大型双曲冷却塔的风荷载和风致响应理论分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着电力、石油、核能、采矿等工业的迅速发展,兴建了一大批用于冷却工业循环水的大型双曲冷却塔,其结构的体量愈来愈大,建筑间的密度越来越高。但这类薄壳旋转结构具有高度高、体量大、自重轻、自振频率密集等特点,属于风敏感结构,风荷载成为控制结构设计的主要荷载之一。由于大型双曲冷却塔结构与来流之间复杂的气动特性,至今还没有建立一套成熟通用的大型双曲冷却塔风荷载及风致响应的理论框架。本文从表面风压的CFD数值模拟和风洞试验、双塔和三塔干扰效应、风致动力响应的时频域分析等方面对大型双曲冷却塔的风荷载和风致响应进行深入研究。研究工作主要包括以下几个方面:
     1、冷却塔表面风压的CFD数值模拟。阐明了计算流体动力学(CFD)的基本理论,详细描述了几种常用的数值模拟方法。采用大型商业流体计算软件,模拟了大型双曲冷却塔在大气环境中的外表面和内部绕流特征,获得了冷却塔内外表面平均风压系数的总体分布情况。根据冷却塔周围的流场分布,解释了边缘效应对冷却塔顶部和底部的风压影响的内在原因,探讨了冷却塔内部和背风面风压系数较为稳定的形成原因。
     2、冷却塔表面粗糙度对表面风压影响的研究。制作了某大型双曲冷却塔的缩尺模型,在其表面布置多种尺寸和间隔的粗糙元,通过风洞试验获得模型表面的风压系数分布。将多种粗糙度参数下的风洞试验结果进行比较,发现最小风压系数对粗糙度最为敏感,粗糙度越大,最小风压系数也越大;同时还发现,粗糙度对背风面稳定风压系数及分离点的位置影响较小。总结了本次试验和以往试验中关于风压数据与粗糙度的关系,给出了可用于工程设计的关于不同表面粗糙度的冷却塔表面体型系数环向分布的近似计算公式。
     3、冷却塔表面风压分布特征的精细化研究。对风洞试验结果进行全面分析,讨论了冷却塔表面平均和脉动风压沿环向的变化情况,根据风压分布特征可沿环向分为三个区域:迎风区、分离区和尾流区。比较了各环向角和各高度处风压功率谱的能量分布特征,发现子午向各测点间的功率谱较为一致,而环向各测点间谱值变化较大,认为分离点固定频率的涡脱落对该附近区域的风压谱能量分布有较大影响。计算了风压沿环向和子午向的相关性系数,发现迎风区与尾流区内的各点风压相关性很低。通过比较标准化后的阻力和升力谱,发现阻力谱为相对宽带谱,而升力受涡脱落影响更为严重,呈现相对窄带谱的形式。
     4、冷却塔双塔干扰的研究。分析双塔干扰时不同风向角和不同塔间距下风洞试验的测试结果,发现双塔串列时,存在临界塔间距,建议设计时两塔间距尽量大于该临界值;双塔并列时,狭缝效应并不是非常明显,双塔对风场的阻挡作用使得两塔外侧的风速加剧;双塔斜列时,可按后塔受前塔的影响程度将风向角分为三个区域:尾流影响区、弱影响区和并列影响区。通过对各测层阻力和升力在各种排列下的干扰系数比较分析,给出了基于塔间距计算风致合力干扰系数的近似公式。绘制了不同风向角下体型系数沿环向分布的包络线,并给出了包络线的傅立叶展开式系数。
     5、冷却塔三塔干扰的研究。分析了三塔干扰时的被测塔在各种排列下的试验结果,研究了三参数(干扰塔间距、测量塔与干扰塔间距、风向角)对测试塔风压系数的影响情况。计算了干扰情况下平均合力和极值合力的干扰系数,发现在三塔干扰的大多数排列形式下,位于前部的两个干扰塔主要起到遮挡作用,使得后塔受到的平均风压变小,但是这种平均风压的减小往往伴随着脉动风压的增大,因此,三塔干扰时的风力极值干扰系数较大。
     6、冷却塔风致响应的频域分析法。给出了用于计算风致响应的频域分析方法,并将其运用于双曲冷却塔壳体结构的计算中。通过对冷却塔自振频率的参数分析,如塔体整高、塔壳厚度、子午线曲率等,发现基础频率对上部子午线曲率较为敏感,并给出了用于估算大型双曲冷却塔基础频率的三参数公式。采用CQC法结合风洞试验数据,进行冷却塔壳体动力响应的频域计算,得到位移响应的标准差分布形式,发现采用前50阶CQC法得到的结果已趋于实际值,大于50阶的高阶振型对响应的贡献已很小。最后根据风洞试验数据,提出了风压谱的近似函数。
     7、冷却塔风致响应的时域分析法。总结了常用的冷却塔表面风压时程计算方法,发现采用1阶或2阶AR法能够较好地模拟该结构的风压时程。采用POD方法对冷却塔表面风压的测点进行加密,并进行有限元的时程响应分析,计算得到了冷却塔位移、子午向应力等响应的平均值和脉动值。通过计算给出了各高度处各响应的动力系数分布,综合分析这些动力系数的合理性,本文建议整体动力系数取1.9。
Nowadays, with rapid development of power, nuclear, and mining industry, many large hyperbolic cooling-towers which can produce recycled cooling water are widely used. The volume of cooling-towers becomes large and the distribution density becomes dense. Because of the characteristics of tall, large, light weight, compressed frequency of the structure, it is very wind-sensitive, and the wind load becomes the main problem of structural design. With the complexity relationship of large cooling-tower structures and its air flow around, still now, a general theory framework of wind load distribution and wind-induced dynamic responses for a common hyperbolic cooling-tower has not been established. This dissertation tries to study deeply the characteristics of wind-induced surface load distribution, the interference effects and wind-induced dynamic response for the structure, by the away of Computational Fluid Dynamics(CFD) simulation, single tower wind tunnel test, two or three adjacent cooling-towers interference wind tunnel test and wind-induced structural dynamics response analysis in the frequency domain and time domain and other aspects.
     1. Numerical simulation of air flow around large hyperbolic cooling-tower. Basic theory of CFD is elucidated, some commonly-used simulated methods of air flow around cooling-tower are provided in detail. With help of commercial CFD software, the air flow around and in the cooling-tower is simulated, the wind-induced pressure coefficient distribution on inner and outer surface of the structure is obtained. Based on the characteristics of the flow field around the structure, the nature of fringe effect on top and bottom pressure coefficient is explained, the reason of stability of inner and outer leeward pressure coefficient is discussed.
     2. Investigation of external roughness effects on the mean wind pressure distribution on hyperbolic cooling-towers. A contraction scale model of large hyperbolic cooling-tower is made, the model with various height and distribution of external roughness is studied in wind tunnel test, different pressure coefficient distributions are obtained. Based on the comparison of different distributions under various external roughness, we find that, the minimum pressure coefficient is sensitive to the external roughness, the value increases when the roughness increases, nevertheless, the external roughness has smaller effects on leeward steady pressure coefficient and position of separation point. By summarizing the wind tunnel data and former researchers' results, an approximate formula is proposed to help the design work, which can estimate the pressure coefficients around the circumference of the structure based on the characteristics of the external roughness.
     3. Deep study of the wind pressure coefficient around the whole hyperbolic cooling-tower. Based on the sound analysis of the wind tunnel test data, the variation of pressure coefficient along with meridian and circumference is discussed, along the circumference three area is proposed: windward area, separation area and leeward area. Based on the comparison of wind pressure spectra along meridian and circumference, the similarity of the normalized spectra along meridian is found, but the the normalized spectra along circumference is quite different, because the spectra near the separation point are significantly influenced by vortex shedding. By circumferential and meridional pressure correlation study, we point out that, the correlation between windward area and leeward area is very small. Comparison between normalized spectra of drag force and lift force is made, it shows drag force spectra is relatively broad-band, and lift force spectra is relatively narrow-band.
     4. Study of wind-induced interference effects on two adjacent cooling-towers. The results of experimental test carried out in the boundary layer wind tunnel on a model of two adjacent cooling-towers are presented, it shows that, when two towers are in tandem configuration, there is a critical distance between them, which should be the minimum distance we advise in the design work, when two towers are in side-by-side configuration, the block effect is more remarkable than the "Venturi" effect, when two towers are in staggered configurations, it can be divided into three regions: wake influence region, weak influence region and side influence region. Based on the comparison of drag force and lift force under various configurations, an approximate formula is proposed, which can estimate the total force interference coefficient when the distance between two towers is given. At last, the envelop of geometry coefficient is drawn, and the Fourier formula coefficient is given.
     5. Study of wind-induced interference effects on three adjacent cooling-towers. Some results of experimental test carried out in the boundary layer wind tunnel on a model of three adjacent cooling-towers are discussed by the study of three parameters, namely, distance between interference towers, distance between measure tower and interference towers, and wind attack angle. Mean and dynamic total wind force interference coefficients are calculated, the results show that, strong effects are restricted to small ranges of the flow angle, for the other wind directions, the surrounding towers provide a shelter effect. The shelter effect not only lead to smaller mean total wind force, but also increases the fluctuating wind force, so the dynamic total wind force would be much higher. Meanwhile, the influenced tower's wind force spectrum is quite different from that of isolated tower.
     6. Study of the wind-induced dynamic response of large hyperbolic cooling-tower structures in the frequency domain. Some frequency analysis methods of wind-induced dynamic response are provided in detail, we adjust them to hyperbolic cooling-tower thin-walled structure. By parameter(tower total height, shell thickness, meridional curvature) analysis of cooling-tower natural frequency, we find that, the basic natural frequency of cooling tower is sensitive to the top meridional curvature, an approximate formula is proposed based on the parameters, which can estimate the basic natural frequency of cooling tower. With help of wind tunnel test data and CQC method, the dynamic response of cooling-tower in frequency domain is obtained, by comparison of displacement results under various mode level, we suggest that, prior 50 mode is necessary in order to gain a convergence result, higher mode is neglectable. In the end, an approximate function is proposed to simulate the original scattered spectrum of wind pressure based on the wind tunnel test data.
     7. Study of the wind-induced dynamic response of large hyperbolic cooling-tower structures in the time domain. Some commonly-used simulated methods of wind fluctuation are provided in detail, it shows the AR models with 1 or 2 order are appropriate for simulating the wind pressure series. With the help of POD method, more wind pressure series can be regenerated, by the way of finite element analysis, dynamic displacement and meridional stress response of cooling-tower shell is obtained. The dynamic coefficients with respect to various height and response are calculated, by considering the rationality of all the dynamic coefficients, we suggest that the total dynamic coefficient is about 1.9.
引文
[1]赵振国.冷却塔[M].北京:中国水利水电出版社,2001.
    [2]CEGB.Report of the committee of inquiry into the collapse of cooling towers at Ferrybridge on November 7,1965.UK:Central Electricity Generating Board;1965.
    [3]Armitt J,Wind Loading on Cooling Towers[J].J Struct Div,1980.106(ST3):623-641.
    [4]ICI.Report of the committee of inquiry into the collapse of the tower at Ardeer Nylon Works,Ayrshire,on Thursday September 27,1973.UK:Imperial Chemical Industries(Petrochemical Division);1974.
    [5]Croll JGA,Kaleli F,Kemp KO.Meridionally imperfect cooling towers.ASCE Journal of Engineering Mechanics 1979;105(EM5):761-777.
    [6]Croll JGA,Kaleli F,Kemp KO,Munro J.A simplified approach to the analysis of geometrically imperfect cooling tower shells.Engineering Structures 1979;1(2):92-98.
    [7]Godoy LA.On the collapse of cooling towers with structural imperfections.Proceedings of the Institution of Civil Engineers 1984;57:419-427.
    [8]CEGB.Report on Fiddlers Ferry power station cooling tower collapse on January 13,1984.UK:Central Electricity Generating Board;1984.
    [9]Jullicn JF,Reynouard JM.Reflections on the origin of deflections observed on the cooling towers of Pont sur Sambre and Ansereuilles.In:IASS 3rd international symposium on natural draught cooling towers.1989,p.595-604.
    [10]H.J.Niemann.Zur stationaren Windbelastung rotationssymmetrischer Bauwerke im Bereich transkritischer Rcynoldszahlen.Mitt.Nr.71-2,Tech.-wissensch.Mitt.,Institut fur Konstr.Ing.-ban,Ruhr-Universitat Bochum,West Germany,1971.
    [11]H.J.Niemann,H.Propper.Some Properties of Fluctuating Wind Pressures on a Full-scale Cooling Tower,Jouranl of Industrial Aerodynamics,(1975/1976),No.1,349-359.
    [12]N.J.Sollenberger,R.H.Scanlan.Pressure-difference measurements across the shell of a full-scale natural draft cooling tower[C].Proceedings of the symposium on full-scale measurements of wind effects,University of Western Ontario,Canada,1974.
    [13]R.H.Scanlan,L.J.Forticr.Turbulent winds pressure effects around a rough cylinder at high Reynolds number[J].Journal of Wind Engineering and Industrial Aerodynamics,1982,9:207-236.
    [14]Ray L.Steinmetz,David P.Billington,John F.Abel.Hyperbolic Cooling Tower Dynamic Response to Wind,Journal of the Structural Division,ASCE,1978,Vol.104,No.ST1,35-53.
    [15]Prodyot K.Basu,Phillip L.Gould.Cooling Towers Using Measured Wind Data,Jouranl of the Structural Division,ASCE,1980,Vol.106,No.ST3,579-599.
    [16]Sollenberger NJ,Billington DP,Scanlan RH.Wind loading and response of cooling towers.ASCE Journal of Structural Engineering 1980;106(ST3):601-621.
    [17]M.Pirner.Wind pressure fluctuations on a cooling tower[J].Journal of Wind Engineering and Industrial Aerodynamics,1982,10:343-360.
    [18]Tier-fun Sun,Liang-mao zhou.Wind pressure distribution around a ribless hyperbolic cooling tower,Journal of Wind Engineering and Industrial Aerodynamics,1983,Vol.14,181-192.
    [19]周良茂,李培华,两个邻近全尺寸双曲型冷却塔风压分布的测量[J],气动试验与测量控制,1992.6(31:37-44.
    [20]Hashish MG,Abu-Sitta SH.Response of hyperbolic cooling towers to turbulent wind.ASCE Journal of Structural Engineering 1974;100(STS):1037-1051.
    [21]S.H.Abu-Sitta,M.G.Hashish.Dynamic wind stresses in hyperbolic cooling towers[J].Journal of the Structural Division,1973,99(ST9):1823-1835.
    [22]Ccsca Farcll,Okta Guven,Federico Maisch.Mean Wind Loading on Rough-walled Cooling Towers,Journal of the engineering Mechanics division,ASCE,1976,Vol.102,No.EM6,1059-1081.
    [23]Niemann HJ.Wind effects on cooling tower shells.ASCE Journal of Structural Engineering 1980;106(ST3):643-661.
    [24]阎文成,张彬乾,李建英,超大型双曲冷却塔风荷载风洞试验研究[J],流体力学实验与测量,2003.17:85-89.
    [25]张彬乾,李建英,阎文成,超大型双曲冷却塔双塔干扰的风荷载特性研究[J],流体力学实验与测量,2003,17:93-97.
    [26]T.F.Sun,Z.F.Gu,L.M.Zhou,et al.Full-scale measurement and wind-tunnel testing of wind loading on two neighboring cooling towers[J].Journal of Wind Engineering and Industrial Aerodynamics,1992,41-44:2213-2224.
    [27]Y.Kawarabata,S.Nakae,M.Harada.Some Aspects of the Wind Design of Cooling Towers,Journal of Wind Engineering and Industrial Aerodynamics,1983,Vol.14,167-180.
    [28]M.Kasperski,H.J.Niemann.On the Correlation of Dynamic Wind Loads and Structural Response of Natural -draught Cooling Towers,Journal of Wind Engineering and Industrial Aerodynamics,1988,Vol.30,67-75.
    [29]Cesar Farell,Federico E.Maisch.External Roughness for Hyperbolic Cooling Towers,Journal of the Structural Division,ASCE,1976,Vol.102,No.ST2,371-386.
    [30]H.J.Niemann,H.D.Kopper.Influence of Adjacent Buildings on Wind Effects on Cooling Towers,4th International Symposium on Natural Draught Cooling Towers,Wittek&Kratzig(eds),1996 Balkema,Rotterdam,83-91.
    [31]Maurizio Orlando.Wind-induced Interference Effects on Two Adjacent Cooling Towers[J].Engineering Structures 23,2001:979-992.
    [32]H.J.Niemann,H.D.Kopper.Provision for Interference Effects in Non-symmetric Design of Cooling Towers,5th International Symposium on Natural Draught Cooling Towers,Mungan&Witted(eds),2004,Taylor&Francis Group,London,105-111.
    [33]许林汕,赵林,葛耀君.超大型冷却塔随机风振响应分析[C].第十三届全国结构风工程学术会议论文集,大连,2007:887-893.
    [34]许林汕,赵林,葛耀君.超大型冷却塔风致干扰效应试验研究[C].第十三届全国结构风工程学术会议论文集,大连,2007:894-900.
    [35]刘若斐,沈国辉,孙炳楠.大型冷却塔的数值模拟研究,工程力学,2006,Vol.23,Sup I,177-183.
    [36]沈国辉,刘若斐,孙炳楠.双塔情况下冷却塔风荷载的数值模拟,浙大学报工学版,2007,Vol.41,No.6,1017-1022.
    [37]张陈胜.大型双曲冷却塔风荷载的数值模拟研究[D].杭州:浙江大学,2008.
    [38]鲍侃袁,沈国辉,孙炳楠.大型双曲冷却塔平均风荷载的数值模拟研究.空气动力学学报录用待发表.
    [39]顾志福,孙天风,季书弟.沙岭子电厂冷却塔群风荷载的风洞研究,力学学报,1992,Vol.24,No.2,129-135.
    [40]顾志福,孙天风,陈强.两个相邻冷却塔风荷载的相互作用,空气动力学学报,1992,Vol.10,No.4.519-524.
    [41]A.O.Smith,R.A.Pope,N.R.Bierrum.A revised UK standard for cooling towers(BS4485Part4),4~(th) international symposium on natural draught cooling towers,Wittek&Kratzig(eds),1996,Balkema,Rotterdam,321-328.
    [42]赵林,宋锦忠,高玲等.冷却塔群塔刚体测压试验研究[J].实验流体力学,2007,21(2):56-62.
    [43]J.Noorzaei,Ali Naghshineh,M.R Abdul Kadir,et al.Nonlinear interative analysis of cooling tower-foundation-soil interaction under unsymmetrical wind load[J].Thin-walled structures,2006,44:997-1005.
    [44]D.A.Reed,Robert H.Scanlan.Time series analysis of cooling tower wind loaading[J].Journal of Structural Engineering,1983,109(2):538-554.
    [45]Rakesh K.Kapania,T.Y.Yang.Time domain random wind response of cooling tower[J].Journal of Engineering Mechanics,1984,110(10):1524-1543.
    [46]A.M.Nasir,D.P.Thambiratnam,D.Butler,et al.Dynamics of axisymmetric hyperbolic shell structures[J].Thin-Walled Structures,2002,40:665-690.
    [47]G Bartoli,C.Borri,W.Zahlten.Nonlinear dynamic analysis of cooling towers under stochastic wind loading[J].Journal of Wind Engineering and Industrial Aerodynamics,1992,41-44:2187-2198.
    [48]R.L.Carter,A.R.Robinson,W.C.Schnobrich.Free vibrations of hyperboloidal shells of revolution[J].Journal of the Engineering Mechanics Division,1969,95(EM5):1033-1052.
    [49]E.Juhasova,Z.Bittnar,O.Fischer.Vibration characteristics of a cooling-tower shell[J].Journal of Wind Engineering and Industrial Aerodynamics,1983,12:145-154.
    [50]J.H.Kang,A.W.Leissa.Three-dimensional vibration analysis of thick hyperboloidal shells of revolution[J].Journal of Sound and Vibration,2005,282:277-296.
    [51]M.P.Singh,A.K.Gupta.Gust factors for hyperbolic cooling towers[J].Journal of the Structural Division,1976,102(ST2):371-386.
    [52]建筑结构荷载规范(GB50009-2001)[S],中国建筑工业出版社,2002.
    [53]工业循环水冷却设计规范(GB/T50102-2003)[S],中国计划出版社,2003.
    [54]Zingoni A.Shell structures in civil and mechanical engineering.London:Thomas Telford;1997.
    [55]Zingoni A.Self-weight stresses in hyperbolic cooling towers of general shape.International Journal of Space Structures 1999;14(4):281-294.
    [56]Gould PL,Lee SL.Hyperbolic cooling towers under seismic design load.ASCE Journal of Structural Engineering 1967;93(ST3):87-109.
    [57]Abu-Sitta SH,Davenport AG.Earthquake design for cooling towers.ASCE Journal of Structural Engineering 1970;96(ST9):1889-1902.
    [58]Meschke G,Mang HA,Kosza P.Finite element analysis of cracked cooling tower shell.ASCE Journal of Structural Engineering 1991;117(9):2620-2639.
    [59]Pope RA.Structural deficiencies of natural draught cooling towers at UK power stations.Part 1:Failures at Ferrybridge and Fiddlers Ferry.ICE Proceedings:Structures and Buildings 1994;104:1-10.
    [60]Van der Cruyssen D,Nodder C.Strengthening of cooling towers at Ironbridge Power Station.ICE Proceedings:Water,Maritime & Energy 1995;112:60-71.
    [61]Wittek U,Kratzig WB.Natural draught cooling towers.Rotterdam:AA.Balkema;1996.
    [62]Mang HA,Floegl H,Trappel F,Walter H.Wind-loaded reinforcedconcrete cooling towers:Buckling or ultimate load? Engineering Structures 1983;5(3):163-180.
    [63]Gupta AK.Investigation on hyperbolic cooling tower ultimate behaviour.Engineering Structures 1986;8(2):87-92.
    [64]Hara T,Kato S,Nakamura H.Ultimate strength of RC cooling tower shells subjected to wind load.Engineering Structures 1994;16(3):171-180.
    [65]Soare M.Cooling towers with constructional imperfections.Concrete 1967;369-379.
    [66]Croll JGA.The influence of shape on the stresses in cooling towers.Proceedings of the Institution of Civil Engineers 1969;42:383-396.
    [67]Kemp KO,Croll JGA.The role of geometric imperfections in the collapse of a cooling tower.The Structural Engineer 1976;54(1):33-37.
    [68]Ellinas CP,Croll JGA,Kemp KO.Cooling towers with circumferential imperfections.ASCE Journal of Structural Engineering 1980;106(ST12):2405-2423.
    [69]Jullien JF,Aflak W,L'Huby Y.The cause of deformed shapes in cooling towers.ASCE Journal of Structural Engineering 1994;120(5):1471-1488.
    [70]Gould PL,Hara T.Recent advances in local-global FE analysis of shells of revolution.Thin-Walled Structures 2002;40(7-8):641-649.
    [71]Waszczyszyn Z,Pabisek E,Pamin J,Radwanska M.Non-linear analysis of a RC cooling tower with geometrical imperfections and a technological cut-out.Engineering Structures 2000;22(5):480-489.
    [72] Jurkiewiez B, Destrebecq JF, Vergne A. Incremental analysis of time-dependent effects in composite structures. Computers and Structures 1999;73:425-435.
    [73] Aflak W, Jullien JF, Bolvin M. The pre-critical deflections of cooling towers, origin and influence. In: Int. colloquium on buckling of shell structures on land, in the sea and in the air. 1991, p. 476-485.
    [74] Niemann HJ, Zerna W. Impact of research on development of large cooling towers. Engineering Structures 1986;8(2):74-86.
    [75] Wittek U, Meiswinkel R. Non-linear behaviour of RC cooling towers and its effects on the structural design. Engineering Structures 1998; 20(10):890-898.
    [76] Busch D, Harte R, Kratzig WB, Montag U. New natural draught cooling tower of 200 m height. Engineering Structures 2002;24(12): 1509-1521.
    [77] Harte R, Kratzig W. Lifetime-oriented analysis and design of largescale cooling towers. In: Zingoni A, editor. Structural engineering, mechanics and computation. Oxford: Elsevier Science; 2001.p. 87-98.
    [1]周雪漪.计算水力学[M].北京:清华大学出版社,1995.
    [2]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [3]郭鸿志.传输过程数值模拟fMl.北京:冶金工业出版社,1998.
    [4]Courant R,Friedrichs K O,Lewy H.On the Partial Difference Equations of Mathematical Physics[J].IBM Journal,March,1967.
    [5]H.K.Versteeg,W.Malalasekera.An introduction to cumputational fluid dynamics:the f'mite volume method.Wiley,New York,1995.
    [6]H.Schlichting.Boundary layer theory(8~(th) ed.)[M].McGrawHill,New York,1979.
    [7]王福军.计算流体动力学分析[M].北京:清华大学出版社,2006.
    [8]Fluent Inc.,FLUENT User's Guide.Fluent Inc.,2003.
    [9]B.E.Launder,D.B.Spalding.Lectures in Mathematical Models of Turbulence.Academic Press,London,1972.
    [10]刘若斐,沈国辉,孙炳楠.大型冷却塔的数值模拟研究[J].工程力学,2006,Vol.23,No.Sup.Ⅰ.177-183.
    [11]沈国辉,刘若斐,孙炳楠.双塔情况下冷却塔风荷载的数值模拟[J].浙大学报工学版,2007,Vol.41,No.6,1017-1022.
    [12]张陈胜.大型双曲冷却塔风荷载的数值模拟研究[D].杭州:浙江大学,2008.
    [13]中华人民共和国国家标准[S]工业循环水冷却设计规范GB/T 50102-2003.中国计划出版社.北京,2003.
    [14]T.F.Sun,L.M.Zhou.Wind pressure distribution-around a ribless hyperbolic tower[J].Journal of Wind Engineering and Industrial Aerodynamics.1983,14(1-3):181-192.
    [15]赵振国.冷却塔[M].中国水利水电出版社,北京,2001.
    [16]N.J.Sollenberger,R.H.Scanlan,D.P.Billington.Wind loading and response of cooling towers[J].Journal of the structural division,1980,106(ST3):601-621.
    [1]H.L.Dryden,G.C.Hill.Wind pressure on circular cylinders and chimneys[J].U.S.Bureau of Standards,Journal of Research,1930,5:653-693.
    [2]C.F.Cowdrey,P.G.G.O'Neill.Reports of tests on a model cooling tower for the C.E.A.pressure mesurements at high Reynolds numbers[R].National Physical Laboratory,1956.
    [3]M.R.Pris.Etudes aerodynamiques I:Tour de refrigeration hyperbolique.Annales de l'Institute Technique du Batiment et des Travaux Publics,1959,No.134,147-167.
    [4]A.G.Davenport,N.Isyumov.The dynamic and static action of wind on hyperbolic cooling towers[R].University of Western Ontario,Canada,Enginceing Science Research Report,BLWT-1-66,1966.
    [5]J.Armitt.The effect of surface roughness and free stream turbulence on the flow around a model cooling tower at critical Reynolds number[C].Proceeding of a symposium on wind effects on buildings and structures,Loughborough University of Technology,Englaad,1968.
    [6]H.Ebner.Untersuchung des Einflusses der Kraftwerksgebaude auf die Windbelastung des Balcke-Naturzugkuhlturms Kraftwerk Mengede(GBAG).Technische Hochschule Aachen,Lehrstuhl fur Leichtbau,Bericht Nr.21,1968.
    [7]H.J.Niemann.On the stationary wind loading of axisymmetric structures in the transeritical Reynolds number region[R].Institut fur Konstruktiven Ingenieurbau,Ruhr-Universitat Bochum,Report No.71-2,1971.
    [8]C.Farell,F.E.Maisch.External roughness effects on the mean wind pressure distribution on hyperbolic cooling towers[D].Iowa:The university of Iowa,1974.
    [9]C.Farell,O.Guven,F.Maisch.Mean wind loading on rough-walled cooling towers[J].Journal of the Engineering Mechanics Division,1976,106(EM6):1059-1081.
    [10]H.J.Niemann.Wind effects on cooling-tower shells[J].Journal of the structural division,ASCE.1980,106(ST3):643-661.
    [11]M.Pirner.Wind pressure fluctuations on a cooling tower[J].Journal of Wind Engineering and Industrial Aerodynamics,1982,10:343-360.
    [12]T.F.Sun,L.M.Zhou.Wind pressure distribution around a ribless hyperbolic cooling tower[J].Journal of wind engineering and industrial aerodynamics.1983,14(1-3):181-192.
    [13]赵林,宋锦忠,高玲等.冷却塔群塔刚体测压试验研究[J].试验流体力学,2007,21(2):56-62.
    [14]V.Kolousek,M.Pirner,O.Fischer,J.Naprstek.Wind effects on civil engineering structures[M].Prague:Czechoslovak Academy of Sciences,1984.
    [15]周良茂,李培华.两个邻近全尺寸双曲冷却塔风压分布的测量[J].气动实验与测量控制,1992,6(3):37-44.
    [16]A.KAREEM,C.M.CHENG.Pressure and force fluctuations on isolated roughened circular cylinders of finite height in boundary layer flows[J].Journal of Fluids and Structures,1999,13(7-8):907-933.
    [17]普朗特著,郭永怀等译.流体力学概论[M].北京:科学出版社,1966.
    [18]W.W.H.Yeung.Similarity study on mean pressure distributions of cylindrical and spherical bodies[J].Journal of Wind Engineering and Idustrial Aerodynamics,2007,95:253-266.
    [1]Sahnan H.Abu-Sitta,Mahmoud G.Hashish.Dynamic wind stresses in hyperbolic cooling towers[J].Journal of the structural division,1973,99(ST9):1823-1835.
    [2]Mahmoud G.Hashish,Salman H.Abu-Sitta.Response of hyperbolic cooling towers to turbulent wind[J].Journal of the structural division,1974,100(ST5):1037-1051.
    [3]John Armit.Wind loading on cooling towers,Journal of the Structural Division,ASCE,1980,Vol.106,No.ST3,623-641.
    [4]Miros Pirner.Wind pressure fluctuations on a cooling tower,Journal of Wind Engineering and Industrial Aerodynamics,1982,Vol.10,343-360.
    [5]Y.Kawarabata,S.Nakae,M.Harada.Some aspects of the wind design of cooling towers,Journal of Wind Engineering and Industrial Aerodynamics,1983,Vol.14,167-180.
    [6]Robert H.Scanlan,Leonard J.Fortier.Turbulent wind s and pressure effects around a rough cylinder at high Reynolds number,Journal of Wind Engineering and Industrial Aerodynamics,1982,Vol.9,207-236.
    [7]Tief-fun Sun,Liang-mao zhou.Wind pressure distribution around a ribless hyperbolic cooling tower,Journal of Wind Engineering and Industrial Aerodynamics,1983,Vol.14,181-192.
    [8]M.Kasperski,H.J.Niemann.On the correlation of dynamic wind laods and structural response of natural-draught cooling towers,Journal of grind Engineering and Industrial Aerodynamics,1988,Vol.30,67-75.
    [9]顾志福,孙天风,季书弟.沙岭子电厂冷却塔群风荷载的风洞研究,力学学报,1992,Vol.24,No,2,129-135.
    [10]阎文成,张彬乾,李建英.超大型双曲冷却塔风荷载特性风洞试验研究,流体力学试验与测量,2003,Vol.17,Special issue,85-89.
    [11]刘红军,杨智春,李建英.冷却塔动态风荷载特性试验研究,流体力学试验与测量,2003,Vol.17,Special issue,98-100.
    [12]陈凯,魏庆鼎.冷却塔风致振动试验研究,第十一届结构风工程学术会议,2003,12,海南,三亚,177-182.
    [13]赵林,葛耀君,曹丰产.双曲薄壳冷却塔气弹模型的等效梁格方法和实验研究[J].振动工程学报,2008,21(1):31-37.
    [14]许林汕,赵林,葛耀君.超大型冷却塔随机风振响应分析[C].第十三届全国结构风工程学术会议论文集.大连,2007.
    [15]中华人民共和国建设部,GB/T 50102-2003,工业循环水冷却设计规范[S]北京:中国计划出版社.2003.
    [16]D.A.Reed,R.H.Scanlan.Time series analysis of cooling tower wind loading[J].Journal of Structural Engineering,1983,109(2):538-554.
    [17]A.Kareem.Pressure and force fluctuations on isolated roughened circular cylinders of finite height in boundary layer flows[J].Journal of Fluids and Structures.1999,13:907-933.
    [1]John Armit.Wind loading on cooling towers,Journal of the Structural Division,ASCE,1980,Vol.106,No.ST3,623-641.
    [2]顾志福,孙天风,季书弟.沙岭子电厂冷却塔群风荷载的风洞研究,力学学报,1992,Vol.24,No.2,129-135.
    [3]顾志福,孙天风,陈强.两个相邻冷却塔风荷载的相互作用,空气动力学学报,1992,Vol.10,No.4,519-524.
    [4]T.F.Sun,Z.F.Gu,L.M.Zhou,P.H.Li,G.L.Cai.Full-scale measurement and wind-tunnel testing of wind loading on two neighboring cooling towers,Journal of Wind Engineering and Industrial Aerodynamics,1992,Vol.41-44,2213-2224.
    [5]T.F.Sun,Z.F.Gu.Interference between wind loading on group of structures,Journal of Wind Engineering and Industrial Aerodynamics,1995 Vol.54-55,213-225.
    [6]周良茂,李培华.两个临近全尺寸双曲型冷却塔风压分布的测量,气动实验与测量控制,1992,Vol.6,No.3,37-44.
    [7]H.J.Niemann,H.D.Kopper.Influence of adjacent buildings on wind effects on cooling towers,4~(th) international symposium on natural draught cooling towers,Wittek&Kratzig(eds),1996,Balkema,Rotterdam,83-91.
    [8]A.O.Smith,R.A.Pope,N.R.Bierrum.A revised UK standard for cooling towers(BS4485Part4),4~(th) international symposium on natural draught cooling towers,Wittek&Kratzig(eds),1996,Balkema,Rotterdam,321-328.
    [9]Maurizio Orlando.Wind-induced interference effects on two adjacent cooling towers,Engineering Structures,2001,Vol.23,979-992.
    [10]张彬乾,李建英,阎文成.超大型双曲冷却塔双塔干扰的风荷载特性研究,流体力学试验与测量,2003,Vol.17,Special issue,93-97.
    [11]H.J.Niemann,H.D.Kopper.Provision for interference effects in non-symmetric design of cooling towers,5~(th) international symposium on natural draught cooling towers,Mungan&Witted(eds),2004,Taylor & Francis Group,London,105-111.
    [12]刘若斐,沈国辉,孙炳楠.大型冷却塔的数值模拟研究,工程力学,2006,Vol.23,Sup Ⅰ,177-183.
    [13]沈国辉,刘若斐,孙炳楠.双塔情况下冷却塔风荷载的数值模拟,浙大学报工学版,2007,Vol.41,No.6,1017-1022.
    [14]赵林,宋锦忠,高玲等.冷却塔群塔刚体测压试验研究[J].实验流体力学,2007,21(2):56-62.
    [15]许林汕,赵林,葛耀君.超大型冷却塔风致干扰效应试验研究[C].第十三届全国结构风工程学术会议论文集,大连,2007:894-900.
    [1]J.Armit.Wind loading on cooling towers,Journal of the Structural Division,ASCE,1980,Vol.106,No.ST3,623-641.
    [2]H.J.Niemann,H.D.Kopper.Influence of adjacent buildings on wind effects on cooling towers,4~(th) international symposium on natural draught cooling towers,Wittek&Kratzig(eds),1996,Balkema,Rotterdam,83-91.
    [3]A.Kareem,Tracy Kijewski,Po-Chien Lu.Investigation of interference effects for a group of finite cylinders[J].Journal of wind engineering and industrial aerodynamics,1998,77-78:503-520.
    [4]BS 4485 1992:British Standard for Water Cooling Towers,Part 4,Code of Practice for Structural Design and Construction,Draft 1992.British Standards,Institution.
    [1]V.Kolousek,M.Pirner,O.Fischer,J.Naprstek.Wind effects on civil engineering structures[M].Elsevier,1984.
    [2]R.克拉夫,J.彭津.结构动力学(第二版)[M].北京:高等教育出版社,2006.
    [3]林家浩,张亚辉.随机振动的虚拟激励法(第二版)[M]北京:科学出版社,2006
    [4]张相庭.结构风工程[M].北京:中国建筑工业出版社,2006.
    [5]A.M.Nasir,D,P.Thambiratnam,D.Butler,et al.Dynamics of axisymmetric hyperbolic shell structures[J].Thin-walled structures,2002,40:665-690.
    [6]S.L.Lee,P.L.Gould.Hyperbolic cooling towers under wind load[J].Journal of the Structural Division,1967,93(ST5):487-514.
    [7]P.L.Gound,S.L.Lee.Hyperbolic cooling towers under seismic design load[J].Journal of the Structural Division,1967,93(ST5):87-109.
    [8]P.L.Gould,S.L.Lee.Hyperboloids of revolution supported on colunms[J].Journal of the Mechanical Division,1969,95(EM5):1083-1100.
    [9]C.H.Yeh CH,W.Y.J.Shieh.Stability and dynamic analysis of cooling tower[J].Journal of the Power Division,1973,99(P02):339-347.
    [10]JUHASOVA E,BITTNAR Z,FISCHER O.Vibration characteristics of cooling-tower shell[J].Journal of Wind Engineering and Industrial Aerodynamics,1983,12(2):145-154.
    [11]S.H.Abu-Sitta,M.G.Hashish.Dynamic wind stresses in hyperbolic cooling towers[J].Journal of the structural division,ASCE.1973,Vol.99,No.ST9,1823-1835.
    [12]M.G.Hashish,S.H.Abu-Sitta.Response of hyperbolic cooling towers to turbulent wind[J].Journal of the structural division,ASCE.1974,Vol.100,No.STS,1037-1051.
    [13]W.Schnabel.Field and wind-tunnel measurements of wind pressures acting on a tower[J].Journal of Wind Engineering and Industrial Aerodynamics,1981,8:73-91.
    [14]M.Pirner.Wind pressure fluctuation on a cooling tower[J].Journal of Wind Engineering and Industrial Aerodynamics,1982,10:343-360,
    [15]M.P.Singh,A.K.Gupta.Gust factors for hyperbolic cooling towers[J].Journal of the Structural Division,1976,102(ST2):240-256.
    [1]L.E.Borgman.Ocean wave simulation for engineering design[J].Journal of Waterways and Harbors Division,1969,WW4:557-583.
    [2]M.Shinozuka.Simulation of multivariate and multidimensional random process[J].Journal of the Acoustical Society of America,1971,49(1):357-367.
    [3]M.Shinozuka,C.M.Jan.Digital simulation of random processes and its applications[J].Journal of Sound and Vibration,1972,25(1):111-128.
    [4]Y.Li,A.Kareem.Simulation of multivariate random processes:Hybrid DFT and digital filtering approach[J].Journal of Engineering Mechanics,1993,119(5):1078-1098.
    [5]G.Deodatis.Simulation of ergodic multivariate stochastic processes[J].Journal of Engineering Mechanics,1996,122(8):778-787.
    [6]王之宏.风荷载的模拟研究[J].建筑结构学报.1994,15(1):44-52.
    [7]曹映泓,项海帆,周颖.大跨度桥梁随机风场的模拟[J].土木工程学报,1998,31(3):72-78.
    [8]A.Iannuzzi,P.Spinelli.Artificial wind generation and structural response[J].Journal of Structural Engineering,1987,113(12):2382-2398.
    [9]E.Samaras,M.Shinozuka,A.Tsurui.ARMA representation of random process[J].Journal of Engineering Mechanics,1985,111(3):449-461.
    [10]T.Naganuma,G.Deodatis,M.Shinozuka.ARMA model for two-dimensional process[J].Journal of Engineering Mechanics,1987,113(2):234-245.
    [11]Y.Li,A.Kareem.ARMA system in wind engineering[J].Probabilistic Engineering Mechanics,1990,5(2):50-59.
    [12]赵臣,张小刚,吕伟平.具有空间相关性风场的计算机模拟[J].空间结构,1996,2(2):21-25.
    [13]王修琼,张相庭.混合回归模型及其在高层建筑风响应时域分析中的应用[J].振动与冲击,2000,19(1):5-8.
    [14]李元齐,董石麟.大跨度空间结构风荷载模拟技术研究及程序编制[J].空间结构,2001,7(3):3-11.
    [15]舒新玲,周岱.风荷载测试与模拟技术的回顾及展望[J].振动与冲击,2002,21(3):6-10.
    [16]R.Rossi,M.Lazzari,R.Vitaliani.Wind field simulation for structural engineering purpose[J].International Journal for Numerical Methods in Engineering,2004,61:738-763.
    [17]D.A.REED,R.H.SCANLAN.Time series analysis of cooling tower wind loading[J].Journal of Structual Engineering,1983,109(2):538-554.
    [18]王吉民.薄膜结构的风振响应分析和风洞试验研究.浙江大学博士学位论文,2001,7.
    [19]M.Shinozuka,G.Deodatis.Simulation of stochastic processes by spectral representation[J].Applied Mechanics Reviews,1991,44(4):191-204.
    [20]B.Bienkiewicz,Y.Tamura,H.J.Ham,et al.Proper orthogonal decomposition and reconstruction of multi-channel roof pressure[J].Journal of Wind Engineering and Industrial Aerodynamics,1995,54-55:369-381.
    [21]Y.Tamura,S.Suganuma,H.Kikuchi.Proper orthogonal decomposition of random wind pressure field[J].Journal of Fluids and Structures,1999,13:1069-1095.
    [22]S.H.Jeong,B.Bienkiewicz,H.J.Ham.Proper orthogonal decomposition of building wind pressure specified at non-uniformly distributed pressure taps[J].Journal of Wind Engineering and Industrial Aerodynamics,2000,87:1-14.
    [23]S.Kho,C.Baker,R.Hoxey.POD/ARMA reconstruction of the surface pressure field around a low rise structure[J].Journal of Wind Engineering and Industrial Aerodynamics,2002,90:1831-1842.
    [24]中华人民共和国国家标准(GB/T 50102-2003)工业循环水冷却设计规范.北京:中国计划出版社.2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700