印染污泥干燥特性和干燥工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印染废水在排放前,必须采用物化和生物等手段使各项指标达到排放标准,在这个过程中产生大量印染污泥,其产生量与废水水质和废水处理工艺密切相关。随着印染行业的发展,印染污泥的产量也越来越大。印染污泥含水率高,处理难度大,印染污泥问题已经成为困扰印染企业的严重问题。污泥干燥一方面可使污泥显著减容,另一方面也为污泥的资源化利用打下基础,是解决印染污泥问题的有效途径。
     本文在对两种典型印染污泥的基本性质进行分析的基础上,研究了印染污泥的静态干燥特性,绘制了两种印染污泥的干燥曲线和干燥速率曲线,结果表明,印染污泥干燥过程包括预热阶段、恒速干燥阶段和降速干燥阶段三个阶段,恒速干燥阶段是主要干燥阶段,干燥速率最高,蒸发水分最多。污泥干燥时间和干燥速率受到干燥温度、污泥颗粒大小以及污泥来源的影响。干燥温度越高、污泥颗粒越小,干燥至一定的含水率所需的干燥时间越短,恒速干燥阶段的干燥速率越高。污泥的临界含水率随温度升高、颗粒增大而增大,恒速干燥阶段变短。减小污泥颗粒、增大污泥表面积更有利于污泥干燥过程。
     本文在确定印染污泥的干燥目标为含水率30%后,对印染污泥的干燥工艺进行了探索和研究。首先在连续进料、间歇进料、干料返混的操作方式下对桨叶式干燥机干燥印染污泥的干燥效果和能耗情况进行了试验和比较,发现桨叶式干燥机干燥印染污泥是可行的,水分蒸发速度最高可达12.5Kg/(m2?h),蒸发单位水分耗用蒸汽量1.4~1.5Kg/kgH2O。但连续进料和间歇进料的操作方式都存在一定的缺陷,而干料返混工艺在2.5:1(质量比)的混料比下,虽然可将污泥干燥至预期目标,但能耗较大。在此基础上,结合盘式干燥的优点,形成了印染污泥组合干燥工艺:即采用连续进料的方式,印染污泥首先按干湿污泥1:1(质量比)的混料比在桨叶式干燥机内混料并干燥,而后进入经改造的盘式干燥机,在锅炉烟道气的作用下,干燥至含水率为30%。实验研究表明:组合工艺运行稳定可靠,充分利用了蒸汽和锅炉烟道气两种热源,出泥含水率可保持在30%左右,并呈现2-8mm的污泥颗粒,降低了粉尘污染和干污泥收集难度,综合能耗成本约为164.1元/吨湿污泥,具有一定的推广应用价值。
Printing and dyeing wastewater must be treated by physical-chemical and biological method to satisfy the emission control regulations. In this process, much printing and dyeing sludge was produced. The output of printing and dyeing sludge has close correlation with water quality of printing and dyeing wastewater and its treatment technics. With the development of printing and dyeing industry, the output of printing and dyeing sludge become larger and larger. The moisture of printing and dyeing sludge is very high, so the treatment of printing and dyeing sludge is very difficult. Then the treatment of printing and dyeing sludge has become a problem which feaze printing and dyeing corporation. On the one hand, torrefaction can reduce the cubage of printing and dyeing sludge, on the other hand, it make good preparation for resourceful utilization of printing and dyeing sludge. So torrefaction is a effective method to solve the problem of printing and dyeing sludge.
     Static drying characteristics of two kinds of typical printing and dyeing sludge were studied besed on the research of their physical and chemical characteristics. The drying curve and dying rate curve of two kinds of printing and dyeing sludge was made in this article. The results show that, printing and dyeing sludge drying process include three periods: preheating period, constant rate drying period and the falling rate drying period. Constant rate drying period is the primary period in the drying process, which has highest drying rate and largest evaporation amount. Drying tempreture and particle size and the sourece of printing and dyeing sludge have influence on drying time and drying rate. The higher the drying temperature and the smaller the particles of sludge, the shorter time be needed to dry to a certain moisture content and the higher drying rate in constant rate drying stage. With the drying tempreture increased and the size of sludge particle decreased, the critical moisture content of sludge increse, and constant rate drying period become shorter. Reducing the sludge particle size and increasing the surface area of sludge is more beneficial for sludge drying process.
     In this article, the printing and dyeing sludge need to be dryed to moisture content of 30%. Then the drying technology of printing and dyeing sludge was explored and researched. First, the drying effect and energy consumption of drying by paddle-dryer were researched at different operation mode: the continuous feeding mode , the intermittent feeding mode and. Drying of printing and dyeing sludge by paddle-dryer is feasible, the evaporation rate of water can reach 12.5Kg/m2·h and the vapor consumption is 1.4~1.5Kg/KgH2O. But the continuous feeding operation mode and intermittent feeding operation mode both have some flaws. In dry sludge backmixing operation mode, when mixing ratio is 2.5:1(mass ration of dry sludge and wet sludge), printing and dyeing sludge can be dryed to the moisture content of 30%, but energy consumption is higher. On this basis, combining the advantages of plate-dryer, a combined drying technology of printing and dyeing sludge was formed: In continuous feeding operation mode, First ,the dry sludge(moisture content of 30%) and wet sludge(moisture content of 83%) were mixed at mixing ratio of 1:1 (mass ratio) and dryed in a Paddle-Dryer. Then the sludge which come from paddle-dryer was transported into a improved plate-dryer and be dryed to predetermind target(moisture content of 30%) by the boiler flue gas. Experiment results show that: combined drying technology is stable and reliable for drying of printing and dyeing sludge, and the heat of steam and boiler flue gas both were made full use of. The moisture content of discage of the conbined drying technology can maintain at 30%. The discahrge were sludge particles with diameter at 2-8mm. It can reduce dust pollution and the difficulty to collect dry sludge. The integrated energy cost of conbined drying technology is 164.1 yuan/t (wet sludge). The combined technology is very meaningful to be popularizated and applicated.
引文
[1]尹军,谭学军.污水污泥处理处置与资源化利用[M].北京:化学工业出版社. 2005
    [2] Dos A.B., Cervantes F.J., van Lier J.B.. Review paper on current technologies for decolourisation of textile wastewater: perspectives for anaerobic biotechnology. Bioresearches technology, 2007, 98: 2369-2385
    [3] Diane G., Guarino C., Davis R.. Sludge disposal trends around the globe[J]. Water Engineering and Management, 1993, 140(12):17-20
    [4] Sehafer P.L.. Biosolids management moves forward [J]. Pollution Engineering, 1995, 27(13): 20-30
    [5]孙旭红.污泥处置环境影响综述[J].城市环境与城市生态, 2003, 16(5): 56
    [6]王蓉.化学混凝污泥脱水性能研究[D].广东:广东工业大学, 2008
    [7]徐强,张春敏,赵丽君.污泥处理处置技术及装置[M].北京:化学工业出版社. 2003
    [8] Linak W. P., Wendt O.L.. Toxic Metal emissions from incineration: mechanisms and control[J]. Progress in Energy and Combustion Science, 1993, 19(2): 145-185
    [9]陈尚兵,金保升,金浩.城市垃圾焚烧处理中重金属和有机氯化物的二次污染与防治[J].环境导报. 1998, (6): 7-10
    [10]丁亚兰.国内外废水处理工程设计实例[M].北京:化学工业出版社, 2000:43-45
    [11]林云琴.我国污泥处理处置与利用现状[J].能源环境保护, 2004, 18(6): 15-16
    [12]姚刚.德国的污泥利用和处置[J].城市环境与城市生态. 2000, 13(2): 24-26
    [13]郭眉兰.城市污泥与垃圾堆肥的农田适用对土壤性质的影响[J].农业环境保护,1994, 13(5): 204-209
    [14]张增强.污泥堆肥对几种花卉的生长响应研究.环境污染与控制, 1996, 18(5): 1-4
    [15]张天红.西安市污水污泥林业使用效果的研究.西安农业大学学报, 1994, 22(4): 67
    [16]杨波,陈季华,奚旦立.剩余污泥的处理与处置技术[J].东华大学学报, 2005, 31(2): 126-129
    [17] Burlingame G.A.. Odor Profiling of environmental odors[J]. Water science and technology, 1999, 40(6): 31-38
    [18]王璠.城市污泥干化与堆肥集成技术及关键设备研究[D].安徽:合肥工业大学, 2004
    [19]张新华,朱维斌,张龙江.污泥的处置技术探讨[J].四川环境, 2003, 22(2): 35-38
    [20] Chen G.H., Yue P.L., Mujumdar A.S.. Sludge dewatering and drying[J]. Drying Technology, 2002, 20(4&5): 883-916
    [21]曹恒武,田振山.干燥技术及其工业应用[M].北京:中国石化出版社, 2003. 1-7
    [22]赵庆良,刘雨.废水处理与资源化新工艺[M].北京:中国建筑工业出版社, 2006. 319-320
    [23]施善斌.城市污泥干化、焚烧特性及粘融排渣技术研究[D].上海:上海交通大学.2009
    [24] Kasakura T., Imoto Y., Moringk T.. Overview and system analysis of various sewage sludge drying process[J]. Drying Technology, 1993, 11(5): 871-902
    [25] Borodulya V.A., Dikalenko V.I., Palchonok G.I.. Fluidized bed combustion of solid organic waste and lowgrade coal, research and modeling[A]. Heinschel K.J.. Proceedings 13th International Conference on Fluidized bed combustion[C]. Oralndo, FL: ASME, 1995: 135-142
    [26]马侠.污泥干燥焚烧工艺的实验室研究[D].浙江:浙江大学, 2006
    [27]胡龙,何晶晶.城市污水厂污泥热干燥技术及其应用分析[J].重庆环境科学. 1999, 21(1): 35-36
    [28]方建华,翟华.污泥在循环流化床炉内的燃烧和污染排放特性[J].工程热物理学报. 2001, 22(3): 27-30
    [29]陈小平,赵长建.造纸污泥与非水污泥流化床焚烧时NOX和SO2的排放特性研究[J].工程热物理学报. 1998, 19(6): 776-779
    [30] Nimomiya Y., Lian Z., Takeo S., et al. Transformation of mineral and emission of partieulate matters during co-combustion of coal with sewage sludge[J]. Fuel, 2004, 83: 751-764
    [31] Lars E.A., Bo L.. Co-combustion of Pulp and Paper Sludge with wood Emission of Nitrogen, Sulphur and Chlorine Compounds[A]. Proeeeding of FBC2003 17th International Fluidized Bed Combustion Conference[C]. 2003: 18-21
    [32] Amand L.E., Bo L.. Metal emmison from co-combustion of sewage sludge and coal/wood in fluidized bed[J]. Fuel, 2004, 83:1803-1821
    [33]汪洪生.国外污泥处理技术进展[J].污染防治技术. 1998, 11(1): 32-33.
    [34]陈春云,庄源益,刘斐.干污泥及其改性物对燃料的吸附[J].城市环境与城市生态. 2003, 1(5): 22~24
    [35]李军,陈邦林,胡建斌等.高温突跃法处理城市污泥的研究[J].环境科学学报. 2000, 20(6): 751-754
    [36]俞辉群.日本当前的下水道工程建设及污泥处理技术[J].给水排水. 2004,1(2): 35-36
    [37]张幸涛.城市污泥的减量化和资源化研究[D].重庆:重庆大学, 2005
    [38]李季,吴为中.城市污水处理厂污泥堆肥及土地修复利用[A].首届北京生态建设国际论坛文集[C], 2005
    [39]杨小文,杜英豪.污泥热干化在美国的应用[J].中国给水排水. 2002(1): 92-94
    [40]尹军,谭学军,任南琪.污水污泥处理与处置[J].中国给水排水. 2003(8):15-22
    [41] Wang M.J.. Land application of sewage sludge in China[J]. The Science of the Total Environment. 1997, 197(3): 49-60
    [42] Werthera J., Ogadab T.. Sewage sludge combustion[J]. Progress in Energy and Combustion Science. 1999, 25(1): 55-116
    [43] Gruter H., Matter M., Oehlmann K., et al. Drying of sewage sludge-an important step in waste disposal[J]. Water Science and Technology. 1990, 22(12): 57-63
    [44]张辰,王国华,孙晓.污泥处理处置技术与工程实例[M].北京:化学工业出版社, 2006
    [45] Smollen M. Evaluation of municipal sludge drying and dewatering with respect to sludge volume reduction[J]. Wtaer Science and Technology, 1990, 22(12): 153-161
    [46] Lowe P. Development in the Thermal Drying of Sewage sludge[J]. Water and Environment Journal. 1995, 10(9): 306-316.
    [47]吉田修一.下水污泥的水蒸气干燥工艺的开发和操作实例[J].公害和对策. 1996, 22(3): 36-59
    [48]李爱民,曲艳丽.污水污泥干燥特性的实验研究[J].燃烧科学与技术. 2003, 10(9): 404-408
    [49]王红,周浩生.应用TGA-FTIR研究污泥与煤的热解规律[J].华中理工大学学报. 1999, 9(9): 38-40
    [50]邵立明,何品晶.城市污水厂污泥热干燥处理与利用的可行性分析[M].上海:上海科教文献出版社, 2000
    [51]刘瓒.污泥干燥处理中典型恶臭的释放特点[D].浙江:浙江大学, 2007
    [52]马荣林.污泥中苯系物的释放与控制研究[D].浙江:浙江大学, 2006
    [53]曲艳丽,李爱民.污泥处理热干燥工艺的研究进展[J].城市环境与城市生态, 2004, 17(2): 30-33
    [54]甘海军.浙江省城市污泥的处置对策与资源化利用研究[D].浙江:浙江大学, 2006
    [55]马德刚,张书廷.电场协同污泥热干燥技术的研究[J].中国给水排水, 2003, 19(12): 65-66
    [56]翁焕新,马学文,苏闽华,等.利用烟气余热干化城市污泥工艺的应用[J].中国给水排水, 2008, 24(2): 58-60
    [57]郭淑琴,胡大卫,卢心虹,等.介绍几种污泥干化技术[J].中国给水排水, 2002, 4: 17-21
    [58]郑宗和,牛宝联,雷海燕.利用太阳能进行污泥脱水干燥的试验[J].中国给水排水, 2003, 19(1): 111-113.
    [59]雷海燕,李惟毅,郑宗和.污泥的太阳能干燥实验研究[J].太阳能学报, 2004, 25(4): 479-482
    [60] Menlendez J.A., Inguanzo M., Pis J. J.. Microwave induced pyrolysis of sewage sludge[J]. Water Research, 2002, 36: 3261-3264
    [61] Idris A., Khalid K., Omar M.. Drying of silica sludge using microwave heating[J]. Applied Thermal Engineering, 2004, 24: 905-918
    [62] Samake M., Wu Q., Mo C.. Plants grown on sewage sludge in South China and its relevance to sludge stabilization and metal removal[J]. Journal of Environmental Science, 2003, 15(5): 622-627
    [63] Liu X., Wu Q., Banks M.K.. Phytoextraction of Zn and Cu from Sewage Sludge and Impact on Agronomic Characteristics[J]. Journal of Environmental Science and Health, 2005, 40: 823-838
    [64]袁军,范浩杰,施善彬,等.污水污泥干化基本特性的试验研究[J].给水排水, 2008, 34: 186-188
    [65]郭淑琴,孙孝然.几种国外城市污水处理厂污泥干化技术及设备介绍[J].给水排水. 2004, 30(6),: 34~37
    [66]朱南文,徐华伟.国外污泥热干燥技术[J].给水排水, 2002, 28(1): 16-19
    [67] Brouillette F., Sain M., Daneault C.. Effect of moisture profile and noncombustible matter in recycled paper mill sludge on energy recovery[J]. Combustion Science Technology. 1998, 139(1): 191-206
    [68]王钊.北京污水处理厂污泥干化处理工艺选择的探讨[J].市政技术, 2004, 22(6): 374-378
    [69]潘永康,王喜忠,刘相东.现代干燥技术(第二版)[M].北京:化学工业出版社, 2007
    [70]卿海波,黄瑞敏,周媛媛等.印染废水中厌氧处理时间对后续混凝的影响[J].中国沼气. 2008, 26(3): 19-20
    [71]张卫军.城市污水污泥热干化特性及能耗研究[D].重庆:重庆大学, 2009
    [72]朱虹.印染废水生物处理中剩余污泥减量化技术研究[D].上海:东华大学, 2005
    [73]黄碧娟,黄瑞敏,郭嘉,等.印染废水的混凝脱色研究[J].环境科学与技术, 2009, 32(10): 168-169
    [74] Babalis S. J., Belessiotis V. G... Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs[J]. Journal of Food Engineering,2004,65(3):449-458
    [75]缪应祺.水污染控制工程[M].南京:东南大学出版社, 2002
    [76]傅凤霞.污泥干化处理中重金属迁移特性研究[D].浙江:浙江大学, 2008
    [77]李大庆.城市下水污泥干化焚烧一体化技术试验研究[D].北京:中国科学院研究生院, 2009
    [78]孙峰.污泥理化性质与污泥处置的环境风险[D].浙江:浙江大学, 2007
    [79]陈同斌,黄启飞,高定等.中国城市污泥的重金属含量及其变化趋势[J].环境科学学报, 200, 5(23): 561-569
    [80] Vesilind P. A., Ramsey T. B.. Effect of drying temperature on the fuel value of wastewater sludge[J]. Wastewater Management and Research, 1996, 16:189-196
    [81] Colin F., Gazbar S.. Distribution of water in sludges in relation to their mechanical dewatering[J]. Water Research, 1995, 29(8): 2000-2005
    [82]陈曼.城市污水污泥热解特性与转化机理的研究[D].南京:东南大学, 2006
    [83]马学文.城市污泥干燥特性及工艺研究[D].浙江:浙江大学, 2008
    [84] Ruiz T., Wisniewski C.. Correlation between dewatering and hydro-textural characteristics of sewage sludge during drying[J]. Separation and Purification Technolog, 2008, 61(2): 204-210
    [85] Clayton S.A., Seholes O.N., Hoadley A.F., et al. Dewatering of Biomaterials by Mechanical Thermal Expression[J]. Drying Technology, 2006, 24: 819-834
    [86]顾芳珍,钱树德.临界湿含量与特性干燥曲线[J].化工装备技术, 1993, 14(2): 8-12
    [87]蒋家羚,贺华波.用颗粒热传递模型计算旋转圆盘干燥机的传热系数[J].高校化工学报, 2000, 4: 324-327
    [88]黄凌军,杜红,杨锦.深圳特区污泥处理处置后探索与建议[A]. 2004年国际污泥无害化处置经验交流会论文汇编[C].北京: 37-41
    [89]赵丽君,张大群,陈宝柱.污泥处理与处置技术的进展[J].中国给水排水, 2001, 17(6): 23-25
    [90]付黄河,李卫红.空心桨叶类搅拌设备输送量的计算[J].磷肥与复肥, 2008, 23(5): 65-66
    [91]于才渊,王宝和,王喜忠.干燥装置设计手册[M].北京:化学工业出版社. 2005
    [92] Ferrasse J.H., Chavez S., Arlabosse P., et al. Chemometrics as a tool for the analysisi of evolved gas during the thermal treatment of sewage sludge using coupled TG-FTIR[J]. Thermochimica Acta, 2005, 74: 429-438
    [93]李建国,赵丽娟,潘永康等.组合干燥的应用及进展[J].化学工程, 2006, 34(1): 9-11
    [94] Mujumdar A.S.. Research and development in drying: recent trends and future prospects [J]. Drying Technology, 2004, 12(12): 1-26
    [95]纵伟,杨杰.组合干燥器在微囊化粉末酒生产上的应用[J].包装与食品机械, 1999, 17(5): 25—26
    [96]司孟华.染料生产中盘式连续干燥器的研究和应用[J].染料工艺, 2000,6(37): 35-39
    [97]金国淼等.化工设备设计全书—干燥设备[M].北京:化学工业出版社, 2002: 400-403

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700