优化煤气参数提高包钢4#高炉TRT功率的工业试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对影响TRT功率的主要煤气参数,进入透平机的煤气流量、煤气压力、煤气温度、煤气含尘量进行了工业实验。实验结果表明,采用优化后的工艺参数对于提高TRT功率有很好的效果。
     在增加进入TRT的煤气流量、减少煤气泄漏,使更多的煤气推动透平机作功方面,将高炉炉顶压力调节方式由调速阀、静叶与减压阀组共同调节改造为全静叶调节,解决了煤气在减压阀组因操作控制造成的泄漏。并在实验中总结出了蝶阀泄漏煤气的判定方法,使现场工作人员能尽早发现并处理。而且,它改善了高炉炉顶压力的调节品质,减少了原来在调速阀控制角度上的压力的消耗,使透平机能够回收到更高的压力能。采取上述措施后,TRT的发电功率每小时增加到了4500kw以上。
     为减少进入透平机前的压力损失,使更高压力的煤气在TRT作功,对包钢4#高炉湿式煤气除尘系统进行了优化。重点对双文系统的阻力损失、旋流脱水器的设置、双文供水水量、水压的控制进行了大量的工业实验,按照实验方案进行,进入透平机前系统的压力损失可降至25kPa,TRT每年可多回收电能180万kwh。
     为有效提高TRT入口煤气温度,使透平机的出力增加,同时保证煤气洗涤系统出口煤气品质,在工业实验的基础上,对填料式脱水器供水工艺及填料层
    
     西安建筑科技大学工程硕士论文
    一 进行改造,通过减少供水水量,使透平机的入口煤气温度提高到 60oC,使 TRT
     0
     每年多回收电能185.5万h。
     针对困扰TRT发电能力的透平机叶片结垢问题,采用实验室试验、工厂试
     验,找到了透平机叶片阻垢缓蚀的解决方案,挽回了间断性停机揭大盖检修造
     成的发电量损失,节省了设备维检费用,使TRT在发电量、检修周期方面达到
     较为理想的状态。
     通过查阅大型高炉干式煤气除尘的国内外资料,调研和实地考察国内首钢。
     攀钢、武钢等大钢的相关设备,进行了2200m’高炉煤气除尘的初步设计(工艺
     部分)和相关经济衡算。通过干湿法对比性分析提出,干式除尘技术不仅对TRT
     的发电量有大幅提高,而且对降低现有湿式煤气清洗系统的电耗、水耗、药剂
     消耗、检修维护工作量、焦比、提高热效率等方面经济效益和社会效益显著。
    _因此,大型高炉干法除尘的发展空间巨大,应尽快发展。
This paper describes the industrial tests on the main gas parameters having impact on TRT power, the flow rate, pressure, temperature and dust content of the gas into turbine. The test results show that optimized process parameters have better influences to the improvement of TRT power.
    As for the increasing flow rate of gas into turbine and reducing gas leakage so that more gas acts on turbine's performance, the joint regulation with speed regulation valve, stator blade and reducing valve for BF top pressure is changed to fully stator blade regulation. Thus the gas leakage caused by operation of reducing valve is eliminated. In practice, the judgement method for gas leakage of butterfly valve is developed, therefore the operators at site could be informed andcarry out corresponding operation earlier. Besides, it improves the regulation quality of BF top pressure ,reduces pressure losses occurred at control angle of speed regulation valve. Therefore the turbine is capable of recovering more pressure energy. With the measures above mentioned, the hourly power generation of TRT is increased to over 4500kW.
    In order to reduce pressure losses before entering turbine to have gas of higher pressure act on TRT , the gas wet clean system of 4# BF is optimized. A lot of special industrial test are made on the resistance losses of dual-venturi system , setting of spiral- flow dewaterer, water supply volume of dual- venture system and control of water pressure . According to the tests .the system pressure losses before entering turbine could be reduced to 25kpa,and the
    
    
    
    annual recovered electricity by TRT is increased by 1,800,000 kWh.
    In order to effectively increase gas temperature at TRT entry and increase turbine delivery as well as to ensure gas quality at exit of gas cleaning system, the water supply process and packing layer of the packing dewaterer are upgrade based on industrial tests .By reducing water supply volume, the gas temperature at entry of turbine is increased to 60癈,and the annual recovered electricity by TRT is increased by 1,855,000 kWh.
    As for the blast scaling of turbine which influences TRT power generation capacity, solutions for scaling prevention and corrosion mitigation are found through lab and plant tests ,the power losses caused by intermittent maintenance is avoided as well as equipment maintenance costs are reduces. Relatively ideal status is recovered regarding TRT power generation and maintenance cycle.
    Through looking up in a lots of information domestic and abroad regarding gas dry cleaning of large blast furnace, investigation and researches in Capital Iron Steel Complex, Panzhihua Iron and Steel Company as well as Wuhan Iron and Steel(Group) Company etc., basic design (process part) and relevant economic calculation are made for gas cleaning of 2200 m blast furnace .The comparison between gas wet and dry cleaning processes indicate that the gas dry cleaning system not only increases TRT power generation capacity, but also reduces power consumption, water consumption, chemical consumption, maintenance work and coke ratio of the existing gas wet cleaning system as well as improves heat efficiency.Therefore, the gas dry cleaning process for large blast furnace features bright Prospect and requires sooner development.
引文
[1]动力工程师手册编辑委员会编:动力工程师手册,机械工业出版社No6,51-52,1999
    [2]燃气设计手册编写组:燃气设计手册,上册,中国建筑工业出版社,174-176,1983
    [3]马庆芳等:实用物理性质手册,45-47,1986
    [4]日本煤气协会:煤气应用手册,李强霜,蔡玉琢译,中国建筑工业出版社,234-236,1989
    [5]成兰伯:高炉炼铁工艺及计算 冶金工业出版社,399—443,1990
    [6]杨光海:汽轮机叶片安全防护,机械工业出版社,137—143,1990
    [7]钱滨江等:简明传热手册,高等教育出版社,26-31,1984
    [8]卡列罗维奇:汽轮机的运行。任曙译:243-269
    [9]能源料化学工业部石油化工设计院编:石油化工设计参考资料(二)工艺计算图表 1972年
    [10]哈尔滨建筑工程学院、北京建筑工程学院、同济大学编:燃气输配,中国建筑工业出版社,369—372,1981年
    [11]《化学工程手册》编辑委员会编:化学工程手册第一篇化学基础数据,化学工业出版社,231—234 1980年
    [12]The Chenmical Engineer 1975.6
    [13]Gas Engineers Handbook 1965
    [14]赵士杭:燃气轮机结构,清华大学出版社,16—25,1983
    [15]《煤气的生产与利用》编写组:煤气的生产与利用 中国建筑工业出版社,67—73 1987,
    [16]康德著:汽轮机设备安装工艺,水利电力出版社,167—169,1983
    [17]谢柏曾:汽轮机热工监视与保护,水利电力出版社,75-76,1990
    [18]王金田:汽轮机检修工艺,水利电力出版社,1991
    [19]金琅:中小型汽轮机的检修。武汉:湖北科学技术出版社,1986
    [20]住友金属工案(株):日本铁钢协会共同研究会第64回制筑部会资料,(1984),私信
    
    
    [21]日本钢管(株):日本铁钢协会共同研究会第67回制筑部会资料,(1985),私信
    [22]韩京清:非线性PID控制器,自动化学报Vol.20,No.4,487—490,1994
    [23]西山哲司、菊池一成:川崎制铁技报,第10期,47-48,1978
    [24]姜正侯:燃气工程技术手册,同济大学出版社,229-233,1993
    [25]盛炳乾:工业过程测量与控制,中国轻工业出版社,52-55,1994
    [26]孙秀权:锅炉和工业炉窑实用计算机控制技术,国防工业出版社,163-166,1994
    [27]其它:1999~2002年冶金动力、煤气与热力、中国能源网、中国节能网相关资料

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700