ooi B.-T. Multimodular current-source SPWM converters for a superconducting magnetic energy storage system[J]. IEEE Transactions on Power Electronics,1993,8(3):250-256.
    [86]Habetler, T. G.. A space vector-based rectifier regulator for AC/DC/AC converters[J]. IEEE Transactions on Power Electronics,1993,8(1):30-36.
    [87]Ooi, B. T.; Wang, X.. Voltage angle lock loop control of the boost type PWM converter for HVDC application[J]. IEEE Transactions on Power Electronics,1990,5(2):229-235.
    [88]Fujita, H.; Watanabe, Y.; Akagi, H. Control and analysis of a unified power flow controller[J]. IEEE Transactions on Power Electronics,1999,14(6):1021-1027.
    [89]Wu R, Dewan S B, Slemon G R. Analysis of an ac to do voltage source converter using PWM with phase and amplitude control[J]. IEEE Transactions on Industry Applications,1991,27(2):355-364.
    [90]Chun T Rim, Dong Y Hu, Gyu Hcho. Transformers as equivalent circuits for switches:General Proofs and D-Q Transformation-Based Analyses[J]. IEEE Transactions on Industry Applications,1990, 26(4):777-785.
    [91]Hengchun Mao, Dushan Boroyerich, Fred C Y Lee. Novel reduced-order small signal model of a three-phase PWM rectifier and its application in control design and system analysis[J]. IEEE Transactions on Power Electronics,1998,13(3):511-521.
    [92]G. Escobar, J. Leyva-Rama. Modeling of a Three Level Converter Used in a Synchronous Rectifier Application[C]. IEEE PESC 35th Annual, Achen Germany,2004.
    [93]Shied J-J, Pan C-T, Cuey Z-J. Modelling and design of a reversible three-phase switching mode rectifier. IEE Proc. Electr PowerAppl,1997,144(6):389-396.
    [94]Dixon J W, Ooi B T. Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier[J]. IEEE Transactions on Power Electronics,1998,35(4):508-515.
    [95]Marian PKazmierkowski, Luigi Malesani. Current control techniques for three-phase voltage-source PWM converters:A Survey [J]. IEEE Transactions on Power Electronics,1998,45(5):691-703.
    [96]姚文熙,吕征宇,费万民,等.一种新的三电平中点电位滞环控制法[J].中国电机工程学报,2005,25(7):92-96.
    [97]宋强,刘文华,严千贵,王仲鸿.基于零序电压注入的三电平NPC逆变器中点电位平衡控制方法[J].中国电机工程学报,2004,24(5):57-62.
    [98]Sergio Busquets-Monge, Josep Bordonau, Dushan Boroyevich, et. al. The Nearest Three Virtual Space Vector PWM-A Modulation for the Comprehensive Neutral-Point Balancing in the Three-Level NPC Inverter[J]. IEEE Power Electronics Letters,2004,2(1):11-14.
    [99]Zhang R, Prasad V H, Boroyevich D, et al. Three-dimensional space vector modulation for four-leg voltage source converters [J]. IEEE Transactions on Power Electronics,2003,17(3):314-326.
    [100]Prats M M, Franquelo L G, Leon, et al. A SVM-3D generalized algorithm for multilevel converters[C]. Industrial Electronics Society, the 29th Annual Conference of the IEEE, Virginia, USA,2003.
    [101]DAI N Y, Wong M C, Han Y D. Application of a three-level NPC inverter as a three-phase four-wire power quality compensator by generalized 3DSVM[J]. IEEE Transactions on Power Electronics, 2006,21(2):440-449.
    [102]DAI N Y, Wong M C, Chen Y H, et al. A 3-D generalized direct PWM algorithm for multilevel converters[J]. IEEE Power Electronics Letters,2005,3(3):85-88.
    [103]孙向东,尹忠刚,王建渊,等.一种新型两桥臂非对称三电平PWM整流器的研究[J].中国电机工程学报,2006,26(14):47-51.
    [104]薄保中,刘卫国,苏彦民,三电平逆变器PWM控制窄脉冲补偿技术的研究[J],中国电机工程学报,2005,25(10):60-64.
    [105]Prats M M, Franquelo L G, Portillo R, et al. A 3-D space Vector modulation generalized algorithm for multilevel converters[J]. IEEE Power Electronics Letters,2003,1 (4):110-114.
    [106]Sergio B M, Josep B, Dushan B, et al. The nearest three virtual space vector PWM-a modulation for the comprehensive neutral-point balancing in the three-level NPC Inverter[J]. IEEE Power Electronics Letters,2004,2(1):11-14.
    [107]Zhong Yanping, Shen Songhua. Decouple control and DSP implement of PWM rectifier [C]. Proceeding of the 5th World Congress on Intelligent and Automation, Hangzhou, China,2004.
    [108]翁海清,孙旭东,刘从伟.三电平逆变器直流侧电压平衡控制方法的改进[J].中国电机工程学报,2003,22(9):94-97.
    [109]Wong Manchung, Zhao Zhengyi, Han Yingduo, et al. Three dimensional pulse-width modulation technique in three-level power inverters for three-phase four-wired system[J]. IEEE Transactions on Power Electronics,2001,16(3):418-426.
    [110]Zhou Dongsheng, Didier Rouaud. Experimental comparison of space vector neutral point balancing strategies for three-level topology [J]. IEEE Transactions on Power Electronics,2001,6(6):872-879,
    [111]钟炎平,沈颂华.PWM整流器的一种快速电流控制方法[J].中国电机工程学报,2005,25(12):52-56.
    [112]Lim S K, Kim J H, Nam K. A DC-link voltage balancing algorithm for three-level converter using the zero sequence current[C]. IEEE Power Electronics Specialists Conference, Charleston, USA,1999.
    [113]Lee D C, Lee G M, Lee K D. DC-bus voltage control of three-phase AC/DC PWM converters using feedback linearization[J]. IEEE Transactions on Industry Applications,2000,36(3):826-833.
    [114]Tallam R M, Naik R, Nondahl T A. A carrier-based PWM scheme for neutral-point voltage balancing in three-level inverters[J]. IEEE Transactions on Industry Applications,2005,41(6):1734-1743.
    [115]林磊,邹云屏,钟和清.二极管箝位型三电平逆变器控制系统研究[J].中国电机工程学报,2005,25(15): 33-39.
    [116]Fukuda S, Matsumoto Y, Sagawa A. Optimal-regulator-based control of NPC boost rectifiers for
    unity power factor and reduced neutral point potential variations[J]. IEEE Transactions on Industrial Electronics,1999,46(3):527-534.
    [117]Minibock J, Kolar J W. Comparison theoretical and experimental evaluation of bridge leg topologies a three-phase three-level unit power factor rectifier[C]. IEEE Power Electronics Specialists Conference, Vancouver, Canada,2001.
    [118]Bor-ren Lin, Yung-Chuan Lee, Tsung-Yu Yang. Implementation of a Three-Phase High-Power-Factor Rectifier with NPC Topology[J]. IEEE Transactions on Industry Applications,2004,40(1):180-189.
    [119]Tokuo Ohnishi. Three Phase PWM Converter/Inverter by means of Instantaneous Active and Reactive Power Control[C]. IEEE IECON,1991:819-824.
    [120]Moran L, Ziogas PD, Joos Cz Design aspects of synchronous rectifier-inverter system under unbalanced input conditions[J]. IEEE Transactions on Industry Applications,1992,28(6):1286-1293.
    [121]Vincenti D, Jin H. A three phased regulated PWM rectifier with on-line feadforward input unbalance correction[J]. IEEE Transactions on Power Electronics,1994,41(5):526-532.
    [122]Hong-Seok Song, Kwanghee Nam. Dual current control scheme for PWM converter under unbalanced input voltage conditions[J]. IEEE Transactions on Industrial Electronics,1999,46(5): 953-956.
    [123]孟永庆,苏彦民,刘正.三电平中点箝位整流器系统建模及基于李亚普诺夫直接法的控制方法研究[J].中国电机工程学报,2005,25(24):79-84.
    [124]Malinowiski M Sc Mariusz. Sensorless Control Strategies for Three Phase PWM Rectifiers [D]. Warsaw:Warsaw University of Technology,2001.
    [125]Noguchi T, Tomiki H, Kondo S, Takahashi LDirect power control of PWM converter without power source voltage sensors, IEEE Transactions on Industry Applications,1998,34(3):473-479.
    [126]王颢雄,王斌.基于三状态马尔柯夫链的随机周期调制PWM技术研究[J].中国电机工程学报,2007,27(4):108-112.
    [127]S.Y.R. Hui, S.Sathiakumar, K.K.Sung. Novel random PWM schemes with weighted switching decision[C]. PEVSD'96,1996:348-353.
    [128]王洹,宋立群,吴庆彪,一种基于单片机的位置随机脉宽调制策略,中国纺织大学学报,1999,25(6):23-25.
    [129]程颖,叶芃生,基于DSP的RPWM技术[J].上海交通大学学报,1999,33(10):1298-1300.
    [130]王颢雄,王斌,周丹,黄凯,崔景秀,两种随机PWM调制技术的比较研究[J].电气传动,2006,36(11):23-25.
    [131]张海光,薛昭武,基于规则采样的空间电压矢量PWM随机控制[J].福州大学学报(自然科学版),2003,31(4):445-449.
    [132]马丰民,吴正国,李玉梅,随机零矢量分配RPWM的实现及其功率谱分析[J].武汉理工大学学报(交通科学与工程版),2007,31(2):239-242.
    [133]S.H.Na等,异步电机用随机定位空间矢量PWM降低开关噪声[J].变流技术与电力牵引,(译自IEE Proceedings Electric Power Applications,2002(3)),2004:2-16.
    [134]粟梅,肖鹏,孙尧,随机脉冲位置PWM及其在矩阵变换器中的实现[J].中国电机工程学报,2006,26(6): 105-110.
    [135]Shahriyar Kaboli, Javad Mahdavi, Ali Agah, Application of Random PWM Technique for Reducing the Conducted Electromagnetic Emissions in Active Filters[J]. IEEE Transactions on Industrial Electronics,2007,54(4):2333-2343.
    [136]Konstantin Borisov, Herbert L. Ginn Ⅲ, Andrzej M. Trzynadlowski, Attenuation of Electromagnetic Interference in a Shunt Active Power Filter[J]. IEEE Transactions on Power Electronics,2007, 22(5):1912-1918.
    [137]R. L. Kirlin, M. M. Bech, A. M. Trzynadlowski, Analysis of power and power spectral density in PWM inverters with randomized switching frequency[J]. IEEE Transactions on Industrial Electronics,2002,49(2):486-499.
    [138]李永东.交流电机数字控制系统.北京:机械工业出版社,2002年.
    [139]Celso Grebogi, Ying-ChengLai.Controlling Chaos in High Dimensions[J]. IEEE Transactions on Circuits and Systems,1997,44(10):971-975.
    [140]J.H.B.Deane, D.C.Hamill.Instability, Subharmonics, and Chaosin Power Electronics Systems[J]. IEEE Transactions on Power Electronics,1990,5(3):260-268.
    [141]C.K.Tse, Y.M.Lai, H.H.C.Iu.Hopf Bifurcation and Chaos in a Free-running Current-Controlled Cuk Switched Regulator[J].IEEE Transactions on Circuits and Systems,2000,47(4):448-456.
    [142]刘伟增,马西奎.基于频闪映射的Boost PFC变换器中的间歇性分岔和混沌现象分析[J].中国电机工程学报,2005,25(1):43-48.
    [143]M.Vilathgamuwa, J.Deng, K.J.Tseng.EMI Supperssion with Switching Frequency Modulated dc-dc Converters [J].IEEE Transactions on Industry Applications Magazine,1990.
    [144]Jangwanitlert.A, Balda.J.C, Olejniczak.K.J. Analysis of conducted EMI emission on a sofe-switched full bridge DC-DC converter with a fixed swithing frequenc [C]. The 29th Annual Conference of the IEEE,2003,03:2906-2910.
    [145]Yimin Lu, Xianfeng Huang, Bo Zhang,Zongyuan Mao.Two Chaos-Based PWM Strategies for Suppression of Harmonics[C]. Proceedings of the 6th World Congresson Intelligent Control and Automation,2006:953-957.
    [146]Liaw C M, Lin Y M Wu C Het al.. Analysis design and implementation of a random frequency PWM inverter[J]. IEEE Transactions on Power Electronics,2000,15(5):843-854.
    [147]Kirlin R L, Bech M M, Trzynadlowski A M. Analysis of power and power special density in PWM inverters with randomized switching frequency[J]. IEEE Trans. on Industrial Electronics,2002, 49(2):486-499.
    [148]Na, S.-H.; Jung, Y.-G.; Lim, Y.-C.; Yang, S.-H.; Reduction of audible switching noise in induction motor drives using random position space vector PWM[J]. Electric Power Applications,2002,149(3): 195-200.
    [149]粟梅,肖鹏,孙尧.随机脉冲位置PWM及其在矩阵变换器中的实现[J].中国电机工程学报,2006,26(6):105-110.
    [150]马丰民,吴正国,侯新国.基于统一PWM调制器的随机空间矢量调制[J].中国电机工程学报,2007,27(7):98-102.
    [151]Liaw C W, Lin Y M, Wu C H. Analysis, design and implementation of a random frequency PWM inverter[J]. IEEE Trans. on Power Electronics,2000,15(5):843-854.
    [152]Shahriyar Kaboli, Javad Mahdavi, Ali Agah. Application of Random PWM Technique for Reducing the Conducted Electromagnetic Emissions in Active Filters[J]. IEEE Trans. on Industrial Electronics, 2007,54(4):2333-2343.
    [153]幸善成,吴正国.基于多电平随机脉宽调制技术的共模电压和谐波抑制方法[J].中国电机工程学报,2006,26(17):57-61.
    [154]R. L. Kirlin, M. M. Bech, A. M. Trzynadlowski, Analysis of power and power spectral density in PWM inverters with randomized switching frequency[J]. IEEE Trans. on Industrial Electronics, 2002,49(2):486-499.
    [155]A. M. Trzynadlowski, M. M. Bech, F. Blaabjerg, J. K. Pedersen, R. L. Kirlin, M. Zigliotto, Optimization of switching frequencies in the limited-pool random space vector PWM strategy for inverterfed drives[J]. IEEE Trans. on Power Electronics,2001,16(6):852-857.
    [156]Trevisan, D.; Mattavelli, P.; Zigliotto, M.; Saggini, S.; Limited-Pool Random Carrier-Frequency PWM for Digitally Controlled dc-dc Converters[C]. IECON'06, Paris, France,2006:4929-4934.
    [157]Valchev, V.C.; Kovachev, D.M.; Van den Bossche, A.P.; A practical approach to randomised pulse-width modulation[C]. IECON'05, North Carolina,2005:6-10.
    [158]王斌,李兴源,王颢雄等.基于马尔可夫链的双随机PWM技术研究[J].电工技术学报,2005,20(6):16-19.
    [159]石文辉,别朝红,王锡凡.大型电力系统可靠性评估中的马尔可夫链蒙特卡洛方法[J].中国电机工程学报,2008,28(4):9-15.
    [160]翟明岳,曾庆安.低压电力线通信信道的马尔柯夫特性研究[J].中国电机工程学报,2007,27(22):52-56.
    [161]于江德,樊孝忠,尹继豪等.基于隐马尔可夫模型的中文科研论文信息抽取[J].计算机工程,2007,33(19):190-192.
    [162]左问,张毅刚,郁惟镛等.基于小波与隐式马尔科夫模型的发电机局部放电信号去噪[J].中国电机工程学报,2003,23(6):137-142.
    [163]Aleksandar M Stankovic. Randomized modulation of power converters via markov chainsIJ]. IEEE Transactions on Control Systems Technology,1997,5(1):61-73.
    [164]高亚静,周明,李庚银,等.基于马尔可夫链和故障枚举法的可用输电能力计算[J].中国电机工程学报,2006,26(19):41-46.
    [165]桂林,武小悦.隐马尔可夫树模型在机械状态诊断中的应用[J].机械工程学报,2007,43(1):219-224.
    [166]周云龙,柳长昕,赵鹏,等.基于自回归-连续隐马尔可夫模型的离心泵故障诊断[J].中国电机工程学报,2008,28(20):88-93.
    [167]马丰民,吴正国,侯新国,基于统一PWM调制器的随机空间矢量调制,中国电机工程学报,27(7),2007,98-102
    [168]陈关荣.控制非线性动力系统的混沌现象[M].控制理论与应用.1997.
    [169]J.B.and G.R.Bifurcation and chaos Li, Park, Zhang, Chen[J]. IEEE Transactions on Circuits permanent magnet synchronous motors,2002,49(3):383-387.
    [170]赵光宙,齐冬莲.混沌控制理论及其应用[J].电工技术学报,2001,16(5):77-82.
    [171]S. Banerjee and G. Verghese.Nonlinear Phenomena in Power Electronics[M]. IEEE Press, New York,2001.
    [172]戴栋.一类具有两个边界的分段光滑系统中边界碰撞分岔现象及混沌[J].物理学报2003,52(11):2729-2736.
    [173]张波,李萍,齐群.DC-DC变换器分叉和混沌现象的建模和分析方法[J].中国电机工程学报,2002,22(11): 81-86.
    [174]J.H.Chenetal. Analysis of chaos in current-mode-controlled DC drive systems.IEEE Transaetions on Industrial Eleetronies,2000,4(1):67-71.
    [175]罗晓曙,方锦清等.一种新的基于系统变量延迟反馈的控制混沌方法.物理学报[J],2000,49(8):1423-1427.
    [176]李俊,陈基和.永磁直流电机的混沌反控制[J].中国电机工程学报,2006,26(8):77-81.
    [177]Zhang Bo, Li Zhong, Mao Zongyuan, et al.. The chaotic model and Hopf bifurcation of a type of permanent magnet synchronous motor[C].Proceedings of the CSEE,2001:13-17.
    [178]D.Liu, H.P.Ren, X.Y.Liu. Chaos control permanent magnet synchronous motors[C]. ISCAS'04, IEEE,2004:732-735.
    [179]J.H.Chen et al.. Analysis of chaotic behavior in switehed reluetance motors using voltage PWM regulation[J].Eleetric Power components and systems,2001,9(29):211-227.
    [180]K.T.ChuaandJ, H.Chen.Modeling analysis and experimentation of chaos in switched reluctance drive system[J]. IEEE Transactions on Circuits and Systems,2003,50(3):712-716.
    [181]MA Jun-hai, CHEN Yu-shu. An analytic and application to state space reconstruction about chaotic time series[J].Applied Mathematics and Mechanics,2000,21(11):1117-1124.
    [182]马军海.混沌时序非线性动力系统重构[D].博士论文,天津,天津大学,1997.
    [183]Z. Suto and I.Nagy. Analysis of nonlinear phenomena and design aspects of three-phase space-
    vector-modulted converters[J]. IEEE Transactions on Circuits and Systems-Ⅰ:Fundamental Theory and Applications,2003,50(8):1064-1071.
    [184]Hui S Y R, Sathiakumar S, Ki-Kwong Sung. Novel random PWM schemes with weighted switching decision[J].IEEE Transactions on Power Electronics,1997,12(6):945-952.
    [185]陈国华,马军海,盛昭瀚.动力系统实测数据的相空间重构的改进方法[J].东南大学学报,2000,30(1):16-21.
    [186]王海燕,盛昭瀚.混沌时充相空间重构参数的选取方法[J].东南大学学报,2000,30(5):32-35.
    [187]AlbanoAM. SVD and Grassberger-Procaccia algorithm [J].Phy Rev:A,1988,38(20):3017-3026.
    [188]Fraser A M. Information and entropy in strange attractors[J].IEEE Transactions on Industrial Applications,1989,35(2):245-262.
    [189]Mehdi D, Hamid MA, Perrin F. Robustness and optimality of linearquadratic controller for uncertain systems [J]. Automatica,1996,32(7):1081-1083.
    [190]Cao Liangyue. Practicalmethod for determining the minimunembedding dimesion of a scalar time seriese[J].Physical D,1997,100(1-2):43-50.
    [191]姜桂仁.混沌时序的特征量分析及相空间重构[M].硕士论文,南京,江苏大学,2005.
    [192]彭伟忠.异步电机鼠笼转子检测技术研究[M].硕士论文,合肥,国防科技大学,2006.
    [193]于东升,陈昊,文朝举,孙斐然.基于Matlab的开关磁阻电机混沌运行状态分析[J].中国电机工程学报,2007,37(9):34-37.
    [194]朱海磊,陈基,王赞基.利用延迟反馈进行异步电动机混沌反控制[J].中国电机工程学报,2004,24(12): 156-159.
    [195]于东升,陈昊,文朝举,孙斐然.基于Matlab的开关磁阻电机混沌运行状态分析[J].东南大学学报(自然科学版),2007,37:62-65.
    [196]Rosenstein M T, Collins J J, et al.. Apractical method for calculating largest lyapunov exponents from small data sets[J].Physica D,1993,3(65):117-134.
    [197]Oiwa N NFerrara N F. A fast algorithm for estimating Lyapunov exponents from time series[J]. Physics Letters A,1998,24(6):117-121.
    [198]K.K. Tse, Raymond Wai-Man Ng, Henry Shu-Hung Chung.An Evaluation of the Spectral Characteristics of Switching Converters With Chaotic Carrier-Frequency Modulation[J]. IEEE Transactions on Industrial Electronics,2003,50(1):146-152.
    [199]A.Bellini, G.Franceschini, R.Rovatti, G.Setti, and C.Tassoni.Generation of low-EMI PWM patterns for induction drives with chaotic maps[C], IEEE IECON,2001:1527-1532.
    [200]H.H.C.Iu and B.Robert. Control of Chaos in a PWM Current-Mode H-Bridge Inverter Using Time-Delayed Feedback[J].IEEE Transactions on Circuits and Systems,2003,50(8):23-27.
    [201]S.Banerjee and G.Verghese.Nonlinear Phenomena in Power Electronics[C]. IEEE Press,2001.
    [202]M.Shariatmadar and J. Nazarzadeh. Modified map of variable active passive reactance for stability evaluation with consideration of capacitor Mode[C]. PEDS2007, IEEE,2007.
    [203]Z. Li, B. Zhang, Z. Y. Mao. Entrainment and migration control of motor permanent-magnet synchronous system[J]. Theory Applications,2002,19(1).
    [204]Qianli Su, Kai Strunz SESAME Laboratory department of Electrical Engineering. Stochastic Polynomial-Chaos-Based Average Model of twelve-pulse diode rectifier for aircraft applica-tions[C]. IEEE Compel Workshop, Rensselaer Polytechnic Institute, Troy, NY, USA,2006:16-19.
    [205]T.E.Lovett, F.Ponci, A.Monti.A polynomial chaos approach to measurement uncer-tainty[J]. IEEE Transactions on Instrumentation and Measurement,2006,55(3):729-736.
    [206]Hasan Kom urcugil, Osman K ukrer.Lyapunov-based control for three-phase PWM AC/DC voltage-source Converters[J]. IEEE Transactions on Power Electronics,1998,13(5):34-39.
    [207]Zheng Wang, K.T.Chau, Chunhua Liu. Improvement of Electromagnetic Compatibility of Motor Drives Using Chaotic PWM[J]. IEEE Transactions on Magnetics,2007,43(6):35-39.
    [208]K.T.Chau, Z.Wang. Design of permanent magnets to chaoize doubly salient permanent magnet motors for electric compaction[J].Physical D,2006,99(3):212-215.
    [209]Kirlin R L, Bech M M, Trzynadolwski AM.Analysis of power and power spectral density in PWM inverters with randomized switching frequency[J]. IEEE Transactions on Power Electronics,2002, 49(2):486-499.
    [210]李冠林,陈希有,刘凤春.混沌PWM逆变器输出电压功率谱密度分析[J].中国电机工程学报,2006,26(20):79-83.
    [211]Tse K KRaymond, Wai-Man, NgHenry, Shu-Hung Chunget al..An evaluation of the spectral characteristics of switching converters with chaotic carrier-frequency modulation[J].IEEE Transacti-ons on Industrial Applications,2003,50(1):171-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700