高性能数控系统若干关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文结合具体科研项目,对高性能数控系统若干关键技术进行了系统和深入的研究,主要涉及:面向高速数控加工的柔性加减速控制方法;连续微段高速自适应前瞻插补方法;多轴运动轮廓误差补偿方法。在此基础上,对多坐标数控高速微细加工系统进行开发,建立了原型系统并结合实例对上述方法的有效性和实用性进行验证。
     第一章总结了数控技术的发展历程和趋势,详细分析了高性能数控系统若干关键技术的研究现状,最后给出本文研究意义及内容安排。
     第二章对面向高速数控加工的柔性加减速控制方法进行研究。在高速加工过程中,采用传统的直线和指数加减速法不能满足加速度的连续,因此会产生很大的冲击,影响零件加工质量和机床的使用寿命。为满足高速数控加工的要求,对柔性加减速控制方法进行了深入研究,并将其进行了实例验证。试验结果表明,三次多项式柔性加减速法综合性能较好,是一种值得推广的柔性加减速控制方法。
     第三章对连续微段高速自适应前瞻插补方法进行研究。目前,复杂型面的高速加工往往先由CAM软件粗插补生成微小直线段,再由数控系统的插补器对微段进行精插补。为保证加工精度,需在微段间进行加减速处理。如果在计算加减速区时使每段的始末速度均为零或某一固定数值,势必造成系统启停频繁、效率低下和加工质量差。为此,提出一种高速自适应前瞻插补方法,该方法的实现包括前瞻插补预处理和实时参数化插补两部分。插补预处理时,按轨迹转接点最高速度确定、减速点位置自适应前瞻确定和整体跨段转接点速度校核三个步骤建立连续微段的高速自适应前瞻控制策略。在此基础上,基于三次多项式柔性加减速和整体跨段参数化插补建立连续微段的实时插补算法。试验结果表明,该方法能实现连续微段间进给速度的高速衔接与高速加工时减速点位置的前瞻确定,从而缩短加工时间并提高加工效率。
     第四章研究了多轴运动轮廓误差补偿方法。在轮廓加工中,轮廓精度是重要的精度指标,而耦合轮廓控制能够在不改变各轴位置环的同时,有效地减小系统的轮廓误差。本章首先介绍了直线和圆弧的轮廓误差模型,然后分析了伺服系统的动态特性对轮廓误差的影响。针对复杂型面高精度数控加工的要求,提出了一种多轴运动轮廓误差补偿方法,该方法的实现包括多轴运动轮廓控制器的设计和多轴运动轮廓控制器的集成两个部分,最后结合实例对上述方法的有效性进行验证。仿真结果表明,该方法能有效的减小轮廓误差,提高系统的轮廓控制精度。
     第五章对多坐标数控高速微细加工原型系统进行开发。结合具体科研项目,对原型系统进行开发。本章首先对原型系统进行总体设计。在上位控制软件开发中,针对实时多任务调度问题,提出采用基于PC无扩展全软件的开放式体系结构,给出抢占式多任务动态调度策略。在硬件开发方面,自行设计了一种基于串行通信的多轴运动控制卡。最后,对开发的原型系统作了总体介绍并对前面几章的研究内容进行了加工试验。试验结果表明,本系统在柔性加减速控制方法、连续微段高速自适应前瞻插补方法、高精度定位控制算法等方面均获得较好的加工效果。
     第六章概括了全文的主要研究成果并指出论文还有待进一步完善的地方。
Combined with the research project, several key techniques of high performance NC system are studied detailedly and systematically, which include flexible acceleration and deceleration control methods for high speed NC machining, adaptive look-ahead interpolation method for high speed machining of consecutive micro line blocks, contour error compensation method of the multi-axis motion control. On the basis of analysis for the research on several key techniques of high performance NC system, the multi-axes high speed micro fabrication machining system platform is developed and the above methods are validated on the system platform by experiments.
     In chapter one, the development of NC technology and the research status on several key techniques of high performance NC system are summarized detailedly. The main research contents of the dissertation are given.
     In chapter two, the flexible acc/dec control methods for high speed NC machining are studied. The commonly used methods in most domestic economical NC system are linear and exponential acceleration and deceleration control methods. But the vibration is easily caused by discontinuity of acceleration, which affects machining quality and equipment life. To satisfy the need of high speed NC machining, flexble acc/dec control methods, including 7-segment s-curve, cubic polynomial and quintic polynomial flexible acc/dec control method, are studied. The proposed methods are verified by examplification. The experimental result proves that the cubic polynomial flexible acc/dec control method has the characteristic of easily implementing, stable moving and low impact.
     In chapters three, an adaptive look-ahead interpolation method for high speed machining of consecutive micro line blocks is proposed. Since a complex contour machining program generated by CAD/CAM systems usually composes a lot of consecutive micro line blocks, actual feedrate is heavily reduced and the consequential machining efficiency becomes very low when the conventional interpolation velocity control method is used in NC machining. An adaptive look-ahead interpolation method for high speed machining of consecutive micro line blocks, including interpolation preprocess and real time parametric interpolation, is proposed. During interpolation preprocess, the high speed adaptive look-ahead control strategy is established by using path transfer point maximum velocity confirming, adaptive predetermination of deceleration point position and stride segment transfer point speed checking. During real time interpolation, stride multi-path parametric interpolation algorithm is set up based on the cubic polynomial flexible acc/dec control method. The experiment results demonstrated the proposed method realize high speed machining of consecutive micro line blocks and determination of deceleration point position in advance. The method achieved high speed machining and the productivity is improved significantly.
     In chapter four, a contour error compensation method of the multi-axis motion control is researched. In the contour machining, contour accuracy is an important accuracy criterion. The controller objective of cross-coupling control is to eliminate the contour error, rather than the reduction of the individual axial errors. The contour- error model for 2D straight line and circular arc contours is introduced, and the impact on contour error affected by dynamic characteristics of the servo system is analyzed. To satisfy the need of high precision NC machining, a contour error compensation method is proposed and the effectivity of the above method is verified by examplification. The simulation results demonstrate that the proposed method achieves high precision machining and the contour accuracy is improved greatly.
     In chapter five, the multi-axes high speed micro fabrication machining system platform is developed. The prototype system is designed firstly, then an open architecture NC system based on NC embedded into PC is proposed, the preemptive multitask scheduling strategy is presented, and the multi-axis motion control card based on serial communication is self-designed. Finally, a total introduction of the multi-axes high speed micro fabrication machining system platform is given and relative research results are validated on the system platform by experiments. The experiment results prove the better performance on flexible acc/dec control method, adaptive look-ahead interpolation method for high speed machining of consecutive micro line blocks and high accuracy positioning control algorithm.
     In chapter six, the main conclusions of this dissertation are summarized and the further research work is put forward.
引文
[1]叶伯生,朱志红,熊清平.计算机数控系统原理、编程与操作.武汉:华中理工大学出版社,1999.
    [2]冯勇,霍勇进.现代计算机数控系统.北京:机械工业出版社,1996.
    [3]王永章,等.机床的数字控制技术.哈尔滨:哈尔滨工业大学出版社,1995.
    [4]李佳特.数控技术的现状、发展趋势.世界制造技术与装备市场,2001,(1):34-37.
    [5]张曙,张浩,朱志浩.机床数控技术的发展现状与趋势.组合机床与自动化加工技术,1993,(1):2-14.
    [6]童教陛.浅谈以个人计算机为基础的数控系统.制造技术与机床,1997,(10):5-7.
    [7]叶佩青,廖文和,周来水,等.基于PC平台的计算机数控(CNC)系统开发.南京航空航天大学学报,1997,29(2):125-130.
    [8]戴晓华,王文,王威,等.开放式数控系统研究综述.组合机床与自动化加工技术,2000,(11):5-7.
    [9]张俊,魏红根.数控技术发展趋势——智能化数控系统.制造技术与机床,2000,(04):7-9.
    [10]卞立乾.高起点统筹规划,抓重点集中支持——关于我国数控技术发展战略初探.中国机械工程,1999,10(10):1094-1099.
    [11]田文超,张小波,朱志红,等.数控系统中多轴同步技术策略和实现.华中科技大学学报,2001,29(5):4-6.
    [12]吴振勇,王国锋,王太勇,等.数控加工三维实时仿真系统的研究.机械工程学报,2002,38(12):107-110.
    [13]Tost D,Puig A,Vidal L P.Boolean operations for 3D simulation of CNC machining of drilling tools.Computer-Aided Design,2004,36(4):315-323.
    [14]Zhang Q G,Greenway R B.Development and implementation of a NURBS curve motion interpolator.Robotics and Computer-integrated Manufacturing,1998,14(1):27-36.
    [15]Cheng M Y,Tsai M C,Kuo J C.Real-time NURBS command generators for CNC servo controllers.International Journal of Machine Tools and Manufacture,2002,42(7):801-813.
    [16]Golden E H.Open modular architecture controllers(OMAC).Modern Developing Shop,2002,(4):160-162.
    [17]Mckay K N,Kletter D B,Graves S C.OMAC:An environment for modeling and analysis.Annals of Operations Research,1997,72:241-264.
    [18]Chrysler,Ford,GM.Requirements of open,modular architecture controllers for applications in the automotive industry(Version 1.1).OMAC technical paper,1994.
    [19]Esprit Ⅲ.Open system architecture for controls within automation system EP6379 & EP9115.OSACA Ⅰ and Ⅱ Final Report,1996.
    [20]Wolfgang S,Peter L.Design application for an OSACA Control//Proceedings of the International Mechanical Engineering Congress and Exposition(The ASME Winter Annual Meeting),Dalles,USA,1997:16-21.
    [21]Fujita S,Yoshida T.OSE:open system environment for controller//Proceedings of the 7th IMEC Conference,Tokyo,Japan,1996:234-244.
    [22]OSEC-Ⅱ project technical-development of OSEC(Open system environment for controller).OSE Consortium,October 6,1998.
    [23]Matsuka H,Sawada C.Japanese PC-based open control system for manufacturing equipment.International Journal of the Japan Society for Precision,1996,30(3):204-209.
    [24]周祖德,魏仁选,陈幼平.开放式控制系统的现状、趋势与对策.中国机械工程,1999,10(10):1090-1093.
    [25]张明亮,解旭辉,李圣怡.开放式数控体系结构的初步研究.中国机械工程,2001,12(11):1242-1245.
    [26]Pritschow G,Daniel C,Junghans G,et al.Open system controllers:a challenge for the future of the machine tool industry.Annals of the CIRP,1993,42(1):449-452.
    [27]Pritschow G.Automation technology- on the way to an open system architecture.Robotics and Computer Integrated Manufacturing,1990,7(2):103-111.
    [28]Altintas Y,Peng J.Design and analysis of a modular CNC system.Computers in Industry,1990,13(4):305-316.
    [29]Rober S J,Shin Y C.Modeling and control of CNC machines using a pc-based open architecture controller.Mechatronics,1995,5(4):401-420.
    [30]Yamazaki K,Hanaki Y,Tezuka K.Autonomously proficient CNC controller for high-performance machine tools based on an open architecture concept.Annals of the CIRP,1997,46(1):275-278.
    [31]Yellowly I,Pottier P R.The integration of process and geometry within an open architecture machine tool controller.International Journal of Machine Tools and Manufacture,1994,34(2):277-293.
    [32]Wright P K,Greenfeld I,Hayes C.A prototype of a next generation-control environment:expert systems for planning and sensor integration.Transaction of the North American Manufacture Research Institution,1990:322-328.
    [33]Greenfeld I,Hansen F B,Wright P K.Self-sustaining,open-system machine tools//Proceedings of the 17th North American Manufacturing Research Institution,Dearborn,Michigan,USA,1989:281-292.
    [34]魏仁选,陈幼平,周祖德,等.开放性数控软件的面向对象建模及其重用研究.高技术通讯,1998,(12):30-34.
    [35]王振华,朱国力.基于现场总线的新型开放式数控系统研究.中国机械工程,2001,12(4):395-397.
    [36]郭长旺,朱国力,龚时华,等.基于组件技术的开放式数控系统研究.华中理工大学学报,2000,28(7):38-40.
    [37]林奕鸿,李小力.开放式数控系统的构造、界面与协议.中国机械工程,1998,9(5):22-24.
    [38]雷为民,乔建中,李本忍,等.关于软件数控的一些基本构想.小型微型计算机系统,1999,20(2):81-87.
    [39]黄金庆,刘明烈.基于开放式结构的高性能数控系统的研制.制造技术与机床,1998,(8):14-15.
    [40]郇极.开放式数控系统的数字伺服接口和通讯协议.中国机械工程,1998,9(5):20-22.
    [41]谢明红.开放式模块化通用数控系统软件设计.华侨大学学报(自然科学版),1998,19(2):180-184.
    [42]王宇晗,吴祖育,陆志强,等.开放式数控系统的动态建模研究.机械科学与技术,2000,19(6):1011-1013.
    [43]张正勇,熊清平,李作清.Windows平台下开放式CNC系统研究.中国机械工程,1999,10(8):878-881.
    [44]叶佩青,廖文和,周来水,等.基于PC平台的计算机数控(CNC)系统开发.南京航空航天大学学报,1997,29(2):125-130.
    [45]刘燕军,宗大华,卢晓光.开放式PC-NC结构体系的探讨.制造技术与机床,1999,(3):12-13.
    [46]郭艳玲,赵万生,董本志,等.数控发展的趋势——开放式体系结构数控系统.东北林业大学学报,2000,28(5):148-150.
    [47]游有鹏,董伟杰,张晓峰,等.开放式数控系统——新一代NC的主流.航空制造技术,1999,(5):35-37.
    [48]马银萍,王琦.开放式体系结构在数控系统中的应用.航空制造工程,1998,(6):9-10.
    [49]聂秋根,张一坚.开放型CNC系统模块化设计的研究.南昌航空工业学院学报,1998,(4):5-10.
    [50]毕承恩,丁乃建,等.现代数控机床.北京:机械工业出版社,1991.
    [51]张莉彦.基于数据采样插补的加减速控制的研究.北京化工大学学报,2002,29(3):91-93.
    [52]康健,陶涛,梅雪松,等.基于数字信号处理器的指数加减速算法仿真.系统仿真学报,2003,15(5):678-680.
    [53]郭新贵.面向高速切削的高速高精度插补技术研究.上海交通大学博士学位论文,2002.
    [54]陈金成,徐志明,徐正飞,等.基于分段三次样条曲线的高速加工平滑运动轮廓自适应算法研究.机械工程学报,2002,38(5):61-65.
    [55]Erkorkmaz K,Altintas Y.High speed CNC system design.Part Ⅰ:jerk limited trajectory generation and quintic spline interpolation.International Journal of Machine Tools and Manufacture,2001,41(2):1323-1345.
    [56]Khalsa D S.High performance motion control trajectory commands based on the convolution integral and digital filtering.Proceedings of the International Intelligent Motion,1990,54-61.
    [57]Jeon J W,Ha Y Y.A generalized approach for the acceleration and deceleration of industrial robots and CNC machine tools.IEEE Transactions on Industrial Electronics,2000,47(1):133-139.
    [58]Schuett T.A closer look at look-ahead,http://www.mmsonline.com/articles/039603.html.
    [59]Han G C,Kim D I,Kim H G,et al.A high speed machining algorithm for CNC machine tools//Proceedings-IEEE IECON'99,San Jose,Californica,USA,1999,3:1493-1497.
    [60]钟庆,李季,黄树槐.快速成型中的微线段连续高速高精度插补.华中理工大学学报,2000,28,(3):39-41.
    [61]曹荃,韩明,肖跃加,等.快速原型制造系统中自适应轨迹特征的插补方法.中国机械工程,1997,8(5):56-58.
    [62]王宇晗,肖凌剑,曾水生,等.小线段高速加工速度衔接数学模型.上海交通大学学报,2004,38(6):901-904.
    [63]徐志明,冯正进,汪永生,等.连续微小路径段的高速自适应前瞻插补算法.制造技术与机床,2003,(12):20-23.
    [64]曹文钢,常秋香.一种具有前瞻功能的速度平滑算法.组合机床与自动化加工技术,2005,(9):56-57.
    [65]曹宇男,王田苗,陈友东,等.插补前S加减速在CNC前瞻中的应用.北京航空航天大学学报,2007,33(5):594-599.
    [66]Jeon J W.Efficient acceleration and deceleration technique for short distance movement in industrial robots and CNC machine tools.Electronics Letters,2000,36(8):766-768.
    [67]冯之敬,刘金凌,王先逵,等.伺服工作台的修正输入法误差前馈补偿控制.清华大学学报(自然科学版),1996,36(4):27-32.
    [68]王军平,敬忠良,王安.点位控制数控系统的前馈控制器设计及运动轨迹规划.机械科学与技术,2001,20(3):371-373.
    [69]Na I J,Choi C H,Jang T J.Contour error analysis and gain tuning for CNC machine center//Proceedings-IEEE AMC'96,Mie,Japan,1996,1:197-202.
    [70]王伟,张晶涛,柴天佑.PID参数先进整定方法综述.自动化学报,2000,26(3):347-355.
    [71]Tomizuka M.Zero phase error tracking algorithm for digital control.Journal of Dynamic Systems,Measurement,and Control,1987,109(1):65-68.
    [72]Yamada M,Funahashi Y.Zero phase error tracking system with arbitrary specified gain characteristics.Transaction of ASME,1997,119:260-264.
    [73]Yamada M,Funahashi Y,Riadh Z.Generalized optimal zero phase error tracking controller design.Journal of Dynamic Systems,Measurement,and Control,1999,121(2):165-170.
    [74]富强,吴云洁.基于QFT和ZPETC的高精度鲁棒跟踪控制器设计.自动化技术与应用,2004,23(8):1-3.
    [75]张乃胜,程善美,李叶松,等.变增益零相位跟踪控制交流位置伺服系统研究.华中理工大学学报,1998,26(1):21-23.
    [76]刘强,尔联洁.飞行仿真转台基于干扰观测器的鲁棒跟踪控制.北京航空航天大学学报,2003,29(2):181-184.
    [77]王立松,张飞虎,苏宝库,等.基于有限带宽期望模型的超精密机床伺服跟踪控制研究.中国机械工程,2001,12(5):565-568.
    [78]马骋,冯之敬,赵广木.零幅相误差跟踪控制器.清华大学学报(自然科学版),2000,40(5):44-46.
    [79]邓忠华,张乃胜,程善美,等.零相位跟踪控制的交流位置伺服系统研究.电工技术学报,1998,13(6):13-16.
    [80]Iwasaki M,Shibata T,Matsui N.Disturbance observer nonlinear friction compensation in table drive system.IEEE Transactions on Mechanical,1999,4(1):3-8.
    [81]Kempf C J,Kobayashi S.Disturbance observer and feedforward design for a high-speed direct-drive positioning table.IEEE Transaction on Control Systems Technology,1999,7(5):513-526.
    [82]Sarachik P,Ragazzini J R.A two dimensional feedback control system.Transactions of the AIEE,1957,76(2):55-61.
    [83]Koren Y,Lo C C.Variable-gain cross-coupling controller for contouring.Annals of the CIRP,1991,40(1):371-374.
    [84]Seethaler R J,Yellowley I.The regulation of position error in contouring systems.International Journal of Machine Tools and Manufacture,1996,36(6):713-728.
    [85]Chin J H,Lin T C.Cross-coupled precompensation method for the contouring accuracy of computer numerically controlled machine tools.International Journal of Machine Tools and Manufacture,1997,37(7):947-967.
    [86]Srinivasan K,Kulkarni P K.Cross-coupled control of biaxial feed drive servomechanisms.Journal of Dynamic Systems,Measurement,and Control,1990,112(6):225-232.
    [87]Kulkarni P K,Srinivasan K.Optimal contouring control of multi-axial feed drive servomechanisms.Journal of Engineering for Industry,1989,111(2):140-148.
    [88]Chuang H Y,Liu C H.Cross-coupled adaptive fee&ate control for multiaxis machine tools.Journal of Dynamic Systems,Measurement,and Control,1991,113(3):451-457.
    [89]Zhong Q,Shi Y,Mo J,et al.A linear cross-coupled control system for high-speed machining.The International Journal of Advanced Manufacturing Technology,2002,19(8):558-563.
    [90]郑子文,李圣怡.超精密机床进给系统的QFT控制器的设计.国防科技大学学报,2002,24(1):81-84.
    [91]王广炎,张润孝,帅梅,等.数控机床的轮廓误差的控制.机床与液压,1999,(6):59-61.
    [92]Yeh S S,Hsu P L.An optimal and adaptive design of the feedforward motion controller.IEEE/ASME Transactions on Mechatronics,1999,4(4):428-439.
    [93]胡建华,廖文和,周儒荣.CNC系统中几种升降速控制曲线的研究与比较.南京航空航天大学学报,1999,31(6):706-711.
    [94]李曦,唐小琦,陈吉红,等.NC伺服的加减速控制算法的研究与实现.机床与液压,2000,(3),3-4.
    [95]刘敏.数控机床伺服系统加减速控制的指数算法及其分析.机械设计与制造,2002,(6):71-73.
    [96]徐创文.数控进给系统加减速控制研究.仪器仪表学报,2002,23(3):360-362.
    [97]Leng H B,Wu Y J,Pan X H.Research on cubic acceleration and deceleration control model for high speed NC machining.Journal of Zhejiang University Science A,2008,9(3):358-365.
    [98]Kim D I,Jeon J W,Kim S.Software acceleration/deceleration methods for industrial robots and CNC machine tools,Mechatronics,1994,4(1):37-53.
    [99]Jeon J W.A generalized approach for the acceleration and deceleration of CNC machine tools//Proceedings-IEEE IECON'96,Taipei,Taiwan,1996,2:1283-1288.
    [100]Leng H B,Wu Y J,Pan X H.Research on flexible acceleration and deceleration method of NC system//Proceedings of International Technology and Innovation Conference-Advanced Manufacturing Technologies.Hangzhou,China:IET,2006,524:1953-1956.
    [101]Meckl P H,Arestides P B,Woods M C.Optimized S-curve motion profiles for minimum residual vibration//Proceedings of the American Control Conference,Philadelphia,Pennsylvania,1998:2627-2631.
    [102]何英武,郭远东.插补过程用后加减速时精度控制方法研究与实现.制造技术与机床,2006,(10):117-120.
    [103]Tsai M C,Cheng M Y,Lin K F,et al.On acceleration/deceleration before interpolation for CNC motion control//Proceedings-IEEE MCON'2005,Taipei,Taiwan,2005:382-387.
    [104]Liu Y J,Sun L N,An Z W.An approach for generating high velocity and high acceleration trajectories of industrial robots//Proceedings-IEEE CIRA'2005,Espoo,Finland,2005:199-204.
    [105]郑魁敬,钟海娜.5轴联动数控系统速度控制方法.计算机集成制造系统,2007,13(5):950-954.
    [106]许海峰,王宇晗,李宇昊,等.小线段高速加工的速度模型研究和实现.机械工程师,2005,(4):9-13.
    [107]冷洪滨,邬义杰,潘晓弘.三次多项式型微段高速自适应前瞻插补方法研究.机械工程学报.
    [108]周济,周艳红.数控加工技术.北京:国防工业出版社,2002.
    [109]周艳红,周济,周云飞.多坐标曲面加工中进给速度的优化控制.自动化学报,1999,25(2):169-175.
    [110]周凯,陆启建.数控机床高精度轨迹控制的一种新方法.机械工程学报,1999,35(2):102-105.
    [111]叶伯生,杨叔子.CNC系统中三次参数样条曲线的插补算法.华中理工大学学报,1996,24(9):9-11.
    [112]游有鹏,王珉,朱剑英.参数曲线的自适应插补算法.南京航空航天大学学报,2000,32(6):667-671.
    [113]王水来,周云飞,朱志红.复杂曲面实时插补系统的开发.中国机械工程,1998,9(5):38-41.
    [114]Chen Y D,Ni J,Wu S M.Real-time CNC tool path generation for machining IGES surfaces.Journal of Engineering for Industry,1993,115(4):480-486.
    [115]Shpitalni M,Koren Y,Lo C C.Realtime curve interpolators.Computer-Aided Design,1994,26(11):832-838.
    [116]Suresh K,Yang C H.Constant scallop-height machining of free-form surfaces,Journal of Engineering for Industry(Transactions of the ASME),1994,116(2):253-259.
    [117]Tarng Y S,Chuang H Y,Hsu W T.Intelligent cross-coupled fuzzy federate controller design for CNC machine tools based on genetic algorithm.International Journal of Machine Tools Manufacture,1999,39(10):1673-1691.
    [118]解旭辉.超精密机床数控系统与伺服控制技术研究.国防科学技术大学博士学位论文, 1997.
    [119]王立松.超精密机床数控技术与伺服控制的研究.哈尔滨工业大学博士学位论文,2001.
    [120]Lo C C.Cross-coupling control of multi-axis manufacturing system.Ph.D.Dissertation,The University of Michigan,1992.
    [121]虞文华.数控机床轮廓加工误差建模、识别与控制的研究.浙江大学博士学位论文,1995.
    [122]张崇巍,李汉强.运动控制系统.武汉:武汉理工大学出版社,2002.
    [123]Koren Y.Cross-coupled biaxial computer control for manufacturing system.Journal of Dynamic Systems,Measurement and Control,1980,102(4):265-272.
    [124]Automation Intelligence,Inc.Software-based machine control with AML(Version 7).http://www.motiononline.com/PDF%20Files/Catalogs/Catalog2.pdf,2004-10.
    [125]Manufacturing Data Systems,Inc.Open CNC brochure.http://www.mdsi2.com/Solutions/CNC_Controls/Brochure/OpenCNCbrochure.pdf,2004-10.
    [126]PA Power Automation Ag.System specification,PA 8000 CNC series LW.http://212.227.147.43/pa_new/verweis/8000_brochure/PA_8000_LW_brochure_de.pdf,2004-10.
    [127]Delta Tau Data Systems,Inc.PMAC user manual.Chatsworth,Cal,USA:Delta Tau Data System Inc,1998.
    [128]王世寰,王永章,路华.一种新体系结构的开放式软CNC的设计.计算机集成制造系统,2004,10(2):200-204.
    [129]陈明君,郭伟星,李旦.基于PMAC开放式数控系统的研究与应用新进展.航空精密制造技术,2005,41(2):28-32.
    [130]周凯.数控系统体系结构研究.中国机械工程,2002,13(5):406-409.
    [131]韩明峰.环形缓冲区读写操作的分析与实现.单片机与嵌入式系统应用,2003,(12):74-75.
    [132]黄毅峰.支持阻赛与非阻赛模型且线程安全的环形缓冲的设计与实现.电脑编程技巧与维护,2003,(11):51-54.
    [133]冷洪滨,邬义杰,潘晓弘.三次多项式型段内加减速控制新方法研究.浙江大学学报(工学版).
    [134]苏红涛.多轴联动插补的规划算法.制造技术与机床,1999,40(3):29-31.
    [135]陈友东,王田苗,魏洪兴,等.数控系统的直线和S形加减速研究.中国机械工程,2006,17(15):1600-1603.
    [136]潘敏,邬义杰,冷洪滨.数控系统加减速控制方法的研究.制造业自动化,2005,27(9): 30-32.
    [137]基于RS-232串行总线的多轴运动控制卡.邬义杰,冷洪滨.发明专利ZL 2004 10017112.4,2006.5.31授权.
    [138]周明德.微型计算机硬件软件及其应用(修订版).北京:清华大学出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700