不同土壤肥力下旱后复水对冬小麦的补偿效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验于2008-2009年在河南农业大学科教园区全自动防雨棚下进行,采用盆栽试验,较系统地研究了不同土壤肥力条件下,不同生育时期干旱及复水对冬小麦生长发育、光合特性、保护酶系统、膜脂过氧化产物、渗透调节物质、灌浆速率、产量和水分利用效率等几个方面的影响。主要结果如下:
     1、不同土壤肥力下旱后复水对冬小麦株高和干物质积累的影响
     整体上来看,返青期适应干旱的能力大于拔节期,中度干旱受伤害的程度小于重度干旱。复水后,冬小麦株高、根、冠干物质积累量均超过了其相应的干旱对照,表现出了补偿或超补偿效应,返青期干旱拔节期复水的补偿效应大于拔节期干旱孕穗期复水处理;中度干旱的补偿效应大于重度干旱;高肥力土壤条件下的补偿效应>中肥力>低肥力。恢复供水后同化物分配到冠部的比例增大,使根冠比下降。
     2、不同土壤肥力下旱后复水对冬小麦叶绿素含量和光合速率的影响
     无论是返青期干旱处理还是拔节期干旱处理,同一土壤肥力条件下,冬小麦叶片叶绿素含量和光合速率均随干旱程度的增加而降低,复水后,叶绿素含量和光合速率均超过了其相应的干旱对照,表现出了补偿或超补偿效应,花后光合速率则表现为返青期干旱处理与其相应的湿润对照之间差异不显著,甚至超过了其相应的湿润对照,拔节期干旱处理则是在光合速率达到最大值之前与其相应的湿润对照之间差异不显著,最大值之后降低的幅度大于其相应的湿润对照,不利于后期籽粒灌浆。同一水分条件下,叶绿素含量和光合速率随肥力的降低而降低。
     3、不同土壤肥力下旱后复水对冬小麦SOD活性和MDA含量的影响
     同一土壤肥力条件下,SOD活性、MDA含量随干旱程度的增加而增加,但在低肥力条件下,SOD活性为中度干旱对照>重度干旱对照>湿润对照;复水20天时,除拔节期重度干旱的MDA含量未达到或接近其相应的湿润对照水平外,其它处理的SOD活性、MDA含量均达到或接近其相应的湿润对照水平,表现出了补偿或超补偿效应;同一水分条件下,SOD活性随肥力的降低而降低;在中度干旱条件下,MDA含量随肥力的降低而增加、在重度干旱条件下则表现为:中肥力>高肥力>低肥力。
     4、不同土壤肥力下旱后复水对冬小麦渗透调节物质的影响
     同一土壤肥力条件下,随干旱程度的增加,脯氨酸、可溶性糖含量增加、可溶性蛋白含量降低。复水20天时,脯氨酸、可溶性糖含量达到或接近其相应的湿润对照水平,而中肥力和低肥力条件下返青期重度干旱处理和拔节期干旱处理的可溶性蛋白含量却没有恢复到其相应的湿润对照水平。同一水分条件下,脯氨酸、可溶性糖、可溶性蛋白含量随土壤肥力的提高而增加。
     5、不同土壤肥力下旱后复水对冬小麦灌浆速率的影响
     同一土壤肥力下,灌浆速率达到最大值之前,灌浆速率随干旱程度的增加而增加,最大值之后,灌浆速率随干旱程度的增加而降低,由于干旱和土壤养分缺乏,低肥力中度干旱对照和重度干旱对照在花后20天达到了最大值,其它处理在花后25天达到最大值。返青期干旱处理在灌浆后期下降的幅度小于其相应的湿润对照,灌浆期持续时间长,表现出了超补偿效应,拔节期干旱处理灌浆最大值之前与其相应的湿润对照之间差异不显著,最大值之后,下降的幅度大于其相应的湿润对照,灌浆持续时间比其相应的湿润对照短。
     6、不同土壤肥力下旱后复水对冬小麦产量及水分利用效率(WUE)的影响
     同一土壤肥力条件下,生物学产量、籽粒产量、穗数、穗粒数和千粒重随干旱程度的增加而降低。返青期干旱处理与其相应的湿润对照间生物学产量差异显著,而与其相应的湿润对照间籽粒产量、产量构成三因素差异不显著。拔节期干旱处理与其相应的湿润对照间生物学产量、籽粒产量、产量构成三因素差异均显著。同一水分条件下,不同土壤肥力间生物学产量、籽粒产量、产量构成三因素差异均显著。
     高肥力土壤条件下,中度干旱对照的WUE最高,而与重度干旱对照、返青期干旱处理间差异不显著,在中肥力和低肥力条件下,均是重度干旱对照的WUE最高,且与其它处理间差异显著。同一水分条件下,冬小麦WUE随土壤肥力的降低而降低,不同肥力间差异显著。说明提高土壤肥力有利于旱后冬小麦WUE的提高,但拔节期干旱后复水对冬小麦WUE的提高作用不明显。
The experiment was carried out under the automatic control canopy at the Henan Agricultural University Science and Education Park Area in 2008-2009. We systematically studied the effects of drought and rewatering on growth, photosynthetic characteristics, protective enzyme system, lipid peroxidation product, osmoregulatory molecules, filling rate, yield and water use efficiency of winter wheat under different conditions of growth and fertility. The main conclusions were as follows:
     1, Effect of drought and rewatering on growth of winter wheat under different fertility conditions
     On the whole, green returned stage adapted to drought stress was stronger than jointing stage, the effect of serious drought stress was stronger than moderate drought stress. Plant height, dry matter accumulation quantity of root and shoot of winter wheat exceeded its corresponding drought contrast after rewatering, presented compensatory or ultra compensatory effect, the compensation effect of drought at green returned stage was stronger than jointing stage; moderate drought stress was stronger than serious drought stress; high fertility>medium>low. The photosynthate allocated to increase the proportion of shoot after rewatering, and maked root-shoot radio decrease.
     2, Effect of drought and rewatering on chlorophyll content and Photosynthetic rate of winter wheat under different conditions of fertility
     Chlorophyll content and Photosynthetic rate of winter wheat decreased with the serious of drought levels under the same fertility condition, and decreased with the reduction of fertilizer levels under the same water condition whether drought stress treatment at green returned stage or jointing stage. Chlorophyll content and Photosynthetic rate of winter wheat exceeded its corresponding drought contrast after rewatering, presented compensatory or ultra compensatory effect, photosynthetic rate of post-anthesis was no significant difference between drought stress treatment at green returned stage and its corresponding wet comparison, even more than the corresponding wet comparison; and no significant difference between drought stress treatment at jointing stage and its corresponding wet comparison before maximum, then significant difference after maximum, it was not conducive to grain filling at late stage.
     3, Effect of drought and rewatering on SOD and MDA of winter wheat under different fertility conditions
     SOD activity and MDA content of winter wheat increased with the serious of drought levels under the same fertility condition, but at the low fertility condition, SOD activity was moderate drought stress comparison > serious drought stress comparison > wet comparison; SOD activity and MDA content of winter wheat reached or nearly its wet comparison levels except of MDA content of serious drought stress at jointing stage after rewatering 20 days, presented compensatory or ultra compensatory effect; SOD activity decreased with the reduction of fertilizer levels under the same water condition; MDA content increased with the reduction of fertilizer under the moderate drought stress; medium fertility >high > low under the serious drought stress.
     4, Effect of drought and rewatering on osmotic adjustment of winter wheat under different fertility conditions
     Proline and soluble sugar content of winter wheat increased and soluble protein content decreased with the serious of drought levels under the same fertility condition, and increased with the reduction of fertilizer levels under the same water condition. After rewatering 20 days,proline,soluble sugar and soluble protein content of winter wheat reached or nearly its wet comparison levels except of soluble protein content content at jointing stage and green returned stage under medium and low fertility condition. proline,soluble sugar and soluble protein content increased with the increase of soil fertility under the same water condition.
     5, Effect of drought and rewatering on filling rate of winter wheat under different fertility conditions
     Filling rate of winter wheat increased before reaching maximum and decreased after the maximum with the serious of drought levels under the same fertility condition, moderate drought stress comparison under low fertility condition and serious drought stress comparison reached maximum after 20 days after flowering, and the other treatments reached maximum after 25 days after flowering. Filling rate of drought stress treatments at green returned stage the decrease in the late filling stage was lower than the corresponding wet comparison,which presented ultra compensatory effect, filling rate was not significant difference between drought stress treatments at jointing stage and its corresponding wet comparison before maximum, then significant difference after maximum, it was not conducive to increase yield.
     6, Effect of drought and rewatering on grain yield and WUE of winter wheat under different fertility conditions
     Biological yield, grain yield, the effective numbers of ears, the grain numbers of each ear and the 1000 grain weight of winter wheat decreased with the serious of drought levels under the same fertility condition. Biological yield was significant difference between drought stress treatments at green returned stage and its corresponding wet comparison, grain yield and three components of yield were not significant difference, and significant difference between drought stress treatments at jointing stage and its corresponding wet comparison. They were significant difference with the reduction of fertilizer levels under the same water condition.
     Moderate drought stress comparison of water use efficiency (WUE) under the high fertility condition was the highest, and no significant difference with serious drought stress comparison and drought stress treatments at green returned stage, serious drought stress comparison of WUE was high under the medium and low fertility condition, and no significant difference with other treatments. WUE decreased with the reduction of fertilizer levels under the same water condition. The results suggested that properly increasing fertilizer amount is conducive to recovery and increase water use efficiency of winter wheat.
引文
[1]王俊儒,李生秀.不同生育时期水分有限亏缺对冬小麦产量及其构成因素的影响[J].西北植物学报,2000,20 (2):193-200.
    [2]汤章城.植物对水分胁迫的反应与适应性[J ].植物生理学通讯,1983; 3:24-29.
    [3]施积炎,袁小风.作物水分亏缺补偿与超补偿效应的研究现状[J].山地农业生物学报,2000, 19(3):226-232.
    [4]慕自新.土壤干湿交替下作物补偿生长的生理基础及其在农业中的应用[J].植物生理学通讯,2002,38(5):511-516.
    [5]赵松岭.集水农业引论[M].陕西科学技术出版社,1996,234.
    [6]郑利,赵松岭.半干旱地区春小麦超补偿作用的初步研究[J].西北植物报,1995,15(8): 125-133.
    [7]陈晓远,罗远培.不同生育期复水对受旱冬小麦的补偿效应研究[J].中国生态农业学报,2002,10(1):35-37.
    [8]陈晓远,罗远培.土壤水分变动对冬小麦生长动态的影响[J].中国农业科学,2001,34(4):403- 409.
    [9]郝树荣,郭相平,张展羽.作物干旱胁迫及复水的补偿效应研究进展[J].水利水电科技进展,2009,29(1):81-84.
    [10]] Atsushi Sakamoto,Norio Muratan. Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance[J].Journal of Experimental Botany ,2000,51(342):81-88.
    [11]徐萌,山仑.不同水分条件下无机营养对春小麦水分状况和渗透调节的影响[J].植物学报,1992,34(8):596-602.
    [12]张岁岐,山仑,薛青武.氮磷营养对小麦水分关系的影响[J].植物营养与肥料学报,2000,6 (2):147-151.
    [13]张士功,刘国栋,刘更另.渗透胁迫和缺磷对小麦幼苗生长的影响[J].植物生理学通讯, 2001,37(2):103-105.
    [14]张林刚,邓西平.小麦抗旱性生理生化研究进展[J].干旱地区农业研究,2000,18(3):87-92.
    [15]郭相平,张烈君,王琴,等.作物水分胁迫补偿效应研究进展[J].河海大学学报(自然科学版),2005,33(6):634-637.
    [16]陈晓远,罗远培,李韵珠.拔节期复水对苗期受旱冬小麦的激发效应[J].中国农业大学学报,1994,4(3):23-28.
    [17]董宝娣,张正斌,刘孟雨,等.水分亏缺下作物的补偿效应研究进展[J].西北农业学报,2004, 13(3):31-34.
    [18]李连朝.水分亏缺下细胞延伸生长与细胞膨压和细胞壁特性的关系[J].植物生理学通讯, 1998,34(3):161-167.
    [19]梁宗锁,康纪忠,高俊凤,等.分根交替渗透胁迫与脱落酸对玉米根系生长和蒸腾效率的影响[J ] .作物学报,2000 ,26 (2) :250-255.
    [20]黄占斌.干湿变化与作物的补偿效应规律研究[J].生态农业研究,2000,8(1):30-33.
    [21]张正斌.植物对环境胁迫整体抗逆性研究若干问题[J].西北农业学报,2000,9(3):112-116.
    [22] Spollen W G, Sharp RE,Saab IN. Regulation of cell expantion in roots and shoots at low water potentials. Smith J.A.C, Griffiths H(eds).Water Deficits. Plant responses from Cell to Community[M].Oxford: Bios Sci Pub,1993,37-52.
    [23]山仑,张岁歧.节水农业及其生物学基础[J].水土保持研究,1999,6(1): 2-6.
    [24]山仑.节水农业与作物高效用水[J].河南大学学报(自然科学版),2003,33(1):1-5.
    [25]李尚中,王勇,樊廷录.水分胁迫对冬小麦生长发育和产量的影响[J].甘肃农业科技, 2007,10:3-6.
    [26]夏扬,秦江涛,朱晓军,等.不同有机物添加方式下水稻对干旱胁迫的响应[J].土壤, 2009,41 (1):118-125.
    [27]白莉萍,隋方功,孙朝晖,等.土壤水分胁迫对玉米形态发育及产量的影响[J].生态学报, 2004,24(7):1556-1560.
    [28]薛青武,陈培元.土壤干旱条件下氮素营养对小麦水分状况和光合作用的影响[J].植物生理学报,l990,l6(1):49-56.
    [29]陈晓远,罗远培.不同生育期复水对受旱冬小麦的补偿效应研究[J].中国生态农业学报, 2002,10(10):35-37.
    [30]刘晓英,罗远培,石元春.水分胁迫后复水对冬小麦叶面积的激发作用[J].中国农业科学, 2001,34(4):422-428.
    [31]刘遵春,陈荣江,包东娥.干旱胁迫对金光杏梅幼苗生长及其生理生化指标的影响[J].沈阳农业大学学报,2008,39(1):100-103.
    [32]王晨阳,马元喜.不同土壤水分条件下小麦根系生态生理效应的研究[J].华北农学报,1992, 7(4):1-8.
    [33]刘建利,冯广龙,罗远培.水分变动对冬小麦根系生长的影响[J].中国农业生态学报,1997,1:13-18.
    [34] S.Asseng, J.T.Ritchie, A.J.M Smucker, etal. Root growth and water uptake during water deficit and recovering in wheat[J].Plant and Soil,1998,201(2):265-273.
    [35]王凤仙,李韵珠.土壤水分利用效率与氮素水平的关系[A].北京:北京农业大学出版社,1995,124-130.
    [36]陈晓远,刘晓英,罗远培.土壤水分对冬小麦根、冠干物质动态消长关系的影响[J].中国农业科学,2003,36(12):1502-1507.
    [37]刘庚山,郭安红,任三学,等.夏玉米苗期有限水分胁迫拔节期复水的补偿效应[J].生态学杂志,2004,23(3):24-29.
    [38]杨贵羽,罗远培,李保国,等.水分胁迫持续时间对冬小麦根冠生物量累积的影响[J].干旱地区农业研究,2006,24(4):94-98.
    [39]桑玉强,吴文良,张劲松.毛乌素沙地杨树防护林内紫花苜蓿蒸散耗水规律的研究[J].农业工程学报,2006,22 (5) :44-49.
    [40]王磊,张彤,丁圣彦,等.干旱和复水对不同倍性小麦光合生理生态的影响[J].生态学报, 2008,28(4):1593-1599. [ 41 ]袁永慧,邓西平.干旱与复水对小麦光合和产量的影响[J].西北植物报,2004,24(7):1250-1254.
    [42]关义新,戴俊英,徐世昌,等.玉米花期干旱及复水对植株补偿生长及产量的影响[J].作物学报,1997,23(6):740-745.
    [43]丁端锋,蔡焕杰,王健,等.玉米苗期调亏灌溉的复水补偿效应[J].干旱地区农业研究,2006,24(3):64-67.
    [44]周雪英,邓西平.旱后复水对不同倍性小麦光合及抗氧化特性的影响[J].西北植物学报,2007,27(2):0278-0285.
    [45]王俊儒,李生秀,李凯丽.冬小麦不同生育时期水分亏缺胁迫对叶片保护酶系统的影响[J].西北植物学报,2001,21(1):47-52.
    [46]马尧,于漱琦.水分胁迫下小麦幼苗SOD活性的变化及脂质过氧化作用[J].农业与技术, 1998,(3):18-20.
    [47]张峰,杨颖丽,何文亮,等.水分胁迫及复水过程中小麦抗氧化酶的变化[J].西北植物学报, 2004,24(2):205- 209.
    [48] Dhindsa R S. Drought Tolerance in Two Mosses: Correlated with Enzymatic Defence Against Lipid Peroxidation [J].Plant Physiology,1982,56:453-460.
    [49]单长卷,杨小丽.土壤干旱对冬小麦幼苗根、叶渗透调节和保护酶活性的影响[J].河南农业科学,2006,8,28-31.
    [50]刘瑞显,郭文琦,陈兵林,等.氮素对花铃期干旱及复水后棉花叶片保护酶活性和内源激素含量的影响[J].作物学报,2008,34(9):1598-1607.
    [51]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27 (2) :84-90.
    [52]徐莲珍,蔡靖,姜在民,等.水分胁迫对3种苗木叶片渗透调节物质与保护酶活性的影响[J].西北林学院学报,2008,23 (2) :12-16.
    [53]陈雅君,祖元刚,刘慧民,等.干旱对草地早熟禾膜质过氧化酶和保护酶活性的影响[J].中国草地学报,2008,30(5):32-36.
    [54]刘红云,梁宗锁,刘淑明,等.持续干旱及复水对杜仲幼苗保护酶活性和渗透调节物质的影响[J].西北林学院学报,2007,22 (3):55-59.
    [55]王列富,杨玉珍,彭方仁.干旱胁迫对不同种源香椿苗木膜脂过氧化作用的影响[J].安徽农业科学,2008 ,36(1) :137 -139.
    [56]王静,杨德光,马凤鸣,等.水分胁迫对玉米叶片可溶性糖和脯氨酸含量的影响[J].玉米科学2007,15(6):57-59.
    [57]张国盛,张仁陟,黄高宝,等.水分亏缺时氮磷营养对春小麦幼苗抗逆性的影响[J].应用与环境生物学报,2003,9(6):584-587.
    [58]李英,陈培元,陈建军.水分胁迫下不同抗旱类型品种对氮素营养反应的比较研究[J].西北植物学报,1991,11(4):309-315.
    [59]陈鹏,张德玖,李玉红,等.水分胁迫对苦荞幼苗生理生化特性的影响[J].西北农业学报,2008,17(5):204-207.
    [60]李秀君,潘宗东.不同粒重小麦品种籽粒灌浆特性研究[J ].中国农业科技导报,2005 ,7 (1) :26- 30.
    [61]李志贤,柴守玺,齐伟宏,等.不同灌溉处理下冬小麦籽粒灌浆特性的研究[J].甘肃农业大学学报,2007,42(1):35-40.
    [62]吴清丽,高茂盛,廖允成,等.氮素对冬小麦光合物质贮运及籽粒灌浆进程的影响[J].干旱地区农业研究,2009,27(2):120-124.
    [63]闫洁,曹连莆,张薇,等.土壤水分胁迫对大麦籽粒内源激素及灌浆特性的影响[J].石河子大学学报(自然科学版),2005,23(1):30-38.
    [64] Robertson M J, Giunt A F. Responses of spring wheat exposed to pre-anthesis water stress[J]. Austyalian Journal of Agricultural Research,1994,45(1):19-35.
    [65] Alscher R G, Cumming J R. Stress response in plants: adaptation and accumulation mechanisms[C]. New York : Wiley-Liss, 1990,17-36.
    [66]盛宏达.小麦灌浆期干旱对籽粒产量的影响[J].干旱地区农业研究,1984, 2 :75 - 81.
    [67]王万里,章秀英,吴亚华,等.灌浆-成熟期间土壤干旱对小麦籽粒充实和物质运转的影响[J].植物生理学报,1982 ,8 (1) :67 -80.
    [68] Hsico T C. Plant responses to water stress [J]. Annal review of plant physiology,1973 ,24:519 - 570.
    [69]许振柱,于振文.土壤干旱对冬小麦旗叶乙烯释放、多胺积累和细胞质膜的影响[J] .植物生理学报,1995,21 (3) :295 -301.
    [70]马春英,李雁鸣,任月同.土壤水分胁迫对小麦产量的影响及节水灌溉的可行性[J].河北农业大学学报, 2003, 269(增刊):1-4.
    [71]张喜英,由懋正,王新元,等.不同时期水分调亏及不同调亏程度对冬小麦产量的影响[J].华北农学报,1999,14 (2) :1-5.
    [72]山仑,吴玫君,谢其明,等.小麦灌浆期生理特性和土壤水分条件对灌浆影响的研究[J].植物生理学通讯,1980,16(3):41-46.
    [73]陈晓远,罗远培,李韵珠.拔节期复水对苗期受旱冬小麦的激发效应[J].中国农业大学学报,1999,4(3):23-28.
    [74]陈晓远,罗远培.水分胁迫及复水对冬小麦粒叶比的影响[J].干旱地区农业研究,2001, 19(1):66-71.
    [75] Bierhuizen J F, Slatyer R O. Effect of atmospheric concentration of water vapor and CO2 indetermining transpiration photosynthesis relationships of cotton leaves[J].Agricultural Meteorology,1965,2:229-270.
    [76] Frank A B, Barker R E,Berdahl J D. Water-use efficiency of grasses grown under controlled and field conditions[J].Agronomy Journal,1987,79:541-544.
    [77] Kumar K, Singh D P, et al. Influence of water stress on photosynthesis, transpiration, water use efficiency and yield of Brassica juncea L[J].Field Crops Research,1994,37:95-101.
    [78]任三学,赵花荣,姜朝阳,等.不同灌水次数对冬小麦产量构成因素及水分利用效率的影响[J].华北农学报,2007,22 (增刊):169-174.
    [79]蒋高明,何维明.毛乌素沙地若干植物光合作用、蒸腾作用和水分利用效率种间及生境间差异[J].植物学报,1999,41 (10):l1l4-l124.
    [80] Damesin C, Rambal S, Joffre R. Between-tree variations in leaf 13C of Quercus pubescens and Quercus ilex among Mediterranean habitats with different water availability [J]. Oecologia, 1997, 111:26-35.
    [81]刘素华,李韵珠,等.冬小麦水氮有效性的研究[J].中国农业大学学报,1996,1(5):67-73.
    [82]王可玢,许春辉,赵福洪,等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响[J].生物物理学报.1997,13(2):273-278.
    [83]张秋英,李发东,高克昌,等.水分胁迫对冬小麦光合特性及产量的影响[J].西北植物学报,2005,25(6):1184-1190.
    [84]上官周平.氮素营养对旱作小麦光合特性的调控[J].植物营养与肥料学报,1997,3 (2):105-110.
    [85] Foyer CH, Valadier MH, Migge A, et al. Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. PlantPhysiol, 1998, 117:283-292.
    [86]梁云江,依艳丽,许广波.等.水肥耦合效应的研究进展与展望[J].湖北农业科学,2006,45(3): 385-388.
    [87]张宪政.植物生理学试验技术[M].沈阳:辽宁科学技术出版社,1994,20-43.
    [88]王爱国,罗光华,邵从本.大豆种子超氧物歧化酶的研究[J].植物生理学报.1983,9(1):77-84.
    [89]张宪政.作物生理研究法[M].北京:农业出版社,1992.131-207.
    [90]张殿忠.测定小麦叶片游离脯氨酸含量的方法[J].植物生理学通讯,1990,(4):62-65.
    [91]邹琦主编.植物生理学实验指导[M].北京:中国农业出版社,58-59.
    [92] Read S M, Northcote D H. Minimization of variation in t he response to different protein of the coomassic blue G dyedinding: assay for protein[J].Analytical Biochemistry,1981, 116 : 53-64.
    [93]杨晓光,于沪宁.夏玉米水分胁迫与反冲机制及其应用[J].生态农业研究,1999,7(3):27-31.
    [94]李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报, 2002,22(4):503-507.
    [95]张玉梅,林琪,刘义国,等.不同抗旱性小麦品种花后旗叶生化特性的研究[J].华北农学报, 2006 ,21 ( 4 ) :43 -47.
    [96]单长卷,吴雪平,刘遵春.水分胁迫对冬小麦水分生理特性和产量构成三因素的影响[J].江苏农业学报,2008,24(1):11-16.
    [97]中国新闻网.“中原粮仓”河南省今年粮食总产量将超千亿斤[EB]. http://www.chinanews.com.cn/cj/news/2009/10-15/1911083.shtml, 2009-10-15.
    [98]中国政府网.我国粮食第一大省河南省有望再次迎来夏粮丰收[EB]. http://finance.sina.com.cn/roll/20090522/18552856892.shtml, 2009-05-22. [ 99 ]梁运江,依艳丽,许广波,等.水肥耦合效应的研究进展与展望[J].湖北农业科学,2006,45(3):385-388.
    [100] Chalmers D J , Bvanden E. Productivity of peach trees factors affecting dry - weight dist ribution during tree growth [ J ] . Ann Bot, 1975,39 :423-432.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700