LTE-Advanced系统中若干关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代信息社会中,人们对宽带移动通信系统的数据需求量日益增长。为此,未来宽带移动通信系统必须提供更高的传输速率和更优的服务质量。目前,第四代移动通信系统正处于研制和完善阶段,为进一步提高系统容量、小区边缘用户吞吐量以及改善用户的移动性能,有必要探究更高效的物理层技术和媒体接入层技术。
     LTE-Advanced系统是目前国际上公认的第四代移动通信(即4G)系统。该系统物理层采用了MIMO-OFDM技术,其中的链路自适应、有限反馈、3D MIMO等技术对基于MIMO-OFDM技术的宽带移动通信系统的性能起着至关重要的作用。深入探究这些物理层重要技术,对提高系统频谱利用率,改善小区边缘用户性能有着重要意义。另外,为进一步提高用户端的吞吐量,LTE-Advanced系统引入了异构网络技术。相比传统的同构网络,在异构网络中,用户端受到了更加严重的同频干扰,导致了其移动性能恶化。研究媒体接入层中的切换技术以改善异构网络中用户端的移动性能,对于未来移动通信系统提供更高的传输速率和更优的服务质量,有着重要作用。本论文重点研究了几个方面的技术:增强型链路自适应、单用户MIMO与多用户MIMO传输动态转化、3D MIMO传输方案和用户端反馈策略、异构网络中用户端移动性能的改善策略。本论文的创新点如下:
     1)闭环MIMO系统存在动态小区间干扰问题,已有主流解决方案是外环链路自适应技术(OLLA)。这种算法只能从长期统计特性上,减少小区间动态干扰带来的链路不匹配。多基站协作通信技术的提出,为解决闭环MIMO中小区间动态干扰带来的链路不匹配问题,提供了可能。论文的第二章提出了一种基于联合干扰预测的增强型链路自适应算法。这种算法利用协作基站间共享的用户反馈的信道信息,对存在的动态干扰进行联合预测,并据此实时调整基站端发送数据的调制编码方案,从而可以从瞬时特性上,克服由动态干扰变化引起的链路不匹配问题。通过对动态变化的小区间干扰进行联合预测,基站端在传输数据时可以选择更加合适的调制编码方案,从而系统频谱利用率可以得到显著提高。这种算法基于多基站协作技术,并没有引入多余的系统开销。
     2) LTE-Advanced系统中,闭环MIMO支持多用户MIMO传输技术。在多用户MIMO传输技术中,多个用户共享时频资源,可以大大提高系统频谱利用率。然而用户在反馈自身的链路信息时,只能使得单用户传输性能最优。当基站端进行多用户传输时,利用这种链路信息,可能导致用户反馈的链路信息与基站端所需的链路信息不匹配,从而导致基站端执行多用户传输的系统性能下降。论文的第三章提出了一种新颖的反馈策略,以提高基站端进行单用户和多用户传输动态转换的系统性能。在这种策略中,基站端根据用户的反馈信息,发送信令指示用户端反馈多用户或者单用户传输链路最佳的信道信息。当进行多用户传输时,基站端可以从用户端反馈的多用户链路最优的信道信息中提取当前信道矩阵的主特征向量,从而可以提高多用户传输的系统性能。同时,通过信令指示,单用户传输的性能也没有受到损失。
     3)前两个研究点是基于二维(2D)MIMO技术。为了进一步提高系统频谱利用率,探究了一种可用于LTE-Advanced系统的新颖的MIMO技术—三维(3D) MIMO。3D MIMO技术进一步利用了信号传输的空间特性,为基站端提供了另一个空间自由度来传输信号和消除干扰。相比2D MIMO系统,在3D MIMO系统中,基站端可以同时利用水平空间和垂直空间,发送更加准确的空间波束给用户。然而,3D MIMO技术现今处于研究的起始阶段,在LTE-Advanced系统中,其有限反馈策略和基站端发送策略尚未确定。论文的第四章提出了两种策略,分别为基于基站端补偿垂直增益和基于用户端补偿垂直增益的有限反馈策略和基站端发送策略。两种策略均采用了LTE-Advanced系统Release10中的2D码本来量化传输波在垂直空间的相位。在这两种策略中,基站端采用了不同的CSI-RS资源配置,3DSINR可以分别在基站端和用户端估算。这两种策略实现过程迥异,各有其优缺点,相比LTE-Advanced系统中的参考策略,均可以显著提高系统频谱利用率。
     4)为进一步提高用户端的吞吐量,LTE-Advanced系统引入了异构网络技术。相比传统的同构网络,异构网络中用户端受到的同频干扰更加严重,导致了其移动性能恶化。为此,论文的第五章深入分析了用户端移动性能恶化的原因,并提出了两种有效的解决方案,以改善用户端的移动性能。处于异构网络中的用户,在移动过程中,接收到的微小区信号功率和宏小区信号功率变化速度不一致。针对此特性,提出了一种切换小区优化的策略,这种策略能从长期统计特性上,提高用户的移动鲁棒性。另外,为了进一步提高用户端的移动鲁棒性,从另外一个角度分析了移动性能恶化原因,提出了一种基于无线链路质量的切换策略。这种策略可以使用户端更加敏感地触发切换,降低无线链路连接失败率和切换失败率。这两种策略基于两种不同角度,可以相互补充,共同提高用户端的移动鲁棒性。论文对第四代移动通信系统-LTE-Advanced系统的链路自适应技术、多用户MIMO传输技术、3D MIMO技术、异构网络中用户端移动性能进行了深入的探讨和研究,并提出了相应的算法和策略,有效地提高了系统平均频谱利用率和小区边缘用户吞吐量,改善了异构网络中用户端的移动性能。
With the ever-increasing data demand for mobile radio communication services, the next generation wireless communication systems (i.e.4G) are expected to provide higher date and better quality of service. Recently, the next generation wireless communication systems are under discussing. It is necessary to investigate some new techniques to further improve the average spectral efficiency and cell-edge spectral efficiency, and improve the robustness of the mobility performance.
     The LTE-Advanced system is consistently considered as the forth generation wireless communication systems. It is known that the MIMO-OFDM technology is adopted in LTE-Advanced system. And the key technologies include the link adaptation, limited feedback, and3D MTMO technology, which highly affect the system throughput. It deserves much effort to dig the key thechnologies deeply to improve the system average spectral efficiency further and the UE's throughput in cell edge coverage. Besides, the HetNets are dicussed in LTE-Advanced system and it is deemed as a promising and effective solution to further improve the system capacity. However, compared with the traditional homogeneous networks, UE will suffer more serious co-channel interference in HetNets, and thus, the mobility performance of UE will be deteriorated. In order to enhance the mobility robustness of UE, it is necessary to investigate some new techonologies. The rearch iterms in this paper include:enhanced link adaptation, SU/MU MIMO transmission,3D MIMO, and mobility enhancement in HetNets. The novelties in this paper are as follows.
     1) It is known that the dynamically changed inter-cell interference is exsited in closed-loop MIMO based wireless systems. The standard method to solve this issue is OLLA. However, the OLLA technology can only reduce the CSI mismatch from the long term statistic point of view. In this paper, an enhanced link adaptation scheme based on cooperative interference prediction is proposed to reduce the CSI mismatch issue. In this scheme, it utilizes the CSIs which can be shared within the cluster to predict the dynamically changed ICI and then adjust the SE at the BS side. With the dynamic ICI prediction, more proper MCS can be chosen and thus the accuracy of link adaptation can be improved. What's worth noting that, based on joint scheduler, the overhead in the air interface doesn't increase in the proposed scheme.
     2) Because multiple users can share time and frequency resources simultaneously, the system throughput can be improved significantly when performing MU MIMO transmission, compared with SU MIMO transmission. However, the MS cannot be aware of the MU transmission candidates at the BS side. Thus, the MS only optimizes its own link when performing link adaptation. When BS performs the MU transmission, this CSI may be mismatched and then the system capacity could reduce. In this paper, we propose one novel CSI feedback method, which could improve the system throughput when the BS dynamically performs the SU/MU switching. In this scheme, BS can indicate the MS feeds back the SU-MIMO optimized or MU-MIMO optimized CSI. When the MU-MIMO optimized CSI is fed back, the high rank layer CSI can always contain the principle eigen vector of the fading chanel. Besides, the higher rank layer CSI can capture the inter-layer interference automatically. Due to instruction of the BS signaling, the performance of the SU-MIMO transmission is not compromised either.
     3) The3D MIMO technology has been attracted many attentions and is considered as a key technology to improve the spectral efficiency for the MIMO based wireless communication systems. Compared with the existed2D MIMO technology, in the3D MIMO based wireless system, the BS can exploit both the horizontal and vertical space to transmit signal and eliminate the inter-cell interference. However, the3D MIMO technology is still under discussing. In this paper, as a pioneer, we propose two schemes to support the3D MIMO transmission. The two schemes are based on the vertical beamforming gains compensated at BS side and MS side, respectively. In the two schemes, the CSI-RS ports are configured differently and thus different reference signals can be measured by MS. The two schemes can be implemented in LTE-Advanced system both. We give their pros and cons detailedly. Compared with the reference scheme in LTE-Advanced system, the system average SE and cell-edge SE can be improved significantly using the proposed schemes.
     4) It is difficult for the convertional homogeneous networks to meet the rapidly-expanding data demand for the wireless communication systems. One effective and cost-efficency method to increase the system capacity is to deploy the LPNs, which is named as HetNets. However, UE will suffer more serious interference in HetNets compared with it is in homogenous networks and the mobility performance will be deteriorated. In this paper, we propose two schemes to enhance the mobility performance for HetNets, which are based on the dynamically changed RSRP from pico cell and radio link quality, repectively. Importantly, the two schemes are complimant rather than contradict, and can be implemented together to further enhance the mobility performance.
     In this paper, for MIMO-OFDM bases LTE-Advanced system, we investigate and deeply dig four key technologies, that are link adaptation, SU-MIMO/MU-MIMO dynamical switching,3D MIMO, and mobility enhancements in HetNets. Based on the analysis, we propose some schemes and solutions accordingly. Accroding to the system level simulation, using the proposed schemes, it is shown that the system average spectral efficiency and UE's throughput in cell edge coverage can be improved largely, and the mobility robustness of UE can be enhanced significantly.
引文
[1]TD-LTE Evolution and Sharing of TD-LTE Trial, CMCC,2012.
    [2]沈嘉,索士强等.3GPP长期演进(LTE)技术原理与系统设计.北京,人民邮电出版社.2008.
    [3]REPORT ITU-R M.2134. Requirements related to technical performance for IMT-Advanced radio interface(s).2008.
    [4]Sampath H, Talwar S., Tellado J., Erceg V, Paulraj A. A fourth-generation MIMO-OFDM broadband wireless system:design, performance, and field trial results. IEEE Communications Magazine.2002,40(9):143-149.
    [5]Li Y.G, Winters J.H., Sollenberger N.R. MIMO-OFDM for wireless communications: signal detection with enhanced channel estimation. IEEE Transactions on Communications. 2002,50(9):1471-1477.
    [6]Bolcskei H., ETH Zurich. MIMO-OFDM wireless systems:basics, perspectives, and challenges. IEEE Wireless Communications Magazine.2006,13(4):31-37.
    [7]Hongwei Yang. A road to future broadband wireless access:MIMO-OFDM-Based air interface. IEEE Communications Magazine.2005,43(1):53-60.
    [8]Mohammadnia-Avval M., Snow C., Lampe L. Error-Rate Analysis for Bit-Loaded Coded MIMO-OFDM. IEEE Transactions on Vehicular Technology.2010,59(5):2340-2351.
    [9]Bolcskei H., Borgmann M., Paulraj A.J. Impact of the propagation environment on the performance of space-frequency coded MIMO-OFDM. IEEE Journal on Selected Areas in Communications.2003,21(3):427-439.
    [10]Joon Hyun Sung; Barry, J.R. Approaching the Zero-Outage Capacity of MIMO-OFDM Without Instantaneous Water-Filling. IEEE Transactions on Information Theory.2008, 54(4):1423-1436.
    [11]Savazzi S., Nicoli M., Sternad, M. A Comparative Analysis of Spatial Multiplexing Techniques for Outdoor MIMO-OFDM Systems with a Limited Feedback Constraint. IEEE Transactions on Vehicular Technology.2009,58(1):218-230.
    [12]Shaodan Ma, Tung-Sang Ng. Time-Domain Signal Detection Based on Second-Order Statistics for MIMO-OFDM Systems. IEEE Transactions on Signal Processing.2007,55(3): 1150-1158.
    [13]3GPP TS 36.211 V10.1.0., Evolved universal terrestrial radio access (E-UTRA); Physical Channels and Modulation.2011.
    [14]3GPP TS 36.213 V10.0.0., Evolved universal terrestrial radio access (E-UTRA). Physical layer procedures.2010.
    [15]T. L. Marzetta. Non-cooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications.2010,9(11):3590-3600.
    [16]3GPP TR 36.808 V10.0.0., Evolved Universal Terrestrial Radio Access (E-UTRA); Carrier Aggregation; Base Station (BS) radio transmission and reception.2012.
    [17]3GPP TR 36.823 V10.1.0., Evolved Universal Terrestrial Radio Access (E-UTRA); Carrier Aggregation Enhancements; UE and BS radio transmission and reception.2012.
    [18]3GPP TR 36.912 V11.0.0., Feasibility study for Further Advancements for E-UTRA (LTE-Advanced).2012.
    [19]3GPP TS 36.300 V11.3.0., Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2.2012.
    [20]Zhang L., Zheng K., Wang W. Huang L. Performance analysis on carrier scheduling schemes in the long-term evolution-advanced system with carrier aggregation. IET Communications.2011,5(5):612-619.
    [21]Zukang Shen, Papasakellariou A., Montojo J. Overview of 3GPP LTE-advanced carrier aggregation for 4G wireless communications. IEEE Communications Magazine.2012,50(2): 122-130.
    [22]Guangxiang Yuan, Xiang Zhang, Wenbo Wang, Yang Yang. Carrier aggregation for LTE-advanced mobile communication systems. IEEE Communications Magazine.2010,48(2): 88-93.
    [23]Pedersen K.I., Frederiksen F., Rosa C. Nguyen, H.; Garcia, L.G.U.; Yuanye Wang. Carrier aggregation for LTE-advanced:functionality and performance aspects. IEEE Communications Magazine.2011,49(6):89-95.
    [24]Onireti O., Heliot F., Imran M.A. On the Energy Efficiency-Spectral Efficiency Trade-Off in the Uplink of CoMP System. IEEE Transactions on Wireless Communications.2012,11(2): 556-561.
    [25]Annapureddy V. S., E1 Gamal A. Veeravalli V. V. Degrees of Freedom of Interference Channels With CoMP Transmission and Reception. IEEE Transactions on Information Theory. 2012,58(9):5740-5760.
    [26]Uk Jang, Hyukmin Son, Jongrok Park, Sanghoon Lee. CoMP-CSB for ICI Nulling with User Selection. IEEE Transactions on Wireless Communications.2011,10(9):2982-2993.
    [27]Kaltenberger F., Kountouris M., Gesbert D., Knopp R. On the trade-off between feedback and capacity in measured MU-MIMO channels. IEEE Transactions on Wireless Communications.2009,8(9):4866-4875.
    [28]Junling Mao, Jinchun Gao, Yuanan Liu, Gang Xie. Simplified Semi-Orthogonal User Selection for MU-MIMO Systems with ZFBF. IEEE Wireless Communications Letters.2012, 1(1):42-45.
    [29]Huiqin Du, Pei-Jung Chung. A Probabilistic Approach for Robust Leakage-Based MU-MIMO Downlink Beamforming with Imperfect Channel State Information. IEEE Transactions on Wireless Communications.2012,11(3):1239-1247.
    [30]Shirani-Mehr H., Papadopoulos H., Ramprashad S.A. Caire, G Joint Scheduling and ARQ for MU-MIMO Downlink in the Presence of Inter-Cell Interference. IEEE Transactions on Communications.2011,59(2):578-589.
    [31]Pu-Hsuan Lin, Shang-Ho Tsai. Performance Analysis and Algorithm Designs for Transmit Antenna Selection in Linearly Precoded Multiuser MIMO Systems. IEEE Transactions on Vehicular Technology.2012,61(4):1698-1708.
    [32]Aleksandar Damnjanovic, Juan Montojo, Yongbin Wei, Tingfang Ji, Tao Luo, Madhavan, Vajapeyam, Taesang Yoo, Osok Song, and Durga Malladi. A Survey on 3GPP Heterogeneous Networks. IEEE Wireless Communications Magazine.2011,18(3):10-21.
    [33]Lopez-Perez D., Guvenc I., de la Roche G., Kountouris M., Quek T.Q.S. Jie Zhang. Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wireless Communications Magazine.2011,18(3):22-30.
    [34]Bulakci O., Redana S., Raaf B., Hamalainen J. Impact of power control optimization on the system performance of relay based LTE-Advanced heterogeneous networks. Journal of Communications and Networks.2011,13(4):345-359.
    [35]马霓,邬钢等LTE-UMTS长期演进理论与实践.北京,人民邮电出版社,2009.
    [36]L. H. Brandenburg, A. D. Wyner. Capacity of the Gaussian Channel with Memory:The Multivariate Case. Bell System Technical Journal.1974,53(5):745-778.
    [37]Salz, J. Digital transmission over cross-coupled linear channels. AT&T Technical Journal. 1985,64(6):1147-1159.
    [38]Van Veen B.D., Buckley K.M. Beamforming:A versatile approach to spatial filtering. IEEE ASSP Magazine.1988,5(2):4-24.
    [39]Arogyaswami Paulraj and Thomas Kailath. Increasing capacity in wireless broadcast systems using distributed transmission/directional reception. United States Patent.1994. No. 5,345,599.
    [40]Hu Jin, Bang Chul Jung, Dan Keun Sung. A Tradeoff between Single-User and Multi-User MIMO Schemes in Multi-Rate Uplink WLANs. IEEE Transactions on Wireless Communications.2011,10(10):3332-3342.
    [41]Cheng Wang, Murch, R.D. Adaptive downlink multi-user MIMO wireless systems for correlated channels with imperfect CSI. IEEE Transactions on Wireless Communications.2006, 5(9):2435-2446.
    [42]Chengling Jiang, Wang M.M., Feng Shu, Jianxin Wang, Weixin Sheng, Qian Chen. Multi-User MIMO with Limited Feedback Using Alternating Codebooks. IEEE Transactions on Communications.2012,60(2):333-338.
    [43]Bellalta B., Daza V., Oliver M. An Approximate Queueing Model for Multi-Rate Multi-User MIMO Systems. IEEE Communications Letters.2011,15(4):392-394.
    [44]Pei Xiao, Sellathurai, M. Improved Linear Transmit Processing for Single-User and Multi-User MIMO Communications Systems. IEEE Transactions on Signal Processing.2010, 58(3):1768-1779.
    [45]Spencer Q.H., Peel C.B., Swindlehurst A.L., Haardt M. An introduction to the multi-user MIMO downlink. IEEE Communications Magazine.2004,42(10):60-67.
    [46]Sadek M., Aissa S. Leakage Based Precoding for Multi-User MIMO-OFDM Systems. IEEE Transactions on Wireless Communications.2011,10(8):2428-2433.
    [47]Gao X., Li L., Zhang P., Song L., Zhang G, Wang Q. Low-complexity RBD precoding method for downlink of multi-user MIMO system. Electronics Letters.2010,46(23): 1574-1576.
    [48]Ramprashad S.A., Papadopoulos H.C., Benjebbour A., Kishiyama Y., Jindal N., Caire G. Cooperative cellular networks using multi-user MIMO:trade-offs, overheads, and interference control across architectures. IEEE Communications Magazine.2011,49(5):70-77.
    [49]Yuejie Chi, Gomaa A., Al-Dhahir N., Calderbank A.R. Training Signal Design and Tradeoffs for Spectrally-Efficient Multi-User MIMO-OFDM Systems. IEEE Transactions on Wireless Communications.2011,10(7):2234-2245.
    [50]Quan Zhou, Huaiyu Dai. Joint antenna selection and link adaptation for MIMO systems. IEEE Transactions on Vehicular Technology.2006,55(1):243-255.
    [51]Hun Seok Kim, Daneshrad B. Energy-Constrained Link Adaptation for MIMO OFDM Wireless Communication Systems. IEEE Transactions on Wireless Communications.2010, 9(9):2820-2832.
    [52]Lau V, Tianyu W. On the encoding rate and discrete modulation adaptation design for MIMO links. IEEE Transactions on Wireless Communications.2007,6(1):50-54.
    [53]Cheolkyu Shin, Hyounkuk Kim, Kyeong Jin Kim, Hyuncheol Park. High-Throughput Low-Complexity Link Adaptation for MIMO BIC-OFDM Systems. IEEE Transactions on Communications.2011,59(4):1078-1088.
    [54]Qiuyan Xia, Mounir Hamdi, and Khaled Ben Letaief. Open-Loop Link Adaptation for Next-Generation IEEE 802.1 In Wireless Networks. IEEE Transactions on Vehicular Technology.2009,58(7):3713-3725.
    [55]Lampinen M., Haikola V. Open-loop MIMO extensions for HSDPA with practical constraints. IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications.2005,3(3):1688-1692.
    [56]Nagai Y., Fujimura A., Akihara M., Nakase H., Kameda S., Oguma H., Tsubouchi K. A SINR estimation for closed-loop link adaptation of 324 Mbit/sec WLAN system. IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications.2008, pp. 1-6.
    [57]Guowang Miao, Himayat N., Li GY. Energy-efficient link adaptation in frequency-selective channels. IEEE Transactions on Communications.2010,58(2):545-554.
    [58]Khodakarami H., Lahouti F. Link adaptation for physical layer security over wireless fading channels. IET Communications.2012,6(3):353-362.
    [59]Baum K.L., Kostas T.A., Sartori P.J. Classon, B.K. Performance characteristics of cellular systems with different link adaptation strategies. IEEE Transactions on Vehicular Technology. 2003,52(6):1497-1507.
    [60]Ginde S.V., MacKenzie A.B., Buehrer R.M., Komali R.S. A Game-Theoretic Analysis of Link Adaptation in Cellular Radio Networks. IEEE Transactions on Vehicular Technology. 2008,57(5):3108-3120.
    [61]Leung K.K., Driessen P.F., Chawla K., Xiaoxin Qiu. Link adaptation and power control for streaming services in EGPRS wireless networks. IEEE Journal on Selected Areas in Communications.2001,19(10):2029-2039.
    [62]Jensen T.L., Kant S., Wehinger J., Fleury B.H. Fast Link Adaptation for MIMO OFDM. IEEE Transactions on Vehicular Technology.2010,59(8):3766-3778.
    [63]Pedersen K.I., Kolding T.E., Frederiksen F., Kovacs I.Z., Laselva D., Mogensen P.E. An overview of downlink radio resource management for UTRAN long-term evolution. IEEE Communications Magazine.2009,47(7):86-93.
    [64]Toni L., Conti A. Does Fast Adaptive Modulation Always Outperform Slow Adaptive Modulation? IEEE Transactions on Wireless Communications.2011,10(5):1504-1513.
    [65]Woohyun Seo, Myeon-gyun Cho, Yu, T. Daesik Hong. A New Full-band Feedback Scheme Using the Adaptive Grouping Method in OFDMA Systems. IEEE Transactions on Wireless Communications.2008,7(6):1982-1986.
    [66]Tianyu Wu, Lau V.K.N. Robust Precoder Adaptation for MIMO Links with Noisy Limited Feedback. IEEE Transactions on Information Theory.2009,55(4):1640-1649.
    [67]Chan-Byoung Chae, Forenza A., Heath R.W., McKay M. Collings I. Adaptive MIMO transmission techniques for broadband wireless communication systems. IEEE Communications Magazine.2010,48(5):112-118.
    [68]Jaesang Ham, Kyeongyeon Kim, Sangheon Kim, Chungyong Lee. Link-Adaptive MIMO Systems With Ordered SIC Receiver Using Stream-Ordering Algorithms in Multiuser Environments. IEEE Transactions on Vehicular Technology.2008,57(5):3224-3230.
    [69]Goldsmith A., Jafar S.A., Jindal N., Vishwanath S. Capacity limits of MIMO channels. IEEE Journal on Selected Areas in Communications.2003,21(5):684-702.
    [70]Nishimori K., Honma N., Murakami T, Hiraguri T. Effectiveness of Relay MIMO Transmission by Measured Outdoor Channel State Information. IEEE Transactions on Antennas and Propagation.2012,60(2):615-623.
    [71]Chengshan Xiao, Jingxian Wu, Leong S.-Y, Yahong Rosa Zheng, Letaief K.B. A discrete-time model for triply selective MIMO Rayleigh fading channels. IEEE Transactions on Wireless Communications.2004,3(5):1678-1688.
    [72]Chiani M., Win M.Z., Hyundong Shin. MIMO Networks:The Effects of Interference. IEEE Transactions on Information Theory.2010,56(1):336-349.
    [73]Lingjia Liu, Runhua Chen, Geirhofer, S., Sayana K., Zhihua Shi, Yongxing Zhou. Downlink MIMO in LTE-advanced:SU-MIMO vs. MU-MIMO. IEEE Communications Magazine.2012,50(2):140-147.
    [74]Mehana A.H., Nosratinia A. Diversity of MMSE MIMO Receivers. IEEE Transactions on Information Theory.2012,58(11):6788-6805.
    [75]Kuchar A., Rossi J.-P., Bonek E. Directional macro-cell channel characterization from urban measurements. IEEE Transactions on Antennas and Propagation.2000,48(2):137-146.
    [76]K. Kalliola, K. Sulonen, H. Laitinen, O. Kivekas, J. Krogerus, and P. Vainikainen. Angular power distribution and mean effective gain of mobile antenna in different propagation environments. IEEE Transactions on Vehicular Technology.2002,51(5):823-838.
    [77]Marzetta T.L. Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas. IEEE Transactions on Wireless Communications.2010,9(11):3590-3600.
    [78]3GPP TR 36.814 v9.0.0. Evolved universal terrestrial radio access (E-UTRA); Further advancements for E-UTRA physical layer aspects. March.2010.
    [79]L. Lindbom, R. Love, S. Krishnamurthy, C. Yao, N. Miki, and V. Chandrasekhar. Enhanced Inter-cell Interference Coordination for Heterogeneous Networks in LTE-Advanced: A Survey. In Proceedings of CoRR.2011.
    [80]3GPP TS 36.331 v10.5.0. Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification. March.2012.
    [81]Zahran, A.H. Extended Synchronization Signals for eliminating PCI confusion in heterogeneous LTE. IEEE Wireless Communications and Networking Conference (WCNC), 2011, pp.2588-2592.
    [82]Damnjanovic A., Montojo J., Joonyoung Cho, Hyoungju Ji, Jin Yang, Pingping Zong. UE's role in LTE advanced heterogeneous networks. IEEE Communications Magazine.2012,50(2): 164-176.
    [83]Van de Beek J., Cai T., Grimoud S., Sayrac B., Mahonen P., Nasreddine J., Riihijarvi J. How a layered rem architecture brings cognition to today's mobile networks. IEEE Wireless Communications Magazine.2012,19(4):17-24.
    [84]Ghosh A., Ratasuk R., Mondal B., Mangalvedhe N., Thomas T. LTE-advanced: next-generation wireless broadband technology. IEEE Wireless Communications Magazine. 2010,17(3):10-22.
    [85]Bhat P., Nagata S., Campoy L., Berberana I., Derham T., Guangyi Liu, Xiaodong Shen, Pingping Zong, Jin Yang. LTE-advanced:an operator perspective. IEEE Communications Magazine.2012,50(2):104-114.
    [86]Dhillon H.S., Ganti R.K., Baccelli F., Andrews J.G. Modeling and Analysis of K-Tier Downlink Heterogeneous Cellular Networks. IEEE Journal on Selected Areas in Communications.2012,30(3):550-560.
    [87]Barbera S., Michaelsen P.H., Saily M., Pedersen K. Mobility performance of LTE co-channel deployment of macro and pico cells. IEEE Wireless Communications and Networking Conference (WCNC),2012, pp.2863-2868.
    [88]Kolehmainen N., Alanen O., Henttonen T. Mobility Performance in Heterogeneous LTE Networks with Indoor Base Stations. IEEE 73rd Vehicular Technology Conference (VTC Spring),2011, pp.1-5.
    [89]Mingju Li, Juejia Zhou, Liu Liu, Xiaoming She, Lan Chen. Secondary Serving Cell Selection for Heterogeneous Network with RRH Deployment. IEEE International Conference on Communications Workshops (ICC).2011, pp.1-5.
    [90]Kitagawa K., Komine T., Yamamoto T., Konishi S. Performance evaluation of handover in LTE-Advanced systems with pico cell Range Expansion. IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC),2012, pp.1071-1076.
    [91]Tobias Lindstr(?)m Jensen, Shashi Kant, Joachim Wehinger, and Bernard Henri Fleury. Fast Link Adaptation for MIMO OFDM. IEEE Transactions on Vehicular Technology.2010,59(8): 3766-3778.
    [92]Hun Seok Kim, and Babak Daneshrad. Energy-Constrained Link Adaptation for MIMO OFDM Wireless Communication Systems. IEEE Transactions on Wireless Communications. 2010,9(9):2820-2832.
    [93]Xin Wang, Qingwen Liu, and Georgios B. Giannakis. Analyzing and Optimizing Adaptive Modulation Coding Jointly With ARQ for QoS-Guaranteed Traffic. IEEE Transactions on Vehicular Technology.2007,56(2):710-720.
    [94]Bayesteh A., Khandani A.K. Asymptotic Analysis of the Amount of CSI Feedback in MIMO Broadcast Channels. IEEE Transactions on Information Theory.2012,58(3): 1612-1629.
    [95]Makki B., Eriksson T. On Hybrid ARQ and Quantized CSI Feedback Schemes in Quasi-Static Fading Channels. IEEE Transactions on Communications.2012,60(4):986-997. [96] Ting P., Chao-Kai Wen, Jiunn-Tsair Chen. An Efficient CSI Feedback Scheme for MIMO-OFDM Wireless Systems. IEEE Transactions on Wireless Communications.2007, 6(6):2012-2015.
    [97]Hua Zhang, Ye Li, Stolpman V, van Waes N. A reduced CSI feedback approach for precoded MIMO-OFDM systems. IEEE Transactions on Wireless Communications.2007, 6(1):55-58.
    [98]Seung Young Park. Performance of Differentiated Rate Scheduling Using Contention-Based CSI Feedback. IEEE Transactions on Vehicular Technology.2010,59(6): 3143-3148.
    [99]Hammarwall D., Bengtsson M., Ottersten B. Acquiring Partial CSI for Spatially Selective Transmission by Instantaneous Channel Norm Feedback. IEEE Transactions on Signal Processing.2008,56(3):1188-1204.
    [100]Rajanna A., Jindal N. Multiuser Diversity in Downlink Channels:When Does the Feedback Cost Outweigh the Spectral Efficiency Benefit? IEEE Transactions on Wireless Communications.2012,11(1):408-418.
    [101]Zheng J., Rao B.D. Capacity Analysis of MIMO Systems Using Limited Feedback Transmit Precoding Schemes. IEEE Transactions on Signal Processing.2008,56(7): 2886-2901.
    [102]Jun Zheng, Rao B.D. Analysis of Multiple Antenna Systems With Finite-Rate Channel Information Feedback Over Spatially Correlated Fading Channels. IEEE Transactions on Signal Processing.2007,55(9):4612-4626.
    [103]Jun Zheng, Duni E.R., Rao B.D. Analysis of Multiple-Antenna Systems With Finite-Rate Feedback Using High-Resolution Quantization Theory. IEEE Transactions on Signal Processing.2007,55(4):1461-1476.
    [104]Mohammad Shikh-Bahaei. Joint Optimization Of "Transmission Rate" and "Outer-Loop SNR Target" Adaptation Over Fading Channels. IEEE Transactions on Communications.2007,55(3):398-403.
    [105]James Yang, Noel Tin, and Amir K. Khandani. Adaptive Modulation and Coding in 3G Wireless Systems. IEEE 64rd Vehicular Technology Conference (VTC Autumn).2002, pp. 544-548.
    [106]F. Zarringhalam, B. Seyfe, M. Shikh-Bahaei, G Charbit, and H. Aghvami. Jointly Optimized Rate and Outer Loop Power Control with Single-and Multi-User Detection. IEEE Transactions on Wireless Communications.2009,8(1):186-195.
    [107]R. Michael Buehrer, and Rahul Mahajan. On the Usefulness of Outer-Loop Power Control with Successive Interference Cancellation. IEEE Transactions on Communications. 2003,51(12):2091-2102.
    [108]Sebastien de la Kethulle de Ryhove, Geir Egil (?)ien, and Lars Lundheim. An Efficient Design Methodology for Constant Power Link Adaptation Schemes in Short-Range Scenarios. IEEE Transactions on Vehicular Technology.2008,57(4):2132-2144.
    [109]Peng Hui Tan, Yan Wu, and Sumei Sun. Link Adaptation Based on Adaptive Modulation and Coding for Multiple-Antenna OFDM System. IEEE Journal on Selected Areas in Communications.2008,26(8):1599-1606.
    [110]3GPP TSG RAN WGI Document R1-010589. Selection of MCS levels in HSDPA [S]. NEC and Telecom MODUS,2001.
    [111]Fan Chen, Chen Meiya, Su Lijun, Zhang Xin, and Yang Dacheng. Research on Threshold Adjustment Algorithm in Modulation and Coding. In 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.2006, pp. 1-4).
    [112]Daewon Lee, Hanbyul Seo, Clerckx B., Hardouin E., Mazzarese D., Nagata S., Sayana K. Coordinated multipoint transmission and reception in LTE-advanced:deployment scenarios and operational challenges. IEEE Communications Magazine.2012,50(2):148-155.
    [113]Sawahashi M., Kishiyama Y., Morimoto A., Nishikawa D., Tanno M. Coordinated multipoint transmission/reception techniques for LTE-advanced [Coordinated and Distributed MIMO]. IEEE Wireless Communications Magazine.2010,17(3):26-34.
    [114]Juho Lee, Younsun Kim, Hyojin Lee, Boon Loong Ng, Mazzarese D., Jianghua Liu, Weimin Xiao, Yongxing Zhou. Coordinated multipoint transmission and reception in LTE-advanced systems. IEEE Communications Magazine.2012,50(11):44-50.
    [115]Irmer R., Droste H., Marsch P., Grieger M., Fettweis G, Brueck S., Mayer H.-P., Thiele L., Jungnickel V. Coordinated multipoint:Concepts, performance, and field trial results. IEEE Communications Magazine.2011,49(2):102-111.
    [116]Andreas M"uller, and Philipp Frank. Cooperative Interference Prediction for Enhanced Link Adaptation in the 3 GPP LTE Uplink. IEEE 71rd Vehicular Technology Conference (VTC Spring),2010, pp.1-5.
    [117]Krishna P. Kongara, Ping-Heng Kuo, Peter J. Smith, Lee M. Garth, and Alan Clark. Block-Based Performance Measures for MIMO OFDM Beamforming Systems. IEEE Transactions on Vehicular Technology.2009,58(5):2236-2248.
    [118]Cheng Wang, Edward K. S. Au, Ross D. Murch, Wai Ho Mow, Roger S. Cheng, and Vincent Lau. On the Performance of the MIMO Zero-Forcing Receiver in the Presence of Channel Estimation Error. IEEE Transactions on Wireless Communications.2007,6(3): 805-810.
    [119]Ping Li, Debashis Paul, Ravi Narasimhan, and John Cioffi. On the Distribution of SINR for the MMSE MIMO Receiver and Performance Analysis. IEEE Transactions on Information Theory.2006,52(1):271-286.
    [120]Behrang Nosrat-Makouei, Jeffrey G. Andrews, and Robert W. Heath, Jr. MIMO Interference Alignment over Correlated Channels with Imperfect CSI. IEEE Transactions on Signal Processing.2011,59(6):2783-2794.
    [121]Hui Song, Raymond Kwan, and Jie Zhang. On Statistical Characterization of EESM Effective SNR over Frequency Selective Channels. IEEE Transactions on Wireless Communications.2009,8(8):3955-3960.
    [122]Hui Song, Raymond Kwan, and Jie Zhang. Approximations of EESM Effective SNR Distribution. IEEE Transactions on Communications.2011,59(2):603-612.
    [123]Min Zhang, Mansoor Shafi, Peter J. Smith, and Pawel A. Dmochowski. Precoding Performance with Codebook Feedback in a MIMO-OFDM System. IEEE International Conference on Communications (ICC),2011, pp:1-6.
    [124]3GPP TSG RAN WG1 Document R1-090822, System Performance Evaluation of Downlink CoMP, Huawei, Athens, Greece.2009.
    [125]Giuseppe Caire, Nihar Jindal, Mari Kobayashi, and Niranjay Ravindran. Multiuser MIMO Achievable Rates with Downlink Training and Channel State Feedback. IEEE Transactions on Information Theory.2010,56(6):2845-2866.
    [126]Nihar Jindal. MIMO Broadcast Channels with Finite-Rate Feedback. IEEE Transactions on Information Theory.2006,52(11):5045-5060.
    [127]Taesang Yoo, Nihar Jindal, and Andrea Goldsmith. Multi-Antenna Downlink Channels with Limited Feedback and User Selection. IEEE Journal on Selected Areas in Communications.2007,25(7):1478-1491.
    [128]3GPP TR 25.996 V9.0.0., Spatial channel model for Multiple Input Multiple Output (MIMO) simulations.2009.
    [129]IEEE 802.16m Evaluation Methodology Document. IEEE 802.16m-08/004r5.2009.
    [130]Emil Bjornson, Randa Zakhour, David Gesbert, and Bjorn Ottersten. Cooperative Multicell Precoding:Rate Region Characterization and Distributed Strategies with Instantaneous and Statistical CSI. IEEE Transactions on Signal Processing.2010,58(8):4298-4310.
    [131]Lu Zhaogan, Rao Yuan, Zhang Taiyi, Wang Liejun (2010). Multiuser MIMO OFDM Based TDD/TDMA for Next Generation Wireless Communication Systems. Wireless Personal Communications,52:289-324.
    [132]Ryan Daniel J., Collings Iain B., Clarkson I. Vaughan L., and Heath Jr Robert W (2009). Performance of Vector Perturbation Multiuser MIMO Systems with Limited Feedback. IEEE Transactions on Communications.57(9):2633-2644.
    [133]3GPP TSG RAN WG1 Document R1-105324. Enhanced power measurement offset for MU-MIMO.2010,3GPP TSG-RAN WG1#62bis.
    [134]3GPP TSG RAN WG1 Document Rl-104601. Multi-hypothesis feedback in support of SU/MU-MIMO in LTE-A systems.2010,3GPP, TSG-RAN WG1#62bis.
    [135]3GPP TSG RAN WG1 Document Rl-103663. Multi-component feedback for SU/MU-MIMO dynamic switching enhancement.2010,3GPP TSG RAN WG1 Meeting #61bis.
    [136]Viswanath P., Tse D.N.C., Laroia R. Opportunistic Beamforming Using Dumb Antennas. IEEE Transactions on Information Theory.2002,48(6):1277-1294.
    [137]Vincent K. N. Lau. Proportional Fair Space-Time Scheduling for Wireless Communications. IEEE Transactions on Communications.2005,53(8):1353-1360.
    [138]Schellmann M., Thiele L., Haustein T., Jungnickel V. Spatial Transmission Mode Switching in Multiuser MIMO-OFDM Systems with User Fairness. IEEE Transactions on Vehicular Technology.2010,59(1):235-247.
    [139]Matthew Baker. From LTE-Advanced to the Future. IEEE Communications Magazine. 2012,50(2):116-120.
    [140]Xiaojia Lu, Antti Tolli, Olli Piirainen, Markku Juntti, Wei Li. Comparison of Antenna Arrays in a 3-D Multiuser Multicell Network. IEEE International Conference on Communications Workshops (ICC).2011, pp.1-6.
    [141]Mansoor Shafi, Min Zhang, Aris L. Moustakas, Peter J. Smith, Andreas F. Molisch, Fredrick Tufvesson, Steven H. Simon. Polarized MIMO Channels in 3-D:Models, Measurements and Mutual Information. IEEE Journal on Selected Areas in Communications. 2006,24(3):514-527.
    [142]Su Khiong Yong, and John S. Thompson. Three-Dimensional Spatial Fading Correlation Models for Compact MIMO Receivers. IEEE Transactions on Wireless Communications.2005,4(6):2856-2869.
    [143]Manh-Tuan Dao, Viet-Anh Nguyen, Yun-Taek Im, Seong-Ook Park, and Giwan Yoon. 3D Polarized Channel Modeling and Performance Comparison of MIMO Antenna Configurations with Different Polarizations. IEEE Transactions on Antennas and Propagation. 2011,59(7):2672-2682.
    [144]Konstantinos B. Baltzis, John N. Sahalos. A Simple 3-D Geometric Channel Model for Macrocell Mobile Communications. Wireless Personal Communications,2009.
    [145]P. Kyosti. Winner Ⅱ channel models, IST-4-027756 WINNER Ⅱ, D1.1.2 V1.1. WINNER Project, Tech. Rep., Sep.2007.
    [146]L. Schumacher, K. Pedersen, and P. Mogensen. From antenna spacings to theoretical capacities-guidelines for simulating MIMO systems. IEEE 13rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC).2002, vol.2, pp.587-592.
    [147]Boon Loong Ng, Yang Li, Young-Han Nam, Jianzhong (Charlie) Zhang, Krishna Sayana, Younsun Kim, and Juho Lee. Fulfilling the Promise of Massive MIMO with 2D Active Antenna Array. IEEE Globecom 2012.
    [148]3GPP TSG RAN WG1 Document. R1-112420. Considerations on CSI feedback enhancements for high-priority antenna configurations.2011,3 GPP TSG-RAN WG1#66.
    [149]D. J. Love, R. W. Heath Jr., and T. Strohmer. Grassmannian beamforming for multiple-input multiple-output wireless systems. IEEE Transactions on Information Theory. 2003,49(10):2735-2747.
    [150]Yuefeng Peng, Wei Yang, Yuan Zhu, and Young-I1 Kim. An Enhanced Link Adaptation Scheme Based on Cooperative Interference Prediction for MIMO-OFDM Systems. Wireless Personal Communications.2012, DOI:10.1007/s11277-012-0706-3.
    [151]Shu-Ping Yeh, Shilpa Talwar, Geng Wu, Nageen Himayat, and Kerstin Johnsson, Capacity and coverage enhancement in heterogeneous networks. IEEE Wireless Communications Magazine.2011,18(3):32-38.
    [152]Ying Peng, Fei Qin. Exploring Het-Net in LTE-Advanced System:Interference Mitigation and Performance Improvement in Macro-Pico Scenario. IEEE International Conference on Communications Workshops (ICC).2011.
    [153]Kenta Okino, Taku Nakayama, Chiharu Yamazaki, Hirotaka Sato, and Yoshimasa Kusano. Pico Cell Range Expansion with Interference Mitigation toward LTE-Advanced Heterogeneous Networks. IEEE International Conference on Communications Workshops (ICC).2011.
    [154]E. Stevens-Navarro, R. Gallardo-Medina, U. Pineda-Rico and J.Acosta-El'ias. Application of MADM Method VIKOR for Vertical Handoff in Heterogeneous Wireless Networks. IEICE Transactions on Communications.2012, vol. E95-B, no.2, pp.599-602.
    [155]T. Yagyu, M. Jibiki, and K. Yoshida. A Proposal of Wireless Network Routing Protocol for Heterogeneous Mobility. IEICE Transactions on Communications.2007, vol. E90-B, no.10, pp.2693-2701.
    [156]V. Kafle, E. Kamioka, and S. Yamada. Maximizing user satisfaction based on mobility on heterogeneous mobile multimedia communication networks. IEICE Transactions on Communications.2005, vol. E88-B, no.7, pp.2709-2717.
    [157]3GPP TSG-RAN WG2 Document R2-114950. Discussion on the mobility performance enhancement for co-channel HetNet deployment.2011.
    [158]3GPP TSG-RAN WG2 Document R2-115211. On UE-speed-aware methods for improving the mobility performance in HetNets. Alcatel-Lucent, Alcatel-Lucent Shanghai Bell. 2011.
    [159]3GPP TSG-RAN WG2 Document R2-120350. Improvements to Mobility State Estimation Procedure. Renesas Electronics Europe Ltd.2012.
    [160]3GPP TSG-RAN WG2 Document R2-123085. Issues with Hetnet mobility enhancements based on MSE. Intel Corporation.2012.
    [161]Irina Mihaela Balan, Bart Sas, Thomas Jansen, Ingrid Moerman, Kathleen Spaey, and Piet Demeester. An enhanced weighted performance-based handover parameter optimization algorithm for LTE network. EURASIP Journal on Wireless Communications and Networking.2011,98(11):1687-1472.
    [162]L. Doo-Won, G. Gye-Tae, and K. Dong-Hoi. A Cost-Based Adaptive Handover Hysteresis Scheme toMinimize the Handover Failure Rate in 3GPP LTE System. EURASIP Journal on Wireless Communications and Networking.2010, vol.2010, Article No.6.
    [163]Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Mobility Enhancements in Heterogeneous Networks.3GPP TR 36.839 v0.7.0.2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700