氧化铁脱硫剂的制备、改性及回收利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题进行了以钢铁厂炼钢转炉泥为原料制备氧化铁脱硫剂的研究,通过对脱硫剂的改性,提高了脱硫剂脱除硫化氢(H2S)和羰基硫(COS)的效果,脱硫失效后的废脱硫剂可以用来制备氧化铁红。
     在氧化铁脱硫剂制备过程中,转炉泥酸浸的最佳实验操作条件是:硫酸浓度为70%,反应时间为2小时,反应温度为120℃,盐酸用量为15 mL/10 g原料(干料),助溶剂用量为10.5 g/10 g原料(干料),最高铁浸出率可达96.20%。制得的普通脱硫剂为黄色的条状颗粒,强度大于50 N/cm,堆密度为0.70~0.80 g/ml,比表面积为100 ~ 120 m2/g,孔隙率为42%,颗粒大小为φ(3~5)×(5~15) mm;在原料气中H2S浓度为50 mg/m3,温度为室温(25℃),压力为常压,空速为1000 h-1,水汽含量为1%以及无氧的条件下,脱硫剂的一次平均有效硫容大于10%。
     通过浸渍碳酸盐活性组分对脱硫剂进行改性,提高了脱硫剂的脱硫能力。结果表明,改性后的脱硫剂在室温(10~30℃),常压,空速为1000 h-1,原料气中水汽含量1%以及无氧的条件下,COS硫容达到3%,对硫化氢的脱除能力也有一定程度的提高;改性后脱硫剂的FT-IR分析表明,COS在脱除过程中被氧化生成硫酸盐,逐渐毒化了催化剂表面起催化水解作用的碱性羟基活性中心,这是造成脱硫剂失活的直接原因。
     废脱硫剂的后续处理工艺简单,利用废脱硫剂铁含量高的特点来制备氧化铁红,所得氧化铁红产品纯度>99%。
In this thesis, the iron oxide desulfurizer was prepared from converter steel-making mud, and it had a greater capacity of removing hydrogen sulfide (H2S) and carbonly sulfide(COS) from coking gas by modification. After the desulfurizer becomes invalid, it could be prepared into iron oxide red.
     In the process of desulfurizer preparation, the optimal operational conditions were: sulfur acid concentration 70%, reaction time 2 h, temperature 120℃, the dosage of hydrochloric acid 15 mL/10 g material(dry) and the dosage of assistant-solution agent 10.5 g/10 g material(dry). The highest iron extraction yield was 96.20%. The unmodified desulfurizer particles were yellow slender cylindrical, and they were characterized: strength greater than 50 N/cm, bulk density 0.70~0.80 g/ml, specific surface area 100~120 m2/g, porosity 42% and the size of the desulfurizer particleφ(3~5)×(5~15) mm. Under the conditions: H2S concentration in the feed gas 50 mg/m3, room temperature(25℃), 1 atm, space velocity 1000 h-1, moisture content 1% and oxygen free, the average effective sulfur capacity of the desulfurizer per one time was more than 10%.
     In order to improve the capacity of sulphurization from coking gas, the iron oxide desulfurizer was modified by immerging carbonate. Results showed that, under the conditions: H2S concentration in the feed gas 50 mg/m3, room temperature(10~30℃) , normal atmospheric pressure, space velocity 1000 h-1, moisture content 1% and oxygen free, the modified desulfurizer’s capacity on COS was 3%, and that the desulfurizer could also remove more H2S. The alkaline hydroxy group on the active center surface could catalyze and hydrolyze COS into hydrogen sulfide, but FT-IR of modified desulfurizer showed that it was poisoned by sulfate which was oxided in the process of removing, and then it lose activity completely.
     The inactive desulfurizer could be recycled and prepared into iron oxide red. The technology was simple, and the purity of iron oxide red exceeded 99%.
引文
[1]朱世勇.环境与工业氧化净化技术[M].北京:化学工业出版社环境科学与工程出版中心,2001.
    [2]郝吉明,马广大.大气污染控制工程[M].北京:高等教育出版社,2002.
    [3]李广超.大气污染控制技术[M].北京:化学工业出版社,2008.
    [4]问国强,刘翠玲,米杰.高温煤气脱硫剂研究进展[J].科技情报开发与经济,2007,17(8):130~132.
    [5]姜怡娇.赤泥脱硫剂净化低浓度硫化氢废气的试验研究[D].昆明理工大学,2003.
    [6]刘卓娅.醇胺法气体脱硫技术的应用和发展[J].安庆师院学报(自然科学版),1995,1(2):114~116.
    [7]李忠顺.化产工艺学[M].北京:冶金工业出版社,1994.
    [8]黑木正章(张国富译).焦炉煤气氨水脱硫原理的研究[J].燃料与化工,2000,31(3): 156~161;2000,31 (4):218~223;2000,31 (5): 266~271.
    [9] J.Przcpiorski.A.Oya.K2CO3-loaded deodorizing activated carbon fiber against H2S gas:factors influencing the deodorizing efficiency and the regeneration method[J].Mater.Sci. Lett.1998,17:679~682.
    [10] F.C.Riesenfeld,A.L.Kohi:Gas Purification[M].4thed,Book Division, Houston, London,Paris,Tokyo,GulfPublishing Company,1985.
    [11]秦旭东,李正西,宋洪强,等.低温甲醇洗和聚乙二醇二甲醚工艺的技术经济对比[J].化工技术经济,2007,25(1):44~52.
    [12] Franckowiak S,Nitsehke E,Estasolvan.New gas treating process[J].Hydrocarbon Processing,1970,49(5):145~150.
    [13]童志权.工业废气净化与利用[M].北京:化学工业出版社,2001.
    [14]温崇荣.川东北高含硫天然气脱硫净化技术研究[D].重庆:重庆大学硕士论文,2007.
    [15] Rivas O R,et al.Sweating of sour Natural gases by Mixed Solvent Absorption:solubilities of Ethane,carbon dixide,and Hydrogen sulfide in mixtures of physical and Chemical soluents[J].AIChE,1979,25(6):975~984.
    [16]陈庚良,缪明富,马卫.天然气中有机硫化合物脱除工艺评述[J].天然气工业,2007,27(10):120~122.
    [17] Flynn A J,et al.Shell’s reent improvements in gas Treating and Claus tail gas cleanup[C].Proceedings of the 60th GPA Annual Convention, Tulsa,Okalahoma,1981,23:149~151.
    [18]王睿,石冈,魏伟胜等.工业气体中H2S的脱除方法——发展现状与展望[J].天然气工业,1999,19 (3):84~90.
    [19]刘立斌,鲍晓军,王贤清.湿式氧化法气体脱硫的现状与趋势[J].油气田环境保护,1997,7(1):54~58.
    [20]张剑峰.液相氧化法脱硫工艺的现状与发展[J].石油与天然气化工,1992,21(3):142~145.
    [21]黄子衎.湿式催化氧化法脱硫综述[J].气体净化,2007,7(6):1~8.
    [22]张家忠,易红宏,宁平,等.硫化氢吸收净化技术研究进展[J].环境污染治理技术与设备,2002,3(6):47~52.
    [23]梁锋,徐丙根,施小红,等.湿式氧化法脱硫的技术进展[J].现代化工,2003,23(5):21~24.
    [24]常爱萍,骆秋福.ADA湿法脱硫的探讨[J].宁夏石油化工,2000,4:8~10.
    [25]高艳娥,凌开成,牛艳霞,等.栲胶脱硫法与改良ADA脱硫法的比较[J].应用化工,2008,37(4):382~384.
    [26]黄子衎.栲胶法脱硫在化肥厂应用的概述[J].化肥工业,2002,29(4):22~25.
    [27] I.Iliuta, F.Larachi.Concept of bifunctional Redox iron-chelate process for H2S removal in pulp and paper atmospheric emissions[J],Chemical Engineering Science,2003,58:5305~5314.
    [28] Zhang Jiazhong,Ning Ping.Study on liquid phase catalytic oxidation process of low concentration H2S[C].The 2rd Seminar of JSPS-MOE Core University Program on Urban Environment,Kyoto,Japan,2002,1:273~278.
    [29] Goar B G.Sulfur recovery technology[J].Energy process,1986,6(2);71~78.
    [30] Kohl A.L.,Nielsen R.B.Gas Purification(Fifth) [M].Houston,Texas:Gulf Publishing Co,1997,825~838.
    [31]李新学,魏雄辉.铁离子湿式氧化法脱除硫化氢技术进展[J].化工环保,2004,24(2):107~110.
    [32]刘惠卿,潘运会,许国栋,等.脱硫新工艺-FD法工业试验[J].化肥工业,1985,(6):10~12.
    [33]郑志胜,曹砚君,陈珊珊,等.TEA络合铁法脱硫的研究[J].华东理工大学学报,1996,22(1):19~23.
    [34]庞锡涛,王建跃.HEDP-NTA络合铁脱硫法中络合物的组成、性能及降解作用的研究[J].化肥与催化,1986,2:18~25.
    [35] W.D.Monnery,K.A.Hawboldt,A.Pollock.New experimental data and kinetic rate expression for the Claus reaction[J].Chemical Engineering Science,2000,55:5141~5148.
    [36] Wilson B M,Nawell R D.H2S removal by stretford process[J].Chem Eng Prog,1984,80 (10):40~47.
    [37]侯相林,等.硫化氢的高温脱除[J].煤炭转化,1995,18(3):70~75.
    [38]侯相林,等.氧化铁细粒子用于高温脱除硫化氢的研究[J].环境科学,1996,17(4):57~60.
    [39]李彦旭,等.氧化铁脱硫剂高温煤气脱硫行为的研究[J].燃料化学,1998,26(4):130~134.
    [40] Mcinnes R,Royen R V.Desulfuricing flue gases[J].Chemical Engineering,1990,97(9):124~127.
    [41]杨艳,童仕唐.常温氧化铁脱硫剂研究进展[J].煤气与热力,2002,22(4):326~328.
    [42]太原工业大学煤化工研究所.TG氧化铁常(低)温精脱硫技术的发展及应用[J].工业催化,1994,1:44~51.
    [43] Harrison D P.Performance analysis of ZnO-based sorbents in removal of H2S from fuel gas[J].In A.Atimtay,Desulfurization of Hot Coal Gas,NATO ASI Series,Heidelberg,1998,213~242.
    [44] Ahmed M A,Alonso L,Palacios J M,et al.Structural changes in zinc ferrites as regenerable sorbents for hot coal gas desulfurization[J].Solid State lonics,2000,138:51~62.
    [45] Miguel Pineda,Jose M.Palacios,Enrique Garcia,et al.Modelling of performance of zinc ferrites as high-temperature desulfurizing sorbents in a fixed-bed reactor[J].Fuel,1997,76(7):567~573.
    [46] Pineda M,Palacios J M,Alonso L,et al.Performance of zinc oxide based sorbents for hot coal gas desulfurization in multicycle tests in a fixed-bed reactor[J].Fuel,2000,79:885~895.
    [47]樊惠玲,郭红生,郭汉贤,等.氧化锌脱硫中氢的气氛效应及动力学表征[J].燃料化学学报,1998,26(5):440~445.
    [48]李彦旭,郭红生,樊惠玲,等.氧化锌脱硫中氧的气氛效应及动力学表征[J].燃料化学学报,1996,24(1):17~24.
    [49] Wang W Y,Bjerle I,Modeling of high-temperature desulfurization by Ca-based sorbents [J].Chemical Engineering Science,1998,53(11):1973~1989.
    [50] Akiti Jr T T,Constant K P,Doraiswamy L K,et al.Development of an advanced calcium-based sorbent for desulfurizing hot coal gas[J].2001,5:31~38.
    [51]李彦旭.铁钙氧化物高温脱硫及动力学的研究[D].太原:中国科学院山西煤化所,1998.
    [52] Van D H,Heesink A B M,Prins W,et a1.Proposal for a regenerative high-temperature process for coal gas cleanup with calcined limestone[J].Industrial & Engineering Chemistry Research,2002,35(5):1487~1495.
    [53] Patrick V,Gavalas G R,Flytzani-Stephanopoulos M,et a1.High-Temperature Sulfidation Regeneration of CuO-Al2O3 Sorbents[J].Ind Eng Chem Res,1989,28:931~937.
    [54] Garcia E,Palacious J M,Alonsol L,et al.Performance of Mn and Cu Mixed Oxides as Regenerable Sorbents for Hot Coal gas desulfurization[J].Energy & Fuels,2000,14:1296~1303.
    [55] Tamhankar S S,Bagajewicz M J,Gavalas G R,et al.Mixed-Oxide Sorbents for High-Temperature Removal of Hydrogen-Sulfide[J].Ind Eng Chem Process Des Dev,1986,25:429~437.
    [56]侯相林,高荫本.载体对二氧化锰高温脱除硫化氢性能的影响[J].环境科学与技术,1997,1:6~7.
    [57]张密林,张红霞,陈野.(锌、铜、锰)复合脱硫剂的制备及性能研究[J].化学工业与工程技术,2004,25(6):29~31.
    [58] Lopez Ortiz A.Advanced Sulfur Control Concepts[C].Proceedings of the Symposium on Advanced Coal-Fired Power Systems’95,Morgantown,WV,DOE/METC-95/1018,1995,Vol 2.
    [59] Zeng Y,Zhang S,Groves F R,et al.High temperature gas desulfurization with elemental sulfurproduction[J].Chemical Engineering Science,1999,54:3007~3017.
    [60] Zeng Y,Kaytakoglu S,Harrison D P.Reduced cerium oxide as an efficient and durable high temperature desulfurization sorbent[J].Chemical Engineering Science,2000,55:4893~4900.
    [61] Focht G D,Ranade P V,Harrison D P.High-Temperature Desulfurization Using Zinc Ferrite:Reduction and Sulfidation Kinetics[J].Chemical Engineering Science,1988,43:3005~3013.
    [62] Woods M C,Gangwal S C,Harrison D P,et a1.Kinetics of the Reaction of Zinc Ferrite Sorbent in High-Temperature Coal Gas Desulfurization[J].Ind Eng Chem Res,1991,30:100~107.
    [63]梁美生.铁酸锌高温煤气脱硫行为及气氛效应研究[D].太原:太原理工大学,2005.
    [64] Lew S,Sarofim A F,Flytzani-Stephanopoulos M.The Reduction of Zinc Titanate and Zinc Oxide Solids[J].Chemical Engineering Science,1992,47(6):1421~1431.
    [65] Wahab M,Abbasian J.H2S Removal from Coal Gas at Elevated Temperature and Pressure in Fluidized-Bed with Zinc Titante Cyclic Tests[J].Energy & Fuels,1995,9:429~434.
    [66] JunHK,KooJH,et al.A Study of Zn Ti based H2S removal sorbents promoted with cobalt and nickel oxides[J].Energy Fuels,2004,18:41~48.
    [67]任秀蓉,张宗友,常丽萍,等.综述气体净化中的硫化氢脱除技术研究[J].洁净煤技术,2007,13(6):70~72.
    [68]王国兴,黄新伟,等.活性炭精脱硫剂的开发及应用[J].洁净煤技术,1997,3(3):25~28.
    [69]魏有福.活性炭脱硫剂使用寿命影响因素的分析[J].煤气与热力,2002,22(4):365~366.
    [70] R.A.Anderson.H.J.Springett.Molecular Sieve Processing in the Natural Gas Industry[C].Natural Gas Processing and Utilization Conference,1976.
    [71]于淼,周理.天然气中H2S的脱除方法——发展现状与展望[J].天津化工,2002,5:18~20.
    [72] Dennis Mcnevin,John Barford,Adsortption and Biological Degradation of Ammonium and sulfide on peat[J].Wat.Res.Vo1.1998,33(6):1449~1459.
    [73] Patricio Oyarzun,Fernando Arancibia,et al.Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus[J].Process Biochemistry 2003,39:165~170.
    [74]孙佩石,黄兵,等.生物法净化低浓度硫化氢废气的动力学模型研究[J].贵州环保科技,2002,3 (8) :1~4.
    [75]黄兵,杜永林,等.生物法净化低浓度硫化氢废气的基础研究[J].云南化工,1998 ,3:17~19.
    [76]黄兵,李晓梅,等.生物膜填料塔净化低浓度硫化氢恶臭气体研究[J].环境科学与技术,1999,4:17~21.
    [77]杜永林,黄兵.生物膜法净化低浓度硫化氧气体的试验研究[J].云南化工,1998,4:17~21.
    [78]邵立明,何品晶.固定化微生物处理含H2S气体的试验研究[J].环境科学,1999,1 (20):19~22.
    [79]高天石,侯惠奇.应用低温等离子体技术治理H2S和CS2废气[J].人造纤维,2000,4 (31):20~23.
    [80]张家忠.低浓度H2S液相催化氧化研究[D].北京:清华大学,2002.
    [81]马文,王新强,倪炳华.微波催化法分解硫化氢的研究[J].石油与天然气化工,1997,26(1):37~40.
    [82]吴政,崔成民.强碱性离子交换纤维对H2S-CO2混合气体吸附分离及分离的研究[J].石油化工,1999,28(12):810~812.
    [83]周宇松,聂通元.纳米光催化净化分解炼化厂恶臭有毒气体研究[J].材料导报,2002,7 (16):66~67.
    [84]赵会军,张庆国,王树立,等.膜分离法脱除天然气中H2S的实验研究[J].西南石油大学学报,2009,31(1):121~124.
    [85]钟立梅.变压过程脱除气体中微量硫化氢的研究[D].天津:天津大学,2006.
    [86]马刚平,吴宏斌,张建红,等.首钢除尘灰特性分析及综合利用技术研究[J].冶金环境保护,2006 (1):13~15.
    [87]金恒阁,谷丽群.炼钢烟尘的回收利用[J].中国物资再生,1999,1:7~8.
    [88]范文利.湘钢除尘灰二次污染治理及综合利用[J].湘钢科技,2002(3):53.
    [89]马文骥.湿法处理炼钢烟尘[J].湖南冶金,1997,2:14~16.
    [90]徐爱菊,刘莲云,刘世昌.平炉尘合成超细铁氧体机理研究[J].功能材料,2004,35(4):437~438.
    [91]柳凤钢,曹爱丽,王振珠,等.利用电炉炼钢烟尘制备高纯Fe2O3的工艺[J].天津化工,2002,3:4~5.
    [92] Crruells.M,Roca A,Nunez C.A hydrometallurgical process to treat carbon steel electric arc furnace dust Hydrometallurgy[J].1992,31(2):213~231.
    [93]杨贵成.除尘灰分的有效利用[J].铸造设备研究,1998,6:59~62.
    [94]赵金龙.石钢烧结厂配用除尘灰的生产实践[J].烧结球团,2001,26 (6):42~44.
    [95]高家诚.从转炉烟尘中提取铁粉的研究[J].粉末冶金技术,2002,20 (1):24~27.
    [96]邓遵安.利用电炉炼钢烟尘生产高品位氧化铁红[J].辽宁化工,2005,34(8):329~331,334.
    [97]左大学.微波诱导下混合酸酸浸硫铁矿烧渣制备聚合硫酸铁工艺研究[D].武汉:武汉科技大学,2006.
    [98]郝晓斌.硫铁矿烧渣制备软磁铁氧体原料的研究[D].武汉:武汉理工大学,2007.
    [99]兰昌云等.高效常温氧化铁脱硫剂的制备[J].天然气工业,2004,24 (12):124~126.
    [100] Colin R,Stewart A R,John W,et al.The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide: a review [J].Catalysis Today,2000,59(4):443~464.
    [101] Fiedorow R,LéautéR,Dalla I G.A study of the kinetics and mechanism of COS hydrolysis over alumina [J].Journal of Catalysis,1984,85(2):339~348.
    [102]梁美生,李春虎,郭汉贤,等.低温条件下羰基硫催化水解反应本征动力学的研究[J].催化学报,2002,23(4):357~362.
    [103]刘俊锋,刘永春,薛莉,等.Al2O3上羰基硫常温催化水解的氧中毒机理[J].物理化学学报,2007,23(7):997~1002.
    [104]刘永春,刘俊锋,贺泓,等.羰基硫在矿质氧化物上的非均相氧化反应[J].科学通报,2007,52(5):525~533.
    [105] Goodman A L,Li P,Usher C R,et al.Heterogeneous uptake of sulfur dioxide on aluminum and magnesium oxide particles[J].Journal of Physical Chemistry A,2001,105(25):6109~6120.
    [106] Chang C C.Infrared studies of SO2 onγ-alumina[J].Journal of Catalysis,1978,53(3): 374~385.
    [107]罗俊,姜平国,李安国.含铁二次资源制备氧化铁红工艺的研究进展[J].中国有色冶金,2008,3:61~64.
    [108]蔡传琦.氨法氧化铁红合成中真实晶核之探讨[J].涂料工业,2006,36(2):15~18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700