水分亏缺对玉米生理指标、形态特性及解剖结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源短缺严重制约我国农业发展,研究适度水分亏缺对作物生长的影响以及复水后的补偿效应,以确保灌溉的适时适量是减少水资源浪费、发展可持续农业的根本途径之一。本文以高农901为材料,通过盆栽控水试验,运用分光光度计法、组织特异染色法以及扫描电子显微镜、普通光学显微镜观察等手段,研究了不同生育阶段(苗期和拔节期)、不同水分亏缺[处理土壤含水量分别为田间持水量的75%~85%(对照)、65%~75%(轻度)、55%~65%(中度)、45%~55%(重度)]对玉米生理指标、形态特性及解剖结构的影响,研究结果如下:
     (1)水分亏缺对各生理指标的影响:苗期水分处理,随水分亏缺程度的加重,超氧阴离子自由基、可溶性蛋白、脯氨酸含量,POD活性均升高; SOD、CAT活性呈上升再下降的趋势。拔节期超氧阴离子自由基、脯氨酸、SOD和CAT活性的变化与苗期相同,而POD活性和可溶性蛋白含量却呈上升再下降的趋势。随着水分亏缺程度的加重,苗期和拔节期,根和叶片中ABA含量都增高,拔节期比苗期的增长幅度大。H2O2的变化与ABA一致,两者的变化与气孔的开关呈负相关。
     (2)水分亏缺对形态指标的影响:苗期水分亏缺和拔节期水分亏缺均抑制了株高的增长、叶面积的扩展;亏缺复水后,株高、叶面积出现了不同程度的补偿效应,尤其以苗期亏缺的株高补偿最为明显。苗期进行水分亏缺,随着水分亏缺程度的加重,根系长度缩短、根直径变细、总生物量降低;而根冠比增加;侧根根毛长度、根毛密度、根毛总长度在中度水分亏缺条件下达到最大。在过度干旱条件下,根毛会受到抑制或损伤。
     (3)水分亏缺对根系解剖结构及根尖多糖的影响:苗期水分亏缺下,根解剖结构发生变化,随土壤含水量的降低,导管数目变化不大,中柱面积变小,导管壁变的不规整,致使中柱变小的原因是导管的直径变小。复水后,变形的导管有不同程度的恢复,轻度和中度处理基本恢复正常,而重度处理恢复程度小。根尖多糖分布随土壤含水量的降低逐渐增多,根尖多糖含量的增加主要表现在表皮细胞和根冠细胞内,在表皮细胞内多糖主要以游离形式分布,而根冠细胞内主要以淀粉粒形式分布。
     总之,在水分亏缺条件下,玉米启用抗氧化系统清除自由基对植株的伤害,通过增加ABA含量,促进气孔关闭,减少水分散失以及通过自身的渗透调节物质,维持低渗透势,提高保水能力,增加了植物的抗旱性。水分亏缺抑制植株的生长,复水后适当的水分亏缺具有补偿效应,甚至有超补偿,过度的亏缺补偿不明显,甚至有损伤耗。
The shortage of water resources seriously restricted the development of agriculture in our country. Researching the influence of corn growth under moderate water deficit and compensation effect can ensure the appropriate irrigation.It is a fundamental way of saving water and developping sustainable agriculture.We make water control experiment by planting crop GaoNong 901 in pots,using spectrophotometer, tissue stain , scanning electron microscope and ordinary optical microscope,to determine different growth stages(seedling stage,elongation stage) of different water deficit of corn physiological indexes and observe morphological properties and anatomical structure. The effect of different water deficits: 75%-85%(control), 65%-75%(LS), 55%-65%(MS), 45%-55%(SS)of soil moisture capacity.
     (1)The influence of Water deficit on physiological indexes: with the degree of seedling water deficit aggravating , super oxide anion radical, soluble protein, proline and POD activity elevated. SOD、CAT activity presented to rise first and then drop. The change of super oxide anion radical, proline , SOD、CAT activity in the jointing stage were similar to seedling stage,but soluble protein and POD activity presented to rise first and then drop . With the degree of seedling water deficit aggravating ,the ABA content of root and leaf,and seedling stage growth rate is larger than jointing stage.The change of H2O2 is same to ABA,the change of ABA and H2O2with respect to the change of stomatal had negative correlation.
     (2)The influence of Water deficit on the morphological indexes:Water deficits in Seeding stage and in elongation stage are both keeping down the grow of plant height, expansion of leaf area, when rewater in Seeding stage, plant height and leaf area emerged Varying degrees of Compensation effect, especially in seeding stage.By the end of period of duration,mild wane and moderate wane started overcompensation. Implementing severe water deficit during shootingperiod was an inhibition to the merisis of the agric, also leaf area and plant height didn't return to normal level after recuperating. Implementing water deficit during seedling stage, as the aggravation of the water deficit degree, we can see that the length of root system became shorter, the diam of root became more slender, total biomass reduced, yet the root/shoot ratio increased, the density and the total length of root hair reached the maximum under the condition which was moderate water deficit wane. Root hair will get inhibited and damaged under overdrought condition.
     (3)The influence of water deficit on root anatomic structure and root polysaccharide: root anatomic structure changes under the water deficit of seedling. With the decrease of water in the soil, the number of vessel changes little, but the vessel wall became irregular under water deficiency . the decrease of vessel diameter caused the decrease of central cylinder area. When the soil regains enough water, the changed vessel becomes normal again. If the water deficit is very serious, recovery was litter. During the seedling, water deficit in the soil leads to the increase of root apex polysaccharide .Polysaccharide mainly increased in the epidermal cells and pileorhiza cells. In the epidermis cells, polysaccharide mainly occurred as dissociation, while pileorhiza cells mainly occurred as starch grains.
     In short, water deficit inhibited the growth of plants ,when water deficit, plant can activate the anti-oxidization system in the body to eliminate free radicals under water deficit. maize increase the content of ABA, and promote of the closure of stomatal ,then reduced water loss. And through its own osmotic adjustment to maintain a low osmotic potential, and increase water holding capacity, the drought resistance strengthened. Proper water deficit has compensation effect, even a super compensation, excessive deficit compensation is not apparent, even a loss.
引文
卜令铎. 2009.干旱复水激发玉米叶片补偿效应的生理机制.西北农业学报18(2) :88~92
    曹翠玲,李生秀. 2003.氮素形态对玉米幼苗碳水化合物及养分累积的影响.华中农业大学学报, 22(5):457~461
    范永利. 2004.植物胁迫激素的生理生态作用.皖西学院学报. 20(2):37~38
    冯广龙,刘昌明. 1996.土壤水分对作物根系生长及分布的调控作用.中国生态农业研究,4(3):5~9
    高俊凤. 2005.植物生理学实验指导[M].北京:高等教育出版社
    关义新,戴俊英,林艳. 1995.水分胁迫下植物叶片光合的气孔和非气孔限制.植物生理学通讯, 31(4):293~297
    郭相平,康绍忠,索丽生. 2001.苗期调亏处理对玉米根系生长影响的试验研究.灌溉排水, 20(1):25~27
    郭相平,王琴,刘展鹏. 2006.旱后复水对玉米后继新生叶片生理特性的影响.农业科学研究, 27(2):20~27
    郝树荣,郭相平,王为木. 2005.胁迫后复水对水稻叶面积的补偿效应.灌溉排水学报, 24(4):18~21
    何淑媛,方国华. 2008.农业节水综合效益评价模型研究.水利经济, 26 (3) :62~66
    胡田田,康绍忠,原丽娜. 2008.不同灌溉方式对玉米根毛生长发育的影响.应用生态学报, 19(6):1289~1295
    胡学俭,孙明高,夏阳. 2005.胁迫对无花果与海棠膜脂过氧化作用及保护酶活性的影响.西北植物学报, 25(5):937~943
    黄占斌,吴雪萍,方锋,俞满源. 2002.干湿变化和保水剂对植物生长和水分利用效率的影响. 应用与环境生物学报, 8(6):600~604
    黄占斌. 2000.干湿变化与作物补偿效应规律研究,生态农业研究, 8(1):30~33
    贾文锁,王学臣,张蜀秋. 1996.水分胁迫下ABA由蚕豆根向地上部的运输及其在叶片组织中的分布.植物生理学报, 22(4):363~367
    姜慧芳,任小平. 2004.干旱胁迫对花生叶片SOD活性和蛋白质的影响.作物学报, 30(2):169~174
    康俊梅,杨青川,樊奋成. 2005.干旱对苜蓿叶片可溶性蛋白的影响.草地学报, (9):199~202
    康绍忠,胡笑涛,蔡焕杰. 2004.现代农业与生态节水的理论创新及研究重点.水利学报, (12): 1~7
    康绍忠,史文娟,胡笑涛. 1998.调亏灌溉对玉米生理指标及水分生产效率的影响.农业工程学报, 14(2):82~87
    康绍忠. 2003.农业节水与水资源领域的科技发展态势及重大热点问题.农业工程学报, (19):24~32
    李霞,阎秀锋,于涛. 2005.水分胁迫对黄檗幼苗保护酶活性及脂质过氧化作用的影响.应用生态学报, 16(12):2354~2356.
    李凤民,郭安红,雒梅. 1997.土壤深层供水对冬小麦干物质生产的影响.应用生态学, 8(6):575~579
    李跃强,盛承发. 1996.植物的超越补偿反应.植物生理学通讯, 32(6):457~464.
    李运朝,王元东,崔彦宏,等. 2004.玉米抗旱性鉴定研究进展.玉米科学, 12(1):63~68
    梁峥,马德钦,汤岚等. 1997.菠菜甜菜碱醛脱氢酶基因在烟草中的表达.生物工程学报. 13:236~240
    梁新华,史汉江. 2006.干旱胁迫对光果甘草幼苗根系MDA含量及保护酶POD、CAT活性的影响. 干旱地区农业研究, 24(3):108~110
    梁哲军,陶洪斌,赵海祯. 2009.苗期土壤水分亏缺后玉米光合生理的恢复.华北农学报, 24(2):117~12l.
    梁宗锁,康绍忠,高俊凤. 2000.分根交替渗透胁迫与脱落酸对玉米根系生长和蒸腾效率的影响. 作物学报, 26(2):250~255
    刘红云,梁宗锁,刘淑明. 2007.持续干旱及复水对杜仲幼苗保护酶活性和渗透调节物质的影响. 西北林学院学报, 22(3):55~59
    刘丽君,尹田夫,薛津,等. 1987.渗透胁迫对大豆幼苗过氧化物酶及脯氨酸含量的影响.大豆科学, 6(3):221~224.
    刘晓英,罗远培,石元春. 2001.水分胁迫后复水对冬小麦叶面积的激发作用.中国农业科学, 34 (4) : 422~428
    刘学义,任冬莲,李晋明. 1996.大豆成苗期根毛与抗旱性的关系研究山西农业科学, 24 (1):27~30
    刘友良. 1992.植物水分逆境生理.北京:农业出版社
    陆海峰,潘英华,卿冬进,任振胜,李有志. 2007.缺水和缺铁胁迫对玉米光合作用特性和根生长的影响.广西农业生物科学, 26 (1) :44~49
    马瑞昆,蹇家丽,贾秀领等. 1991.供水深度与冬小麦根系发育的关系.干旱地区农业研究, (3): 1~9
    苗雨晨,董发才,宋纯鹏. 2001.过氧化氢——植物体内的一种信号分子.生物学杂志,18 (2):4~6.
    苗雨晨,宋纯鹏,董发才. 2000. ABA诱导的蚕豆气孔保卫细胞H2O2的产生.植物生理学通讯, 26(1):53~58
    彭昌操,孙中海. 2000.低温锻炼期间柑桔原生质体SOD和CAT酶活性的变化.华中农业大学学报, 19 (4):384~387
    齐健,宋凤斌,刘胜群. 2006.苗期玉米根叶对干旱胁迫的生理响应.生态环境, 15(6): 1264~1268
    山仑,陈培元. 1998.旱地农业生理生态基础.北京:科学出版社
    石喜,王密侠,姚雅琴,蔡焕杰. 2009.水分亏缺对玉米植株干物质累积、水分利用效率及生理指标的影响.干旱区研究, 26(3),396~400
    宋凤斌,戴俊英. 2005.玉米茎叶和根系的生长对干旱胁迫的反应和适应性.干旱区研究, 22(2):256~258
    宋凤斌. 2008.不同耐旱性玉米根系解剖结构比较研究.吉林农业大学学报. 30 (4) :377~381
    汤章城. 1983.植物对干旱胁迫的反应性和适应性:抗逆性的而一般概念和植物的抗涝性.植物生理学通讯, 4: 1~7
    汪邓民,周冀衡,朱显灵. 2000.磷钙锌对烟草生长、抗逆性保护酶及渗调物的影响.土壤, 32(12):34~37
    王丹,骆建霞,史燕山,武春霞. 2005.两种地被植物解剖结构与抗旱性关系的研究天津农学院学, 12(1):15~17
    王宝山. 1988.生物自由基与生物膜的伤害.植物生理学通讯, 7(2): 12~16.
    王建华,刘鸿先. 1989.超氧化物歧化酶在植物逆境和衰老生理中的作用.植物生理学通讯, (1):1~7.
    王茅雁,邵世勤,张建花等. 1995.水分胁迫对玉米保护酶系活力及膜系统结构的影响.华北农学报, 10(2):43~49
    王密侠,康绍忠,蔡焕杰等. 2000.调亏对玉米生态特性及产量的影响.西北农业大学学报, (28): 31~36
    王瑞军,李世清,王全九. 2008.半干旱农田生态系统春玉米叶面积及叶生物量模拟的比较研究. 中国生态农业学报, 16(1): 139~144
    王晓琴,袁继超,熊庆娥. 2002.玉米抗旱性研究的现状及展望.玉米科学,10(1): 57~60
    王学渊,韩洪云. 2008.水资源对中国农业的“增长阻力”分析.水利经济, 26 (3) :1~5
    王周锋,张岁岐,刘小芳. 2005.玉米根系水流导度差异及其与解剖结构的关系.应用生态学报,16(12):2349~2352
    魏良明,贾了然,胡学安. 1997.玉米抗旱性生理生化研究进展.干旱地区农业研究, 15(4):66~71
    吴杨,贺俐,胡文海. 2003.植物干旱胁迫下的调控代谢网络研究进展.湖北农业科学, 48(6):1504~1509
    吴安慧,张岁岐,邓西平. 2006.水分亏缺条件下玉米根系PIP2.5基因的表达.植物生理学通讯, 42 (3) :457~460
    吴志华,曾富华,马生健. 2004.水分胁迫下植物活性氧代谢研究进展.亚热带植物科学, 33(3): 77~80 夏国军,阎耀礼,程水明. 2001.旱地冬小麦水分亏缺补偿效应研究.干旱地区农业研究, 19(1):79~82
    颜华,贾良辉,王根轩. 2002.植物水分胁迫诱导蛋白的研究进展.生命的化学, 22 (2) :165~168
    阳园燕,郭安红,安顺清,刘庚山. 2006.土壤水分亏缺条件下根源信号ABA参与作物气孔调控的数值模拟.应用生态学报, 17(1):65~70
    杨恩琼,袁玲,何腾兵等. 2009.干旱胁迫对高油玉米根系生长发育和籽粒产量与品质的影响. 土壤通报, 40(1):85~88
    杨贵羽,罗远培,李保国.2003.不同土壤水分处理对冬小麦根冠生长的影.干旱地区农业研究, 21(3):104~109
    杨全,孟平,李俊清等, 2010.土壤水分胁迫对杜仲叶片光合及水分利用特征的影响.中国农业气象, 31(1):48 ~52
    于海秋,武志海,沈秀瑛. 2003.水分胁迫下玉米叶片气孔密度、大小及显微结构的变化.吉林农业大学学报, 25(3): 239~242
    张红萍,牛俊义,轩春香. 2008.干旱胁迫及复水对豌豆叶片脯氨酸和丙二醛含量的影响.甘肃农业大学学报, 43(5):50~54
    张寄阳,刘祖贵,段爱旺. 2006.棉花对水分胁迫及复水的生理生态响应.棉花学报, 18(6):398~399
    张立新,李生秀. 2007.氮、钾、甜菜碱对水分胁迫下夏玉米叶片膜脂过氧化和保护酶活性的影响.作物学报, 33(3):482~490
    张林青,马爱京. 2000.高产水稻群体茎蘖组成和叶面积指数及其关系的研究.云南农业大学学报, 19(2):179~183
    张玲,李俊梅,王焕校. 2002.镉胁迫下小麦根系的生理生态变化.土壤通报, 33 (1):61~65
    张蜀秋,贾文锁,王学臣,娄成后. 1996.用胶体金免疫电镜技术研究水分胁迫对蚕豆根ABA分布与含量的影响.植物学报, 38(11):857~860
    张喜英,由懋正,王新元. 1999.不同时期水分调亏及不同调亏程度对冬小麦产量的影响.华北农学报, 14(2) :1~5
    张骁,上官周平,高俊凤等. 2001.保卫细胞的ABA信号转导.植物生理学报, 27 (5):361 ~368.
    张秀峰,陈温福,迟岳鑫等. 2005.水稻株型特征与产量构成关系的研究.垦殖与稻作, (3)16~19
    张英普,何武权,韩健. 1999.水分胁迫对玉米生理生态特性的影响.西北水资源与水工程, 10(3):18~21
    赵丽英,邓西平,山仑. 2000.持续干旱及复水对玉米幼苗生理生化指标的影响研究.华北农学,12(3):59~61
    周晓阳,赵楠,张辉. 2000.水分胁迫下中东杨气孔运动与保卫细胞离子含量变化的关系.林业科学研究, 13(1):71~74
    Alvarez S, Marsh EL, Schroeder SG, et al.. 2008. Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant, Cell and Environment, 31:325~340
    Blackman P G, Davies W J. 1985. Root-to-shoot communication in maize plants of the effects of soil drying. Exp Bot, 36:39~48
    Bowler C, Van M, Inzc D. 1992. Superoxide dismutase and stress tolerance. Annu Rev Plant mol Bio1, 43 :83~116
    Boyer J S. 1982. Plant productivity and environment. Science, 218:443~448
    Chalmers D J, Bvanden E. 1975. Productivity of peach trees factors affecting dry-weight distribution during tree growth. AnnBot, 39: 423~432
    Crews LJ, McCully ME, Canny MJ. 2003. Mucilage production by wounded xylem tissue of maize roots-time course and stimulus. Functional Plant Biology, 30:755~766
    Elestner E F. 1982. Plant Physiol.Ann Rev, 73~96.
    Farre I, Oijen M V, Leffelaar P A. 2000. Analysis of maize growth for different irrigation strategies in northeastern Spain. European Journal ofAgronomy, 12: 225~238
    Franks P J, Farquhar G D. 2001. The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. Plant Physiol, 125: 935~945.
    Hare P D, Cress W A, Van Staden J. 1999. Proline synthesis and degradation :A model system for elucidating stress related signal transduction.Journal of Experimental Botany, 50(333):413~434
    Hsiao T C. 1973. Plant response to water stress. Ann Rew Plant Physiol, 24:519~570
    Jackson M B. 1993. Are plant homones involved in the root to shoot communication?. Adv Bot Res, 19:103~187
    Jungk A. 2001. Root hairs and the acquisiti on of plant nutrients from soil. Plant Nutri Soil Sci, 164:121~129
    Lee S, Choi H, Suh S. 1999. Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol, 121(1):147~152
    Lindorf H. 1994. Eco-anatomic wood features of species from a very dry tropical forest. International Association of Wood Anatomists Journal, 15:361~376
    Lynch J P. 1995. Root architecture and plant productivity. Plant Physiol, 109:7~l3 .
    Michelena V A, Boyer J S. 1982. Complete turgor maintenance at low water potentials in the elongating region of maize leaves. Plant Physiol, 69: 1145~1149
    Morgan J M. 1984. Osmoregulation and water stress in high plants. Ann Rev Plant Physiol, 35:299~319
    Pei Z M, Murata Y, Benning G, et al.. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, 406:731~734.
    Pei ZM, Murata Y, Benning G, etal. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature, 406:731~734
    Pospisilova J, Vagner M, Malbeck J. 2005. Interactions between abscisic acid and cytokinins during water stress and subsequent rehydration. Biol Plant, 49(4):533~540
    Rock CD, Ng PPF. 1999. Dominant Wilty mutants of zea mays (poaceae ) are not impaired in abscisic acid perception or metabolism. Am J Bot, 86:1796~1800
    Saini H S, Westgate M E. 2000. Reproductive development in grain crops during drought. Advances in Agronomy, 68:59~96
    Schroeder J I, Allen G J, Hugouvieux V, et al.. 2001. Guard cell signal transduction. Annual Review of Plant Physiology and Plant Molecular Biology, 52:627~658.
    Schroeder JI, Allen GJ, Hugouvieux V, etal. 2001. Guard cell signal transduction.Annu Rev Plant Physiol Plant Mol Boil, 52:627~658
    Schwartz A, Wu W H, Tucken E B et al.. 1994. Inhibition of inward K+ channels and stomatal response by abscisic acid: An intracellalor locus of phytohormone action. Proc Natl Acad Sci USA, 91: 4019~4023.
    Seki M, Narusaka M, Ishida J. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought,cold,and high-salinity stresses using a full-length cDNA microarray. Plant, 31: 279~292
    Sharp R E. 2004. Root growth maintenance during water deficit:physiologyto functional genomics . Journal Experiment Botany, 55: 2343~2351
    Steven N, Radhika D, John H. 2002. Hydrogen peroxide signaling. Current Opinion in Plant Biol, 5:388~395
    Subramanian V B. 1992. Compensatory growth response during reproductive phase of cowpea after stress. Agon and cropsci, 168: 85~90
    Tanaka Y, Sano T, Tamaoki M. 2006. Cytokinin and auxin inhibit abscisic acid -induced stomatal closure by enhancing ethylene production in A rabidopsis. Exp Bot, 57 (10): 2259~2266
    Vamerali T, Saccomani M, Bona S. 2003. A comparison of root characteristics in relation to nutrient and water stress in two cornhybrids. Plant Soil, 255:157~167
    Wang W, Vinocur B, Altman A. 2003. Plant responses to drought,salinity and extremet emperatures:towards genetic for stress tolerance. Planta. 21(8): l~14
    Ze Yu Xin, Xie Zhou, Paul-Emile, et al..1997. Level changes of jasmonic,abscisic and indole-3yl-acetic in maize under desiccation st ress. Plant Physiol , 151:120~124
    Zhang X, Miao YC, An GY, et al.. 2001b. K+ channels inhibited by hydrogen peroxide mediateabscisic acid signaling in vicia faba guard cell. Cell Res, 11:195~202
    Zhang X, Zhang L, Song C P, et al..2001a. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol, 126: 1438~1448
    Zhenfeng An, Wen Jing, Youliang Liu, et al.. 2008. Hydrogen peroxide generated by copper amine oxidase is nvolved in abscisic acid-induced stomatal closure in Vicia faba. Journal of Experimental Botany, 59(4),815~825
    Zhu J K. 2002. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 53: 247~273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700