热式气体质量流量测量及补偿算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合气体流量测量是工业过程中经常遇到的问题,在测控领域处于非常重要的地位。混合气体,例如煤气、天然气等一般都具有脏污严重、组分变化、温度和压力变化以及流量变化大等不利于流量检测的特点。本文比较了几种气体流量测量方法在混合气体中应用的优势和缺点,最终选取热式气体流量测量方法为本文的研究对象,用于混合气体的流量测量研究。根据热式气体流量计的基本原理,混合气体的组分以及温度改变都会导致流量计输出信号的变化,造成较大的测量误差。因此,本文研究如何对热式气体流量计的输出信号进行温度补偿和组分补偿,消除温度和组分变化的影响,提高热式气体流量计的计量性能,有理论和实际意义。
     热式气体流量计源于“热线风速仪”,故本文先分别以反馈控制理论和传递函数分析两种方法对定温热线风速仪进行了研究。在此基础上,本文进一步研究了热式气体流量计的测量原理,建立了它的数学模型,并用数字仿真的方法对热式流量计进行了深入研究,具有一定的创新性,提高了热式气体流量计的理论水平。本文还对热式气体流量计的测量探头进行了深入研究,分析了探头的多种结构、探头的制作与安装误差对输出信号的影响,并分析了旋涡对探头的影响。
     针对气体温度对热式气体流量计输出信号的影响,本文研究了几种温度补偿算法,包括分析补偿算法、双敏感元件温度补偿算法、采用单一传感器进行温度补偿以及使用电桥进行自动温度补偿。在对常规补偿算法研究的基础上,本文提出了一种新的自动温度补偿电路,该电路突破了热式气体流量计常规温度补偿电路设计上的某些限制,具有一定的创新性和实用性。
     本文基于热式气体流量计的基本方程和实验结果分析了混合气体组分变化对热式气体流量计的影响,分析了组分补偿的必要性。在研究了基于换热方程分析以及基于实验研究和经验公式这两种现存组分补偿方法的基础上,本文提出了采用物性参数分析与经验公式相结合的热式气体流量计组分补偿算法,具有一定的创新性。还对补偿算法实现中的几个关键技术进行了研究。
     为了验证本文提出的温度补偿以及组分补偿算法的正确性和有效性,本文设计了热式气体流量计样机。设计了新的温度补偿电路,分析了组分补偿算法的功能划分以及在流量计算机中如何实现等技术。本文设计的样机首先在吹风实验台上进行了实验研究,得出了样机在空气中使用时的基本特性数据。样机的温度补偿电路也在该实验台上进行了实验研究,实验结果表明了该补偿电路可以取得较好的温度补偿效果。然后将热式气体流量计样机应用于某煤气公司测量煤气流量,以验证本文提出的组分补偿算法,实验结果表明该组分补偿算法能有效补偿混合气体组分变化对流量计输出信号的影响,但也显示出该补偿算法在实际使用上还存在一些误差,需要进一步研究和完善。
     本文对热式气体流量计温度和组分补偿算法研究的结论,提高了热式气体流量计的理论水平,有助于流量计的设计和推广,还有助于降低流量计的使用费用和维护成本。研究成果还大大扩展了热式气体流量计在变温度、变组分混合气体测量中的适应性。
It is necessary and important to measure the flow rates of gas mixtures in many industrial areas. But the flow rate of gas mixures, such as coal gas and natural gas et al, are difficult to be obtained because gas mixtures have some special characteristics such as large variation range, dirt, variable components, and variable temperature and pressure. The advantages and disadvantages of some conventional flowmeters used in gas mixtures were analyzed and compared, and the thermal mass flowmeter (TMF) was choosed to be the subject of the dissertation and used to measure the flow rates of gas mixtures. According to the principle of the TMF, the component and temperature variations of gas mixtures change the output of TMF, and bring large error. The dissertation studied the the temperature and component compensation arithmetics for TMF used in gas mixtures, which can eliminate the influences on the output of TMF caused by temperature or component variations. The compensation arithmetics under investigation improve the metering performance of TMF, and enlarge the serviceable ranges and fields.
     TMF is based on hot-wire anemometry, so the feedback control theory and transfer function method were used to study the hot-wire anemometry thoroughly. The principle of TMF was also studied in the dissertation, and the model of TMF was build and used to analyze its characteristics and performances by digital simulation. Some probe structures were studied, and the influences result from the errors of probe manufactureing and installation and the influence caused by vortex were also analyzed in detail.
     In order to correct the output of TMF containing temperature influence, several compensation arithmetics were analyzed in the dissertation including analytic compensation arithmetic, compensation arithmetic using two sensing elements, compensation arithmetic using single sensing element and automatic compensation by measuring bridge. And a new automatic compensation bridge was designed in the dissertation base on the conventional bridges, which breaks through some limits for temperature compensation circuitry.
     The influence caused by component variations of gas mixture was analyzed using the governing equations and experiment data of TMF. After studying the existent component compensation arithmetics based on analysis of heat transfer equation and based on experiment and empirical equations, the dissertation proposed new component compensation arithmetic for TMF based on the combination of the analysis of the physical property parameters and empirical equations. The key techniques for implementation the omponent compensation arithmetic were also introduced.
     A TMF prototype has been developed to validate the new automatic compensation bridge and the component compensation arithmetic proposed in the dissertation. The principle of the automatic temperature compensation circuitry, the function blocks and the implementation techniques were analyzed. The prototype was installed in the blowing experiment table to obtain the characteristic curves of the sensor, and the temperature compensation circuitry is also validated using this experiment table. It was proved that this compensation circuitry is correct and applicable. Then, the prototype was used in a gas company to measure the flow rate of coal gas. The field experiment result validates the effectiveness of the component compensation arithmetic proposed in the dissertation, and it also shows that there is tiny error in the compensation arithmetic and it needs further study.
     The temperature and component compensation arithmetics proposed in the dissertation will help to the design and popularization of TMF. The compensation arithmetics can reduce the cost and maintenance of TMF and enlarge the adaptability of TMF in gas mixtures with variable components and temperature.
引文
[1]张红兵,高文风,郑云萍.天然气流量计的选型和发展动向.天然气与石油, 2003, 21(2): 41~44
    [2]蔡武昌,孙淮清,纪纲.流量测量方法和仪表选用. (第1版).北京:机械工业出版社, 2001: 20~25, 143~153, 212
    [3]向廷元,黄南民,樊鑫瑞等.煤气流量计量系统及其标定.自动化仪表, 1998, 19(6): 14~16
    [4]于恩深.火炬气的质量流量测量[J].石油化工自动化. 1999(5): 72~74
    [5]黄云志,徐科军.涡街流量计信号处理方法与系统的研究现状.自动化仪表, 2003, 24(8): 1~5
    [6]李永三,徐科军.涡街流量计信号处理方法研究与系统设计.合肥工业大学学报(自然科学版), 2002, 25(6): 1131~1134
    [7]黄云志,徐科军.周期性脉动流对涡街流量计的影响及解决方法.工业仪表与自动化装置, 2003(6): 12~14
    [8]张涛,曹光明.采用雷诺数修正法的高精度气体涡街流量计的研究.仪表技术与传感器, 2003(4): 40~43
    [9]刘欣荣.流量计. (第2版).北京:水利电力出版社, 1990: 1~5
    [10]游明定,黄和.标准孔板计量标准的新进展.天然气与石油, 2002, 20(3): 46~49
    [11]简捷,黄南民,向廷元,等.工业热式气体质量流量计用于管道煤气流量计量的研究.计量与测试技术, 1997(6): 16~19
    [12]张宏伟,王泽.孔板流量计扩大量程比的研究与应用.控制与测量, 2002(3): 41~42
    [13]黄南民,樊鑫瑞,向廷元.管道煤气流量计量方法的研究.化工自动化及仪表, 1996, 23(1): 47~49
    [14]梁国伟,蔡武昌.流量测量技术及仪表.北京:机械工业出版社. (第1版). 2002: 204~206
    [15]川田裕郎,小宫勤一,山崎弘郎.流量测量手册.北京:计量出版社. (第1版). 1979: 211~220
    [16]袁平凡,王芳芳.气体超声流量计天然气实流测试与应用.见2000年计量测试学术交流会论文集.北京:中国计量测试学会, 2000: 360~364
    [17]孙延祚, Koos Van Helden.国际气体流量测量技术的新进展.天然气工业. 2001, 21(1): 97~99
    [18]王华青.气体超声流量计测量原理,标定及维护.计量技术. 2006(1): 61~62
    [19]邱立存,王汝琳.超声波气体流量测量系统的实现.传感器与微系统. 2006, 25(1): 47~49
    [20]彭汉立.流量计的性能及发展现状.中国设备工程. 2006(3): 12~14
    [21]蔡武昌.热式质量流量计的应用.见第四届工业仪表与自动化学术会议论文集.北京:中国仪器仪表学会, 2001: 258~268
    [22]秦素春. TF100C, TF100D热式气体质量流量计在CEMS系统中的应用.仪表技术与传感器, 2004(10): 59~60
    [23]纪爱敏,李川奇,沈连官等.科里奥利质量流量计研究现状及发展趋势(一).仪表技术与传感器, 2001(6): 1~6
    [24]喻贤.热导式质量流量计在煤气流量计量中的应用.见调节阀和流量物位仪表应用技术学术交流会议论文集.北京:中国自动化学会, 2000: 45~48
    [25]许秀.科里奥利质量流量计原理及其应用.工业仪表与自动化装置. 2005(1): 52~54
    [26]张南翔.科里奥利力质量流量计原理及在天然气计量方面的应用.石油仪器. 2002, 16(3): 18~20
    [27]邵亚男,彭公华,王庆何,等.超声波气体流量计在非固定组分的混合气体流量测量中的应用.中国仪器仪表, 2004(8): 37~39
    [28]邵亚男.混合气体流量测量的在线修正.中国仪器仪表, 2003(2): 41~43
    [29] Wasan D. T., Baid K. M.. Measurement of velocity in gas mixture: Hot-Wire and Hot-Film Anemometry. AIChE Journal. 1979, 17(3): 729~731
    [30] Wasan D. T., Davis R. M., Wilke C. R.. Measurement of the volocity of gases with variable fluid properties. AIChE Journal, 1968, 14(2): 227~234
    [31]黄水清. FCI公司的热式质量流量计的特点及应用.自动化仪表. 2003, 24(1): 47~48
    [32] Walsh T. S.. Mass flow sensing: data collection and signal processing. Sensors. 1989: 1~6
    [33] Laghrouche M., Adaneb A., Boussey J. et al. A miniature silicon hot wire sensor for automatic wind speed measurements. Renewable energy, 2005, 30: 1881~1896
    [34] Xu Y., Graaf G. De, Wolffenbuttel R.F.. DSP cross-correlator for use in a thermal flowmeter. In IEEEE Instrumentation and Measurement Technology Conference. Brussels, Belgium, 1996: 519~522
    [35] Heinrich Ruser, Michael Horn. Smart two-element PTC wind sensor. In IMTC 2004- Instrumentation and Measurement Technology Conference. Como, Italy, 2004: 87~90
    [36] Kramers H. Heat transfer from spheres to flowing media. Physica, 1946, 12: 61~80
    [37] Collis D. C., Williams, M. J.. Two-dimensional convection from heated wires at low Reynolds munbers. J. Fluid Mech., 1959 (6) : 357~384
    [38] Freymuth P.. Feedback control theory for constant-temperaure hot-wire anemometry. The review of scientific instrument. 1967, 38(5): 667~681
    [39] Freymuth P.. Nonlinear control theory for constant-temerature hot-wire anemometers. The review of scientific instrument. 1969, 40(2): 258~262
    [40] Freymuth P.. Further investigation of the nonlinear theory for constant-temperature hot-wire anemometers[J]. J. Phys. E: Sci. Instrum., 1977, 10: 710~713
    [41] Freymuth P.. A comparative study of the signal-to-noise ratio for hot-film and hot-wire anemometers. J. Phys. E: Sci. Instrum., 1978, 11: 915~919
    [42] Bruun H. H., Tropea C. . The calibration of inclined hot-wire probes. J. Phys. E: Sci. Instrum., 1985, 18: 405~413
    [43] Bruun H. H., Khan M. A., Al-Kayiem H. H. et al. Velocity calibration relationship for hot-wire anemometry. J. Phys. E: Sci. Instrum., 1988, 21: 225~232
    [44]盛森芝,徐月亭,袁辉靖.热线热膜流速计.北京:中国科学技术出版社. (第1版). 2003: 10, 17~18, 33, 41~45
    [45]斯东浩,李艳松.基于MEMS技术的热式质量流量传感器.国外电子测量技术, 2005(1): 49~52
    [46] Chiu Nan-Fu, Hsiao Tzu-Chien, Lin Chii-Wann. Low power consumption design of micro-machined thermal sensor for portable spirometer. Tamkang journal of science and engineering, 2005, 8(3): 225~230
    [47] Viswanathan M., Rajesh R., Kandaswamy A. . Design and development of thermal mass flowmeters for pressure application. Flow measurement and instrument, 2002, 13: 95~102
    [48]李朝辉.燃气质量流量计的研制: [硕士学位论文].保存地点:哈尔滨工业大学图书馆, 2001
    [49]魏来,于振海,徐姝. FCI热扩散式质量流量计在电站锅炉中的应用.东北电力技术, 2003(4): 31~32
    [50] Aleksi? O. S. , Nikoli? P. M. , Lukovi? D. et al. A thick film NTC thermistor air flow sensor. In Proc 24th international conference on microelectronics, Serbia and Montenegro, 2004: 16~19
    [51] Hiroyuki Fujita, Tadahiko Ohhashi, Masahiro Asakura et al. A thermistor anemometer for low flow rate measurements. IEEE transaction on instrumentation and measurement, 1995, 44(3): 185~188
    [52]王小建,杨鼎才,马兴兵,等.恒温变流型热式气体MFM的研究.自动化与仪表, 2004(5): 21~22
    [53]沈永滨,李庆军,修爱军.恒温热线式气体流量错过起的研究.哈尔滨理工大学学报, 2000, 5(4): 98~100
    [54] Hisasi Kawai Toyohashi, Norihito Tokura Aichi, Tokio Kohama Nisio et al. Thermal flowmeter with temperature compensation, United states, 4475388, 1984, 1~12
    [55] Baker Roger C., Gimson Chris. The effects of manufacturing methods on the precision of insertion and in-line thermal mass flowmeters. Flow measurement and instrumentation, 2001, 12: 113~121
    [56] Ken Okamoto, Tadahiko Ohhashi, Masahiro Asakura. A digital anemometer. IEEE transactions on instrumention and measurement, 1994, 43(2): 116~120
    [57] Steurer J., Kohl F.. Adaptive controlled thermal sensor for measuring gas flow. Sensors and actuators A, 1998, 65: 116~122
    [58] Hitoshi Ishikawa, Hitachinaka Shi. Thermal air flow meter. United states, US2001/0039942 A1, 2001, 1~7
    [59] Fukang Jiang. Silicon-micromachined flow sensors: [PhD Thesis], California Institute of Technology, California, 1998
    [60]高冬晖,秦明.硅热流量传感器及其封装.微纳电子技术, 2004(5): 45~51
    [61] Moh’d Sami Ashhab, Ahmed Al-Salaymeh. Optimization of hot-wire thermal flow sensor based on a neural net model. Applied thermal engineering, 2006, 26: 948~955
    [62]李昌禧,张世荣.热式复合传感器分析.传感技术学报, 2003(2): 144~146
    [63]李昌禧,邵阳,李午.热式多传感器信息融合的气固质量流量检测[J].华中科技大学学报, 2001, 29(8): 50~52
    [64]李新安.热式气体质量流量计: [硕士学位论文].保存地点:西北工业大学图书馆, 1999
    [65] Bruun H. H. . On the temperature dependence of constant temperture hotwire probes with small wire aspect ratio. J. Phys. E: Sci. Instrum., 1975, 8: 942~951
    [66] Kostka M., Vasanta Ram V.. On the effects of fluid temperature on hot wire characteristics, Part 1: Results of experiments. Experiments in fluids, 1992, 13: 155~162
    [67] Vasanta Ram V.. On the effects of fluid temperature on hot wire characteristics, Part 2: Foundations of a rational theory. 1992, 13: 267~278
    [68] Balla S. J., S. Ashforth-Frosta, Jambunathana K., Whitney C. F.. Appraisal of a hot-wire temperature compensation technique for velocity measurements in non-isothermal flows. International journal of heat and mass transfer, 1999, 42: 3097~3102
    [69] Savostenko P. I., Serbin S. P.. Hot-wire anemometer invariant to temperature of the medium. Measurement techniques USSR, 1988, 12: 1174~1178
    [70] Berlicki T. M., Murawski E., Osadnik S.J. et al . Analysis of an ambient temperature influence on thermal thin-film microsensor. Sensors and actuators A, 1994, 45: 169~172
    [71] Benjamin S. F. , Roberts C.A.. Measuring flow velocity at elevated temperature with a hot wire anemometer calibrated in cold flow. International journal of heat and mass tranfer. 2005, 45: 703~706
    [72]范锦彪,姚爱琴,马铁华.流量传感器温度补偿技术研究.华北工学院测试技术学报, 2000, 14: 167~170
    [73] Lee S. P., Kim J. I., Kauh S.. Temperature compensation of hot-wire anemometer with photoconductive cell. Experiments in fluids, 1995(19): 362~365
    [74] Nam Teckjin, Kim Seunghyun, Kim Sunghyun et al. The temperature compensation of a thermal flow sensor with a mathematical method. In the 12th international conference on solid state sensors. Boston: Actuators and microsyslems, 2003: 1586~1589
    [75] Weidman P. D., Browand F. K.. Analysis of a simple circuit for constant temperature anemometry. J. Phys. E: Sci. Instrum., 1975 (8) : 553~560
    [76] Mullins M. A., van Putten A. F. P., Bayford R. et al. Potential for a smart sensor based on an integrated silicon anemometer. Sensors and actuators A, 1995, 46-47: 342~348
    [77] Martin Hohenstatt. Temperature compensation for a thermal mass flow meter. Unitedstates, 4845984, 1989, 1~4
    [78] Corrsin S.. Extended applications of hot-wire anemometer. Rev. Sci. Instr., 1947 (18) : 469~471
    [79] Simpson R. L., Wyatt W. G.. The behaviour of hot-film anemometers in gas mixtures. J. Phys. E: Sci. Instrum., 1973 (6) : 981~987
    [80] McQuaid J., Wright W. . The response of a hot-wire anemometer in flow of gas mixtures. Int. J. heat transfer, 1973(16): 819~828
    [81]张万路.热线风速仪在线测量的修正模型.计量技术, 2004(5): 27~28
    [82] Bruun H. H.. Hot-wire anemometry principles and signal analysis. New York: Oxford University press, 1995: 1~2, 30, 42
    [83] Freymuth P.. Noise in hot-wire anemometry. The review of scientific instrument. 1968, 39(4): 551~557
    [84] Simths A. J., Perry A. E., Hoffman P. H.. The response to temperature fluctuations of a constant-current hot-wire anemometer, J. Phys. E: Sci. Instr.. 1978, 11: 909~914
    [85] Perry A. E., Morrison G. L.. A study of the constant temperature hot-wire anemometer. J. Fluid Mech., 1971, 47: 577~599
    [86] Bruun H. H.. A note on static and dynamic calibration of constant-temperaure hot-wire probes. J. Fluid Mech., 1976, 76: 145~155
    [87]戴锅生.传热学. (第2版).北京:高等教育出版社, 1991: 117, 144
    [88]苏彦勋.流量计量与测试. (第1版).北京:中国计量出版社, 1993: 66~72
    [89]张存芳,李秀芬,薛熊.温度传感器时间常数测试.宇航计测技术, 1999, 19(2): 31~34
    [90]王荣芳.质量流量计在气体流量测量中的应用.石油化工自动化, 2001(2): 54~56
    [91] Nguyen N. T., Kiehnscherf R.. Low-cost silicon sensors for mass flow measurement of liquids and gases. Sensors and actuatorss A , 1995, 49: 17~20
    [92] Stephan C. H., Zanini M.. A micromachined silicon mass-air-flow sensor for automotive applications. In 1991 International conference on digest of technical papers. Solid-state sensors and actuators, 1991: 30~33
    [93] van Oudheusden B. W.. Silicon thermal flow sensors. Sensors and actuators A, 1992, 30: 5~26
    [94]高冬晖,秦明,黄庆安.硅热流量传感器封装的热模拟分析.半导体学报, 2005, 26(2): 368~372
    [95] Fujihiko Sakao. Constant temperature hot wires for determining velocity fluctuations in an air flow accompanied by temperature fluctuations. J. Phys. E: Sci. Instrum., 1973, 6: 913~916
    [96] Amauri Oliveira, Raimundo C. S. Freire, Gurdip S. Deep. Compensation of the fluid temperature variation in hot-wire anemometer. In IEEE Instrumentation and Measurement Technology Conference. Ottawa, Canada, 1997: 1377~1380
    [97]梁国伟,王芳,郑永军,等.基于热传递的铂膜气体流量计实验研究.中国计量学院学报, 2006, 17(1): 36~39
    [98]李国祥,陆辰,王仁人,等.热线(膜)风速仪输出信号的温度修正.计量学报, 1997, 18(1): 46~49
    [99]盛森芝.流速测量技术. (第1版).北京:北京大学出版社, 1987: 104~107
    [100] Abdel-Rahman A., Tropea C., Slawson P. et al. On temperature compensation in hot-wire anemometry. J. Phys. E: Sci. Instrum., 1987, 20: 315~319
    [101] Bremhorst K. Effect of fluid temperature on hot-wire anemometers and an improved method of temperature compensation and linearization without use of small signal sensitivities. J. Phys. E: Sci. Instrum., 1985, 18: 44~49
    [102] Koppius A. M., Trines G. R. M.. The dependence of hot-wire calibration on gas temperature at low Reynolds numbers. Int. J. heat mass transfer, 1976, 19: 967~974
    [103] Morrison G. L.. Effects of fluid property variations on the response of hot-wire anemometers. J. Phys. E: Sci. Instrum., 1974, 7: 434~436
    [104] Lienhard J. H., Helland K. N.. An experimental analysis of fluctuating temperature measurements using hot-wires at different overheats. Exp. In fluids, 1989, 7: 265~270
    [105] Boman U. R.. Hot-wire calibration over a large temperature range. Exp. In fluids, 1992, 12: 427~428
    [106] Bowers C. G., Willits D. H., Bowen H. D.. Comparision of temperature correction methods for hot wire anemometers. Trans. ASAE, 1988, 31: 1552~1555
    [107]刘云岗,张锡朝,陆家祥.热线风速仪输出电压的补偿公式.山东工业大学学报, 1997, 27(2): 131~135
    [108]过增元.热流体学. (第1版).北京:清华大学出版社, 1992: 41
    [109]刘明候,张先锋,陈义良,等.热线与冷线相结合的非绝热流动测量技术.实验力学, 2004, 19(1): 51~55
    [110] Blair M. F., Bennett J. C.. Hot-wire measurements of velocity and temperaturefluctuations in a heated turbulent boundary layer. J. Phys. E: Sci. Instrum., 1987, 20: 209~216
    [111]沈玉秀,唐祯安,张洪泉.热线式传感器的研究.传感器技术, 2004, 23(5): 15~18
    [112] Swaminathan M. K., Bacic R., Rankin G. W. et al. Improved calibration of hot-wire anemometers. J. Phys. E: Sci. Instrum., 1983, 16: 335~338
    [113] R o∧mulo P. C. Ferreira, Raimundo C. S. Freire, Gurdip S. Deep, J. S. Rocha Neto et al. Fluid temperature compensation in a hot wire anemometer using a single sensor. In Proceeding IMCT2000, 2000: 512~517
    [114]吕崇德.热工参数测量与处理. (第2版).北京:清华大学出版社, 2001: 173
    [115] Gurdip S. Deep, Raimundo C. S., Freire et al. Dynamic response of thermoresistive sensors. IEEE Transactions on Instrumentation and Measurement, 1992, 41(6): 815~819
    [116] Nam Teckjin, Kim Seunghyun, Park Sekwang. The temperature compensation of a thermal flow sensor by changing the slope and the ratio of resistances. Sensors and actuators A, 2004, 114: 212~218
    [117]梁长垠,张守权.热流量传感器温度补偿方法研究.传感器与微系统, 2006, 25(4): 18~19
    [118]李长武,梁国伟.汽车用热线式空气流量传感器.传感器技术, 2004, 23(8): 38~40
    [119]闻帆,李长武.热膜风速计温度校正研究.传感器与微系统, 2006, 25(4): 26~28
    [120]庞佳涵,花向阳,扬振中.热线式空气流量计的研究.节能, 2003(7): 10~12
    [121]钱人一.电控发动机质量空气流量传感器及其环境温度补偿.汽车技术, 1998(6): 13~16
    [122] Shohei Takagi. A hot-wire anemometer compensated for ambient temperature variations. J. Phys. E: Sci. Instrum., 1986, 19: 739~743
    [123] Kei Toda, Isao Sanemasa, Koichi Ishikawa. Simple temperature compensation of thermal air-flow sensor. Sensors and actuators A, 1996, 57: 197~201
    [124]刘清林.气体流量计量的全补偿计算法.燃气轮机技术, 2002, 15(3): 36~43
    [125]万俊华,刘顺降,杨曜根,等.流体分子理论及性质. (第1版).哈尔滨:哈尔滨工程大学出版社, 1994: 371~376
    [126]卢焕章.石油化工基础数据手册. (第1版).北京:化学工业出版社, 1982: 41~43
    [127]阮登芳.燃气热物理性质的计算.见中国工程热物理学会工程热力学与能源利用学术会议论文集,北京:中国工程热物理学会, 1999: 403~408
    [128] W. M.罗森诺.传热学手册(上). (第1版).李荫亭译.北京:科学出版社: 172~180
    [129]杨辉华,简捷,黄南民,等.热式质量流量计特性曲线及其拟合方法研究.化工自动化及仪表, 1996, 23(6): 37~41
    [130]杜水友,章皓,郑永军,等.最小二乘法拟合压力传感器二次曲线及精度分析.中国计量学院学报, 2005, 16(3): 185~187
    [131] Tmel S. Walsh. Mass flow sensors data collection and signal processing. SENSORS, 1989 (10) : 2~5
    [132]杨世铭.传热学. (第1版).北京:人民教育出版社, 1980: 442
    [133]尉广军,郝永生,姚义.单片机系统中复位电路的可靠性分析与设计.仪器仪表学报, 2002, 23(3): 577~578
    [134]胡屏,柏军.单片机应用系统中的看门狗技术.吉林大学学报(信息科学版), 2003, 21(2): 205~208
    [135]叶念渝,何兆湘.一种单片机电源监测和看门狗保护电路及方法.仪表技术与传感器, 1998(7): 24~26
    [136]郑燕.基于ADuC812的在系统可编程数据采集电路的设计.西安邮电学院学报, 2005, 10(3): 76~78
    [137]章百宝,王伟.基于ADuC812的CAN总线接口设计.兵工自动化, 2004, 2(1): 37~38
    [138]马涛,来清民,梁嘉升,等.数据采集芯片ADuC812在电力监控系统中的应用.继电器, 2004, 32(15): 76~78
    [139]焦腾,张杨,于霄,等.微处理器ADuC812及其在数据采集中的应用.微处理机, 2006(1): 71~73
    [140]张洪,李昌禧.一种气固质量流量检测方法的实验研究.华中科技大学学报(自然科学版), 2002, 30(10): 75~77
    [141]董雪峰,杨丽.基于SPI总线的人机接口设计.长沙电力学院学报(自然科学版), 2005, 20(3): 47~50
    [142]曾和兰,刘登桃. ZLG7289A在校园网无线广播控制中的应用.仪器仪表用户, 2005, 12(4): 69~70
    [143] Steve Biegacki, Dave VanGompel. The application of DeviceNet in process control. ISA Transactions, 1996, 35(2): 169~176
    [144] Satoshi Kino. Application and Benefits of a DeviceNet Control System in the Forest Product Industry. In 1999 TAPPI Conference, 1999: 196~203
    [145] Scott Simonye, Greg Witte. Applying DeviceNet in motor control centers at a cement plant. In IEEE Cement Conference. Hersey, PA, 1997: 113~123
    [146]张世荣,李昌禧.基于DeviceNet的智能执行器设计.电力自动化设备, 2005, 25(7): 72~75
    [147]陈杨杨,陈梅,储昭碧.CAN总线和DeviceNet通信协议在单片机系统中的应用.仪器仪表学报, 2005, 26(8): 299~301
    [148]方晓柯,徐林,王建辉,等.DeviceNet现场总线特点分析及节点电路设计.仪器仪表学报, 2005, 26(11): 1174~1210
    [149]吕平宝,谢剑英.基于P80C592的DeviceNet通信节点接口的设计.计算机工程与应用, 2003, 26: 122~124
    [150]吕平宝,谢剑英.基于SJA1000的DeviceNet通信节点控制器的设计.仪器仪表学报, 2002, 23(3): 279~280
    [151] ODVA.DeviceNet Specification, Release 2.0, 1999
    [152] Li Zheng, Nakagawa H.. OPC(OLE for process control)specification and its developments. In Proceedings of the 41st SICE Annual Conference. SICE 2002, Osaka, 2002: 917~920
    [153] Hao Xiaohong, Hou Shunhong. OPC DX and Industrial Ethernet glues fieldbus together. In 8th international conference on control, automation, robotics and vision. Kunming, China, 2004: 6~9
    [154] Xu Hong, Wang Jianhua. Using standard components in automation industry: A study on OPC Specification. Computer standards & interfaces, 2006(28): 386~395
    [155] Raúl Alves Santos, Julio E. Normey-Rico, Alejandro Merino Gómez, et al. OPC based distributed real time simulation of complex continuous processes. Simulation modelling practice and theory, 2005(13): 525–549
    [156] Xu Hong, Wang Jianhua. An extendable data engine based on OPC specification. Computer standards & interfaces, 2004(26): 515~525
    [157]唐玉玲.可编程控制器串行OPC服务器的开发.中南民族大学学报(自然科学版), 2005, 24(2): 76~78
    [158] Céar Contreras, JoséLuis Rodríguez, Ruth Di Sipio, et al. Flowmeter based on heat dissipation principles. In Proceedings of the First ISA/IEEE Conference. 2001, 41-43
    [159] Miller I. S., Shah D. A., Antonia R. A.. A constant temperature hot-wire anemomete. J. Phys. E: Sci. Instrum., 1987(20): 311~314
    [160] Chan W. K., Liu C. Y., Wong Y. W. . Characteristics of thin film probe with temperature compensation. Flow Meas. Instrm. Vol 6 no 2 1995: 137~140
    [161]李成伟,李朝辉,戴景民,等.管道煤气热式质量流量计研制及标定技术研究.哈尔滨工业大学学报, 2002, 34(3): 333~336
    [162]巩爱华,马金权,朱成伟.热式气体质量流量计原理分析及其应用.齐齐哈尔大学学报, 2002, 18(3): 75~76
    [163]左欢.新型热式气体质量流量计的研制: [硕士学位论文] .保存地点:华中科技大学图书馆, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700