三自由度船舶运动模拟平台及其液压伺服驱动系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于各种不同的目的,国内外许多公司和研究机构都进行了运动模拟平台的研制,其中大多数采用的都是Stewart并联机构,Stewart并联机构的优点是高刚度、高承载能力和结构简单,缺点是各个作动器之间存在严重的耦合,并且垂荡运动范围由于要小于作动器的运动范围而受到制约。本文结合晕船病研究的需要,设计了一种结构新颖的船舶运动模拟平台,该模拟平台由“剪叉式”结构实现大幅度的垂荡运动模拟,由两个并联的“跷跷板”结构实现纵摇和横摇运动模拟。所设计的船舶运动模拟平台采用高性能的位置跟踪阀控非对称缸系统驱动,高性能的位置跟踪阀控非对称缸系统在现代国防工业和民用工业上也有极大的需求,对其进行深入的研究很有必要。围绕所设计的船舶运动模拟平台及其液压伺服驱动系统,开展了下面一系列的研究工作:
     1.对所研制的船舶运动模拟平台进行了运动学分析,给出了运动学正解方程和反解方程。采用达朗贝尔原理,推导机构的动力学方程。在动力学分析中,提出了直接采用连续坐标旋转变换方法获得纵摇横摇伺服缸的姿态角速度与角加速度的简单方法;提出了把纵摇横摇机构及上层平台上的负载这个整体当作垂荡机构的一个动态负载来考虑,从而简化了垂荡机构的动力学分析过程。最后进行了运动学和动力学仿真,仿真结果表明纵摇横摇机构中两液压缸的耦合程度很小,垂荡机构的运动放大系数约为2。
     2.推导了阀控非对称缸系统正反向统一的非线性模型,仿真和实验的对比结果表明了模型的准确性;针对目前各种文献关于非对称缸系统负载压力与负载流量定义的混乱,给出了负载压力与负载流量的定义应该遵循的原则,利用所定义的负载压力和负载流量,通过泰勒展开近似方法建立了阀控非对称缸系统的局部线性化模型;通过非线性状态反馈变换,实现了非线性模型的全局线性化,并对全局线性化模型的内部状态变量的零动态稳定性进行了分析;利用所建立的非线性状态空间模型,仿真分析了某些非线性环节对系统性能的影响。
     3.利用分岔理论,形象描述和分析了各种不确定因素对系统稳定性的影响过程,得出了一些对系统稳定性设计有用的结论,如:同等程度参数的变化对液压缸正向运动时稳定性的影响比对反向运动时稳定性的影响要大;进油管道越长,系统的稳定性越差,当管道长度超过某一值之后系统稳定性进一步变差的程度非常小;进油管道直径越大,系统稳定性越好,当进油管道直径超过某一值之后系统稳定性进一步变好的程度非常小;液压油弹性模量的降低会使系统稳定性变差。最后还给出了有关的参数稳定域。
     4.详细分析和总结了目前国内外关于定量反馈控制(QFT)的文献中确定不确定性模型的过程,在此基础上,提出了四种获得系统不确定模型的方法,分别指出了这四种方法的优缺点;设计了OFT位置跟踪鲁棒控制器,在发现跟踪曲线相位误差较大的情况下,直接采用零相差跟踪控制器代替前置滤波器,并设计了零相移低通滤波器来抑制零相差跟踪控制器的高频增益;针对阀控非对称缸系统中存在的饱和非线性,利用改进型饱和非线性补偿控制器来进行抑制,在设计过程中利用等效传递函数来简化控制器的结构。然后在所研制的船舶运动模拟平台样机上,对控制器设计过程中的各个环节进行了试验,并与自学习滑模模糊控制进行了对比试验研究。实验结果表明,在相同的负载干扰下,所设计的基于OFT的高精度位置跟踪鲁棒控制器具有更高的控制精度。最后还进行了晕船病运动环境模拟试验,试验结果表明,所研制的船舶运动模拟平台样机能够满足晕船病研究的需要。
Based on various purposes, SMS (Ship Motion Simulator) was developed by a lot of domestic and overseas companies and institutions. Traditionally, the Steward parallel mechanism is adopted, because it possesses the advantages of high rigidity, high load-capacity, and structural simplicity. The disadvantages are that there exist strong coupling among different actuators, and the amplitude of heaving is limited by the range of actuator movement. With the requirement of research on seasickness, a novel-structure SMS is designed. This SMS achieves the large motion of heaving simulation through " scissor " mechanism and the large motion of pitching and rolling simulation through "seesaw " mechanism. The position tracking valve controlled asymmetrical hydraulic cylinder system with high precision is applied to the designed SMS and is also required greatly in the modern national defense and civil industry. Hence it is very necessary to study the valve controlled asymmetrical hydraulic cylinder system thoroughly. Based on the SMS and its hydraulic servo driving system, a series of researches are carried out as follows:
     1. The kinematics is analyzed for the SMS, and forward kinematics and inverse kinematics are discussed. The dynamic equation is set up through the D'Alembert's principle. In the process of dynamics analysis, the method to directly adopt sequential coordinates rotation transformation is presented to obtain the attitude angular velocity and angular acceleration of the pitching and rolling servo cylinders, and the idea that the pitching and rolling mechanism and the load on upper platform is wholely regarded as a dynamic load on the heaving mechanism is presented to simplify the dynamics analysis for the heaving mechanism. Finally, the kinematics and dynamics are simulated. Results of simulation give the load range of cylinders and show that weak coupling exists between both the cylinders of the pitching and rolling mechanism and the motion magnification is about 2.
     2. One nonlinear model suitable for forward and inverse motion is deduced for the valve controlled asymmetrical cylinder system, and the model is proved correct by comparing simulation with experiment. Aiming to clarify the confusion of definitions of load pressure and load flow in nowadays correlative literatures, the principle for defining load pressure and load flow is given to establish the local linearized model by Taylor expansion approximation. The global linearized model is established by nonlinear state feedback transformation, and the stability is analyzed for its zero dynamic state. The effect on the system's performance caused by some nonlinearities is simulated through the established nonlinear state-space model.
     3. Using bifurcation theory, process of effect on the system's stability caused by various uncertain factors is described and analyzed, and some conclusions are drawn as follows. Under the same extent of change of parameters, the effect on stability is greater when cylinder moves forward than that when cylingder moves backward.The longer oil inlet pipe, the worse the stability, and the degree that the stability becomes worse is very small when the length of pipe exceeds a certain value. The bigger the diameter of oil inlet pipe, the better the stability, and the degree that the stability becomes better is very small when the diameter of pipe exceeds a certain value. The stability also becomes bad when the fluid bulk modulus reduces. Finally some parameters' stability field is given.
     4. The process of determining uncertainty model in domestic and overseas literatures on quantitative feedback theory (QFT) is analyzed and summarized in detail. On the above basis, four ways are presented to derive the system's uncertainty model, and at the same time, the advantages and disadvantages of the four ways are concluded. The QFT position tracking robust controller is designed. After finding notable tracking phase error, the zero phase error tracking controller is designed to replace the feedforward filter, and a zero phase-shift low-pass filter is designed to reduce the high frequency gain of the zero phase error tracking controller. An improved saturation compensator is designed to bate the saturation nonlinearity in the valve controlled asymmetrical cylinder system. In designing all the controllers, the equivalent transfer function is applied to simplify the controller structure. A lot of experiments are done for every part of the controller during the designing process by means of the developed SMS prototype. The comparative experiment is done between high precision position tracking robust controller and self-learning fuzzy sliding mode controller, and the result shows that the precision of the former is higher with the same load disturbance. Finally, the experiment is done for simulating motion causing seasick, and it indicates that the SMS prototype can meet the motion requirements for researching seasick.
引文
[1]美国NBL研制的三自由度船舶运动模拟平台.www.nbdl.org,2002.7(download)/2000.6(updated)
    [2]美国August设计公司研制的六自由度船舶运动模拟平台.www.august-design.com/html/projects/prj-sms.htm,2002.7(download)/2001.3(updated)
    [3]美国SPAWAR系统中心研制的三自由度船舶运动模拟平台.www.spawar.navy.mil www.spawar.navy.mil/sti/publications/pubs/sd/176/sdl176.pdf,2002.7(download)/2000.4(uodated)
    [4]日本OSAKAFU公司研制的三自由度船舶运动模拟平台.www.marine.osakafu-u.ac.jp/fuc/simu,2002.8(download)/2001.3(updated)
    [5]荷兰TNO人员因素研究院研制的三自由度船舶运动模拟平台.www.tm.tno.nl/facilities/text-shipm.html,2002.8(download)/2000.5(updated)
    [6]刑继峰,曾小华,戴余良.协调式六自由度运动平台的运动学分析.海军工程大学学报,2000(6):15-19
    [7]王勇亮,卢颖,梁建民.飞行模拟器六自由度运动平台的位置分析与测量控制.计算机测量与控制,2005(11):1243-1249
    [8]郝轶宁.王军政,汪首坤.六自由度运动姿态模拟模拟系统的研究.北京理工大学学报,2002,22(3):331-334
    [9]杨灏泉,赵克定,吴盛林等.飞行模拟器六自由度运动系统的关键技术及研究现状.系统仿真学报,2002,14(1):84-87
    [10]彭英声编.舰船耐波性基础.北京:国防工业出版社,1989
    [11]徐根兴,王琰,董文度等.模拟航海运动病Ca~(2+)内流机制探讨.海军医高专学报,1998,20(2):65-70
    [12]徐先荣,张改华,宋燕哲等.飞行学员Coriolis加速度刺激时的胃电图观察.临床耳鼻咽喉科杂志,,1997,11(4):166-167
    [13]陶尧森编著.舰船耐波性.上海:上海交通大学出版社,1996
    [14](美)巴塔查雅(Bhattacharyya,R.)著.海洋运载工具动力学.北京:海洋出 版社,1982
    [15]韩崇伟,林廷圻,贾志勇等.基于H∞控制的火炮电液伺服系统研究.火力与指挥控制,2003,28(2):74-77
    [16]陈机林.火炮液压伺服系统神经网络非线性PID控制.液压与气动,2005,3:12-14
    [17]巩明德,赵丁选,宫文斌等.基于神经网络的电液伺服机械手位置控制.吉林大学学报(工学版),2002,32(3):15-19
    [18]陈永新,柯尊忠,陈琪云.精密校直机位置伺服系统的研究.机床与液压,2003,2:46-48
    [19]杜芳,曹文清.振动台试验中提高地震波模拟精度的补偿原理和方法.世界地震工程,2002,18(1):129-132
    [20]李运华,史维祥.近代液压伺服系统控制策略的现状与发展.液压与气动,1995(1):3-6
    [21]李运华,王孙安.液压伺服系统的非线性控制.1995,31(5):116-121
    [22]Bin Yao,Fanping Bu,John Reedy,and etc.Adaptive Robust Motion Control of Single-Rod Hydraulic Actuators:Theory and Experiments.Transactions on Mechatronics,2000,5(1):79-91
    [23]关景泰编著.机电液控制技术.上海:上海同济大学出版社,2003
    [24]M.Muraki,E.Kinbara,T.Konishi.A laboratory simulation for stick-slip phenomena on the hydraulic cylinder of a construction machine.Tribology International,2003,36:729-744
    [25]S.Hayashi,T.Hayase,T.Kurahashi.Chaos in a hydraulic control valve.Journal of Fluids and Structures,1997,11:693-716
    [261 C.S.Cox,I.G.French.Limit cycle prediction conditions for a class of hydraulic control system.Journal of Dynamic Systems,Measurement,and Control,1986,108:17-23
    [27]王栋梁,李洪人,李春萍.非对称阀控制非对称缸系统的静态及动态特性分析.机床与液压,2003(1):198-200
    [28]许贤良,丁雪峰,杨球来.非对称伺服阀控制非对称液压缸的理论分析.液 压与气动,2004(3):16-18
    [29]Liu G P,Daley S.Optimal-tuning nonlinear PID control of hydraulic systems.Control Engineering Practice,2000,8:1045-1053
    [301 Bonchis A,Corke PI.Variable structure methods in hydraulic servo systems control.Automatic,2001,37:589-595
    [31]Shao J P,Chen L H,Ji Y J,et al.The application of fuzzy control strategy in electro-hydraulic servo system.IEEE International Symposium on Communications and Information Technology,2005,pp.165-170
    [32]Shoorehdeli M A,Shoorehdeli H A,Teshnehlab M,et al.Velocity Control of an Electro Hydraulic Servosystem.Proceedings of the 2006 IEEE International Conference on Networking,Sensing and Control,2006,pp.985-988
    [33]Guan C,Zhu S N.Adaptive time-varying sliding mode control for hydraulic servo system.The 8~(th) Control,Automation,Robotics and Vision Conference,2004,pp.1774-1779
    [34]Hong YU.Nonlinear control for a class of hydraulic servo system.Journal of Zhejiang University science,2004,5(11):1413-1417
    [35]丁雪峰,许贤良.液压伺服系统的非线性最优控制.液压与气动,2004(2):32-35
    [36]李运华,王占林.电气液压复合调节容积式舵机的精确线性化控制.机械工程学报,2004(11):21-25
    [37]曹建福、韩崇昭、方洋旺.非线性系统理论及应用.西安交通大学出版社,2001
    [38]陈玲莉,谢勇,徐健学.基于受控系统的分岔结构确定控制器参数.西安交通大学学报,2006,40(5):527-530
    [39]王宝华,杨成梧,张强.电力系统分岔与混沌研究综述.电工技术学报,2005,20(7):1-10
    [40]杨永锋,任兴民,秦卫阳.一种描述非线性动力学响应的新方法.中国机械工程,2005,16(16):1468-1470
    [41]Gao Y,Chau K T.Hopfbifurcation and chaos in synchronous reluctance motor drives.IEEE Transaction on Energy Conversion,2004,19(2):296-302
    [42]Krener A J,Kang W,Chang D E.Control bifurcations.IEEE Transactions on Automatic Control,2004,49(8):1231-1246
    [43]姚宏,徐健学.电-磁耦合磁悬浮控制系统Hopf分岔与控制器设计.机械科学与技术,1999(5):715-718
    [44]Gross T,Feudel U.Analytical search for bifurcation surfaces in parameter space.Physica D,2004(195):292-302
    [45]Liu Y,Jacobsen E W.On the use of reduced order models in bifurcation analysis of distributed parameter systems.Computers and Chemical Engineering,2004(28):161-169
    [46]B.Braaksma.Singular hopf bifurcation in systems with fast and slow variables.Journal of Nonlinear Science,1998(8):457-490
    [47]彭志炜、胡国根、韩祯祥著.基于分岔理论的电力系统电压稳定性分析.中国电力出版社,2005.4
    [48]Jarjis J,Galiana F D.Quantitative analysis of steady state stability in power networks.IEEEPAS,1981,100:318-326
    [49]I.Dobson,H.D.Chiang.Towards a theory of voltage collapse in electric power systems.Systems & Control Letters,1989,13:253-262
    [50]I.Dobson,L.Lu,and Y.Hu.A direct method for computing a closest saddle node bifurcation in the load power parameter space of and electric power system.Proc.ISCAS,1991,pp.3019-3022
    [51]I.Dobson.Computing an optimum direction in control space to avoid saddle node bifurcation and voltage collapse in electric power systems.IEEE Trans.Automatic Control,1992,37(10):1616-1620
    [52]I.Dobson.Computing a closest bifurcation instability in multidimensional parameter space.J.Nonlinear Science,1993,3:307-327
    [53]Gregory G.Kremer.Robust stability of nonlinear hydraulic servo systems using closest hopf bifurcation techniques.Proceedings of the American Control Conference,1998,pp.2912-2916
    [54] Gregory G. Kremer. Robust stability analysis of large-scale hydraulic control systems. Proceedings of the American Control Conference, 1999, pp.749-753
    [55] Amit Shukla, David F. Thompson. Bifurcation stability of servo-hydraulic systems, Proceedings of the American Control Conference, 2001, pp.3943-3948
    [56] P. M. Fitzsimons, J. J. Palazzolo. Part i: modeling of a one degree of freedom active hydraulic mount, part ii: control. ASME J. Dynamic Systems,Measurement, and Control, 1996, 118 (4) : 439-448
    [57] A. R. Plummer, N. D. Vaughan. Robust adaptive control for hydraulic servosystems. ASME J. Dynamic Systems, Measurement, and Control, 1996,118 (2) : 237-244
    [58] R. Vossoughi, M. Donath. Dynamic feedback linearization for electro hydraulically actuated control systems . ASME J . Dynamic Systems,Measurement, and Control, 1995, 117 (4) : 468-477
    [59] L. D. Re, A. Isidori. Performance enhancement of nonlinear drives by feedback linearization of linear-bilinear cascade models. IEEE Trans. on Control Technology, 1995, 3 (3) : 299-308
    [60] A. Alleyne, J. K. Hedrick. Nonlinear adaptive control of active suspension. IEEE Trans. on Control Technology, 1995, 3 (1) : 94-101
    [61] B. Yao, G. T. C. Chiu, J. T. Reedy. Nonlinear adaptive robust control of one-dof electro-hydraulic servo systems. ASME International Mechanical Engineering Congress and Exposition, 1997, pp.191-197
    [62] F. Bu, B. Yao. Adaptive robust precision motion control of single-rod hydraulic with time-varying unknown inertia: a case study. ASME International Mechanical Engineering Congress and Exposition, 1999, pp.131-138
    [63] L. Xu, B. Yao. Output feedback adaptive robust control of uncertain linear systems with large disturbances . Proceedings of the American Control Conference, 1999, pp.556-560
    [64] B. Yao, F. Bu, George T. C. Chiu. Nonlinear adaptive robust control of electro-hydraulic with discontinuous projections. Proceedings of the 37~(th) IEEE Conference Decision & Control,1998,pp.2265-2270
    [65]F.Bu,B.Yao.Desired compensation adaptive robust control of single-rod electro-hydraulic actuator.Proceedings of the American Control Conference,2001,pp.3926-3931
    [66]G.C.Goodwir,D.Q.Mayne.A parameter estimation perspective of continous time model reference adaptive control.Automatica,1989,23(1):57-70
    [67]S.Liu,B.Yao.Indirect adaptive robust control of electro-hydraulic systems driven by single-rod hydraulic actuator.Proceeding of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2003,pp.296-301
    [68]R.D.Abbott,T.W.Mclain.Validation of a synthesis technique for the optimal control of an electro-hydraulic positioning system.Proceedings of the American control conference,2000,pp.4119-4123
    [69]A.Bonchis,P.I.Corke,D.C.Rye,and etc.Variable structure methods in hydraulic servo systems control.Automatica,2001,37:589-595
    [70]R.Liu,A.Alleyne.Nordinear force/pressure tracking of an electro-hydraulic actuator.ASME Journal of Dynamic Systems,Measurement and Control,2000,122:232-237
    [71]G.A.Sohl,B.J.Bobrow.Experiments and simulations on the nonlinear control of a hydraulic servosystem.IEEE Transactions on Control Systems Technology,1999,7(2):238-247
    [72]M.Mihajlov,V.Nikolie,D.Antie.Position control of an electro-hydraulic servo system using sliding mode control enhanced by fuzzy PI controller.Mechanical Engineering,2002,1(9):1217-1230
    [73]李运华,王占林.新型变结构控制及其在电液伺服系统中的应用.北京航空航天大学学报,1997,23(6):692-697
    [74]李运华,杨丽曼,张志华.电液伺服系统的二阶滑模控制算法研究.机械工程学报,2005,41(5):72-75
    [75]A.Bonchis,P.I.Corke,D.C.Rye.Experimental evaluation of position control methods for hydraulic systems.IEEE Transactions on control systems technology,2002,10(6):876-882
    [76]C.H.Huang,Y.T.Wang.Self-optimization adaptive velocity control of asymmetric hydraulic actuator.Int.J.Adaptive Contr.Signal Processing,1995,9(3):271-283
    [77]J.E.Bobrow,K.Lum.Adaptive,high bandwidth control of a hydraulic actuator.Proceedings of the American control conference,1995,pp.71-75
    [78]D.F.Thompson,G.G.Kremer.Quantitative feedback design for avariable displacement hydraulic vane pump.Proceedings of the American Conference,1997,pp.1061-1065
    [79]N.Niksefat,N.Sepehri.A QFT fault-tolerant control for electrohydraulic positioning systems.IEEE Transaction on Control Systems Technology,2002,10(4):626-632
    [80]N.Niksefat,N.Sepehri.Designing robust force control of hydraulic actuators despite system and environmental uncertainties.IEEE Control Systems Magazine,2001,66-77
    [81]Y.Nam,J.Lee,S.K.Kong.Force control system design for aerodynamic load simulator.Proceedings of the American Conference,2000,3043-3047
    [82]N.Niksefat,N.Sepehri.Robust force controller design for an electro -hydraulic actuator based on nonlinear model.Proceedings of the 1999 IEEE International Conference on Robotics & Automation,1999,200-206
    [83]王燕山,王益群.基于QFT的电液力伺服系统的鲁棒控制.中国机械工程,2003,14(9):731-733
    [84]杨军宏,海上运动病测试及抗病训练平台设计.长沙:国防科学技术大学硕士学位论文,2002
    [85]李殿璞.船舶运动与建模.哈尔滨:哈尔滨工程大学出版社,1999
    [86]W.Q.D.Do,D.C.H.Yang.Inverse dynamic analysis and simulation of a platform type of robot.J.Robot.Syst,1988,5(3):209-227
    [87]Bhaskar Dasgupta,Prasun Choudhury.A general strategy based on the Newton -Euler approach for the dynamic formulation of parallel manipulator.Mechanism and Machine Theory,1999,6:801-824
    [88]Hyunsok Pang,Mohsen Shahinpoor.Inverse dynamics of a parallel manipulator.J.Robot.Syst,1994,11(8):693-702
    [89]杨志永,黄田,倪雁冰.3-HSS并联机床动力学建模及鲁棒轨迹跟踪控制.机械工程学报,2004,40(11):75-81
    [90]张国伟,宋伟刚.并联机器人动力学问题的kane方法.系统仿真学报,2004,16(7):1386-1391
    [91]袁立鹏,许宏光,赵克定.坦克发动机道路模拟测试平台动力学研究.机械工程学报,2006,42(5):186-191
    [92]杨灏泉,吴盛林,曹健等.考虑驱动分支惯量影响的Stewart平台动力学研究.中国机械工程,2002,13(12):1009-1012
    [93]熊有伦等编著.机器人学.北京:机械工业出版社,1993
    [94]许贤良,刘利国.关于负载压力和负载流量的讨论.机床与液压,1995,4:214-216
    [95]赵继云,钟廷修.零开口非对称四通阀特性的理论研究.机床与液压,1998,2:35-37
    [96]关景泰,王海滨,周俊龙.非对称阀控制非对称缸的动态特性.同济大学学报,2001,29(9):1130-1134
    [97]王栋梁,李洪人,张景春.非对称阀控制非对称缸的分析研究.同济大学学报(自然科学版),2001,15(2):123-127
    [98]苏东海,张宏,李巍.比例流量阀控制非对称液压缸同步的仿真分析.机床与液压,2003,4:164-166
    [99]王占林著.近代电气液压伺服控制.北京:北京航空航天大学出版社,2005
    [100]路甬祥主编.液压气动技术手册.北京:机械工业出版社,2002
    [101]李运华.近代电液伺服系统中的某些非线性控制问题的研究.西安:西安交通大学博士学位论文,1994
    [102]胡跃明著.非线性控制系统理论与应用(第二版).国防工业出版社,2005
    [103]Yang junhong,Dai yifan,Li shengyi.Improvedment of the Lugre friction model and the Ferretri friction model.The 7th International Conference on Frontiers of Design and Manufacturig,2006
    [104]Piche R,Ponjolaineus.Design of robust two-degree-of freedom controllers for servos using H∞ theory.Proc.Mech.Part 1,1991,205(14):229-306
    [105]段锁林,王明智.自学习模糊滑模控制及其在电液伺服系统中的应用.机械工程学报,2004,40(3):162-167
    [106]Diantong Liu,JianQiang Yi,DongBin Zhao,and etc.Adaptive sliding mode fuzzy control for a two-dimensional overhead crane.Mechatronics,2005,15:505-522
    [107]陈士华,陆君安编著.混沌动力学初步.武汉:武汉水利电力大学出版社,1999(2)
    [108]Gregory G.Kremer.Enhanced robust stability analysis of large hydraulic control systems via a bifurcation-based procedure.Journal of the Franklin Institute,2001,338:781-809
    [109]董增福编著.矩阵分析教程.哈尔滨:哈尔滨工业大学出版社,2003
    [110]I Horowitz.Survey of quantitative feedback theory.International Journal of Control,1991,53(2):255-291
    [111]Wei Wu,Suhada Jayasuriya.A QFT design methodology for feedback systems under input saturation.Proceeding of the American Control Conference,2000,1250-1254
    [112]Eloi Z.Taha,Gemunu S.Happawana,Yildirim Hurmuzlu.Quantitative feedback theory(QFT) for chattering reduction and improved tracking in sliding mode control.Proceeding of the American Control Conference,2001,5004-5009
    [113]Z.Zo Liu,F.L.Luo,M.H.Rashid.Robust high speed and high precision linear motor direct-drive XY-table motion system.Control Theory Application,2004,151(2):166-173
    [114]郑子文.超精密机床伺服控制技术研究.长沙:国防科学技术大学博士学位论文.2001
    [115]肖永利,张琛,陈文华.定量反馈理论(QFT)及其设计应用.信息与控制, 1999,28(6):437-445
    [116]富强,尔联洁,赵国荣.基于定量反馈理论的飞行仿真转台鲁棒控制.北京航空航天大学学报,2004,30(5):410-413
    [117]郑子文,李圣怡.超精密机床进给系统的Q F T控制器的设计.国防科技大学学报,2002,24(1):81-99
    [118]王祖温,孟宪超,包钢.基于QFT的开关阀控气动位置伺服系统鲁棒控制.机械工程学报,2004,40(7):75-80
    [119]B.Golubev,I.Horowitz.Plant Rational Transfer Approximation From Input -output Data.International Journal of Control,1982,36(4):711-723
    [120]温熙森,陈循,唐丙阳.机械系统动态分析理论与应用.长沙:国防科技大学出版社,1998
    [121]陈浩锋,戴一帆,杨军宏.船舶运动模拟器阀控非对称缸液压系统神经网络辨识.液压气动与密封,2005,4:6-9
    [122]马骋,冯之敬,赵广木.零幅相误差跟踪控制器.清华大学学报(自然科学版),2000,40(5):44-46
    [123]Tomizuka M.Zero phase error tracking algorithm for digital control.ASME,Journal of Dynamic Systems,Measurement,and Control,1987,109:65-68
    [124]富强,吴云洁.基于QFT和ZPETC的高精度鲁棒跟踪控制器设计.控制理论与应用,2004,23(8):1-3
    [125]I.Horowitz.A synthesis theory for a class of saturating systems.International Journal of Control,1983,38(1):169-197
    [126]Wei Wu,Suhada Jayasuriya.A QFT design methodology for feedback systems under input saturation.Proceeding of the American Control Conference,2000,1250-1254
    [127]陈浩锋,船舶运动模拟平台电液伺服控制系统研究.长沙:国防科学技术大学硕士学位论文,2005
    [128]陈浩锋,戴一帆,杨军宏.非线性电液位置伺服系统的自学习滑模模糊控制.机床与液压,2006,9:172-175
    [129]刘殿通,易建强,谭民.一类非线性系统的自适应滑模模糊控制.自动化学 报,2004,30(1):113-150
    [130]韩京清,袁露林.跟踪微分器的离散形式.系统科学与数学,1999,19(3):268-273
    [131]M.E.McCauley,J.W.Royal,C.D.Wylie,and etc.Motion sickness incidence:exploratory studies of habituation,pitch and roll,and the refinement of a mathematical model.HumanFactors Research Inc.Technical Report 1733-2,1976
    [132]A.Lawther,M.J.Griffin.The motion of a ship at sea and the consequent motion sickness amongst passengers.Ergonomics,1986,29:535-552
    [133]A.H.Wertheim,J.E.Bos,W.Bles.Contributions of roll and pitch to sea sickness.Brain Research Bulletin,1998,47(5):517-524
    [134]J.E.Bos,W.Bles.Modelling motion sickness and subjective vertical mismatch detailed for vertical motions.Brain Research Bulletin,1998,47(5):537-542
    [135]Bjorn Kufer,Johan Forstberg.Research on the specific aspects of tilting and Regression models for provoking motion sickness in tilting trains.Papers given at world congress on railway research,in Novemember 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700