云南元谋干热河谷深色有隔内生真菌(DSE)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金沙江位于长江中上游,金沙江干热河谷是在地势、地貌、自然和人类活动等综合因素作用条件下形成的,主要分布在云南和四川境内。这一特殊生态系统的突出特点就是全年气温高,蒸发量大,年蒸发量大于年降水量。云南干热河谷地区由于人口密度大、开发时间早、强度大,因此也是水土流失最严重的地区,对长江流域生态系统造成严重影响。国家已把长江中上游地区的生态治理列为国家重点环境治理工程,其中干热河谷地区的植被恢复是这一工程中的重中之重。深色有隔内生菌(Dark Septate Endophytes,DSE)是土壤生态系统中的一类广泛分布并具有重要的生态功能的微生物,在陆地生态系统和水生生态系统均有发现,并在陆地生态系统的植被恢复和土壤修复过程中发挥重要的作用。
     本研究以金沙江干热河谷(云南元谋段,简称元谋干热河谷)3种生境——原生地、耕地和休耕地为研究对象,对各生境中自然生长的植物根中DSE的定殖情况进行了全面调查,从中分离并得到深色有隔内生真菌(DSE)菌株;通过形态学观察和对核糖体小亚基ITS1-5.8S rDNA-ITS2序列分析,对这些菌株的系统发育地位进行初步鉴定;从分离到的DSE菌株中,选择形态特征典型的菌株以玉米为宿主植物,进行回接试验;在不同干旱胁迫水平处理下,以玉米为宿主植物,接种典型菌株,考查接种真菌对玉米的生长及其抗旱性影响。研究取得的主要结果和结论如下:
     用碱解离、酸性品红染色法对元谋干热河谷耕地、休耕地和原生地三种生境中30科64种植物(土著植物、农作物和引种植物)根样的深色有隔内生真菌(DSE)及丛枝菌根(Arbuscular Mycorrhizas, AM)状况进行了调查,发现所有被调查的植物均被深色有隔内生真菌(DSE)感染,AMF的感染率分别为原生地86%(24种),耕地78%(21种)和休耕地96%(25种)。
     从三种生境中自然生长的植物根内分离并得到的不同DSE菌株用PDA培养基培养,根据其形态学特征和ITS 1-5.8S rDNA-ITS 2序列分析,将其中的77-2、105-2、108-1等8株菌鉴定为枝孢菌属,其它菌株由于鉴定手段的欠缺,仅根据其DNA序列比对还不能将其归为相关的属、种。
     将枝孢菌属真菌菌株与宿主植物玉米进行回接实验说明,在轻度(10%)、中度(20%)、重度(30%)干旱胁迫条件下,枝孢菌属的部分种类对宿主植物玉米的抗旱性具有有益作用。
Jinsha River is located in the middle and upper reaches of Yangtze River. Hot-dry valley of Jinsha River, which is distributed mainly in Yunnan and Sichuan province, is formed under the comprehensive actions of geological, landscape, natural and human activities. This special ecosystem is charactered by its high annual temperature and heavy evaporation and its annual evaporation is higher than its annual precipitation. High population density and intensive exploitation in Hot-dry valley of Yunnan have been resulting in most serious soil and water loss, which have already threatened the ecosystems of drainage area of Yangtze River. So, the ecological improvement projects of the middle and upper reaches of Yangtze River have been listed as the key environmental improvement projects by Chinese government, in which the vegetation restoration of hot-dry valley is the most important core project. Dark septate endophytes are a assembly of fungi which widely distribute in soil and may have important ecological functions in natural ecosystems. Their existence has been found in terrestrial ecosystems and aquatic ecosystems. Moreover, they may play an important role in the restoration and biomediation of terrestrial ecosystems.
     Three habitats, representing cultivated lands (CL), old fields (OF) and never-cultivated fields (NCF), which located in hot-dry valley of Yuanmou, southwest China, were chosen as study sites. Based on the investigation of colonization in plants of three different ecosystems, 39 fungal isolates were obtained from surface sterilized root segments. Taxonomic affinity of the isolates was studied according to morphological observation and phylogenetic analysis of ITS1-5.8S-ITS2 region of rDNA. Inoculation experiments with maize were done with the isolates which are typical strains. Under different drought stress conditions, there are the effects of inoculation of strains on the tolerance of maize. The main results and conclusions of the thesis are:
     The DSE and AMF colonization of 64 plant species representing native plants, crops and introduced plants in CL, OF and NCF of hot-dry valley of Yuanmou was investigated by alkaline lysising and acid fuchsin staining. It was found that all plants surveyed in the three habitats were infected by DSE. The frequency of AMF in NCF, AL, OF are 86%, 78%, 96%. The results indicate that the plants are highly dependent on DSE and AMF in this hot and arid ecosystem.
     According to the morphological characters of the isolates on PDA and phylogenetic analysis of ITS regions, 8 isolates, including 77-2, 105-2,108-1 were identified to Cladosporium spp..
     After maize were inoculated with Cladosporium spp. and, DSE structures were observed in their roots, and no pathogenic symptom appeared in the maize. It has a positive effects to maize on different drought stress conditions. These results suggest that some species of Cladosporium are candidates of DSE.
引文
Addy HD, Piercey MM , Currah RS, 2005. Microfungal endophytes in root. Canadian Journal of Botany, 83: 1-13
    Ahlich-Schlegel K, 1997. Vorkommen und charakterisierung von dunklen, septierten hyphomycete (DSH) in Geh?lzwurzeln. Ph.D.thesis, Eidgen?ssische Technische Hochschule, Zürich, Switzerland
    Ahlich-Schlegel K, Sieber TN. 1996. The profusion of dark septate endophytic fungi in non-ectomycorrhizal fine roots of forest trees and shrubs. New Phytologist, 132:259-270
    Barrow JR, 2003. Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza, 13(5): 239-247
    Barrow JR, Aaltonen RE, 2001. Evaluation of the internal colonization of Atriplex canescens (Pursh) Nutt. roots by dark septate fungi and the influence of host physiological activity. Mycorrhiza, 11(4):199-205
    Belimov AA, Hontzeas N, Safronva VI. 2005. Cadmium- tolerant plant growth- promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology & Biochemistry, 37:241- 250
    Bilcox HE, Bang CJR.1987. Ectomycorrhizal and ectendomycorrhizal associations of Phialophora finlandla with Pinus resinosa, and Betula alleghaensis. Canadian Journal of Forest Research, 17: 976-990
    Bledsoe CS, Zasoski RJ. 1983. Effects of ammonium and nitrate on growth and nitrogen uptake by mycorrhizal Douglas-fir seedlings. Plant and Soil 71: 445–454
    Bradshaw AD. 1997. Restoration of mined lands-using natural process. Ecologica Engineering 8: 255-269
    Brown MT, Wilkins DA. 1985. Zinc tlorance of mycorrhizal Betula. New Phytologist, 99:101-106
    Bücking H, Heyser W.1994. The effect of ectomycorrhizal fungi on Zn uptake and distribution in seedings of Pines sylvesfris L.. Plant Soil, 167:203-212
    Caldwell BA, Jumpponen A, Trappe JM. 2000. Utilization of major detrital substrates bydark-septate root endophytes. Mycologia, 92:230-232
    Cast CH, Jansen E, Bierling J.1998. Heaven metals in mushrooms and their relationships with soil characteristics. Chemosphere 17:789-799
    Cázares E, 1992. Mycorrhizal fungi and their relationship to plant succession in subalpine habitats. Ph.D. thesis, Oregon State University, Corvallis, OR, USA
    Chanmugaths P, Jean-Marc B. 1987. Microbial role in immobilization and subsequent mobilization of cadmium in suspensions. Soil Science Society of America Journal, 51:1184-1191
    Colpaert JW, Assche JA. 1992. Zinc toxicity in ecomycorrhizal pinus sylvestris. New Phytologist, 123:325-333
    Conan CS. 1991. Differential adsorption of Al, Ca and Mg by roots of red spruce (Picea rubens Sarg). Tree Physiologist, 8: 227-237
    Currah RS, Sigler L, Hambleton S. 1987. New records and new taxa of fungi from the mycorrhizae of terrestrial orchids of Alberta. Canadian Journal of Botany, 65: 2473-2482
    Currah RS, Tsuneda A. 1993. Vegetative and reproductive morphology of Phialocephala fortinii (Hyphomycetes, Mycelium radicis atrovirens) in culture. Transaction Mycological Society of Japan, 34:345-356
    Currah RS, Tsuneda A, Murakami S, 1993. Morphology and ecology of Phialocephala fortinii in roots of Rhododendron brachycarpum. Canadian Journal of Botany, 71: 1639-1644
    Curtis JT. 1939. The relation of specificity of orchid mycorrhizal fungi to the problem of symbiosis. American Journal of Botany, 26: 390-399
    Darlington AB, Rauser WE. 1988. Cadmium alters the growth of the ectomycorrhizal fungus Paxillus involutus: a new growth model accounts for changes in branching. Canadian Journal of Botany, 66:225-229
    Derama A, Languereau-Lemanb F, Howsamc M, Petitd D, Haluwyn CV, 2008. Seasonal patterns of cadmium accumulation in Arrhenatherum elatius (Poaceae): influence of mycorrhizal and endophytic fungal colonization. Soil Biology & Biochemistry, 40(3):845-848
    Denny HJ, Ridge I. 1995. Fungal slime and its rote in the mycorrhizal arnetioration of tine toxicity to higher plants. New Phytologist, 130:251-257
    Ellis, AE, Waddell IF. 1983. A systemic fungal disease in Atlantic salmon parr, Salmo salar L. caused by a species of Phialophora. Journal Fish Diseases, 6: 511-523
    Fijan N. 1969. Systemic mycosis in channel catfish. Bull. The Wildlife Disease Association, 5: 109-110
    Francis R, Read DJ. 1995. Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Canadian Journal of Botany, 73:1301-1309
    Fernando AA, Currah RS. 1995. Leptodontidium orchidicola (Mycelium radicis atrovirens complex): aspects of its conidiogenesis and ecology. Mycotaxon, 54:287-294
    Fernando AA, Currah RS.1996. A comparative study of the effects of the root endophytes Leptodontldzum orchidicola and Phialocephala fortinii (Fungi Imperfecti) on the growth of some subalpine plants in culture. Canadian Journal of Botany, 74:1071-1078
    Fuchs B, Haselwandter K, 2004. Red list plants: colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza, 14(4): 277-281
    Gadd GM, 1990. Heavy metal accumulation by bacteria and other microorganisms. Experientia, 46: 834-840
    Gadd GM, 1993. Interactions of fungi with toxic metals. New phytologist, 124: 25-60
    Gams W, 1963. Mycelium radicis atrovirens in forest soils isolation from soil microhabitats and identification. In: Dockson J & van der Drift J (eds.) Soil organisms. North Holland Publications, Amsterdam. 176-182
    Gonzalez-Chavez C, Haen JD, Dodd JC. 2002. Copper sorption and accumulation by the extraradical mycelium of different Glimus spp isolated from the same polluted soil. Plant Siol, 240:287-297
    G?hre V, Paszkowski U. 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223: 1115-1122
    Grabisu C, Hernández-Allica J, Barrutia O, Alkorta I, Becerril JM. 2002. Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Reviews Environ Health, 17: 75-90
    Gaur A, Adholeya A. 2004. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Sciences, 86: 528-534
    Giasson P, Jaouich A, GagnéS, Moutoglis P. 2005. Arbuscular Mycorrhizal Fungi Involvement in Zinc and Cadmium Speciation Change and Phytoaccumulation. Remediation Journal, 15: 75-81
    Grünig CR, Linde CC, Siebe TN, Rogers SO, 2003. Development of single-copy RFLP markers for population genetic studies of Phialocephala fortinii and closely related taxa. Mycological Research, 107(11): 1332-1341
    Grünig CR, McDonald BA, Sieber TN, Rogers SO, Holdenrieder O, 2004. Evidence for subdivision of the root-endophyte Phialocephala fortinii into cryptic species and recombination within species. Fungal Genetics and Biology, 41(7): 676-687
    Grünig CR, Sieber TN, 2005. Molecular and phenotypic description of the widespread root symbiont Acephala applanata gen. et sp. nov., formerly known as dark-septate endophyte Type 1. Mycologia, 97(3): 628-640
    Harney SK, Rogers SO, Wang CJK, 1997. Molecular characterization of dematiaceous root endophytes. Mycological Research, 101:1397-1404
    Haselwandter K, Read DJ, 1982. The significance of a root-fungus association in two Carex species of high-alpine plant communities. Oecologia, 53(3): 352-354
    Hashiba T, Narisawa K, 2005. The development and endophytic nature of the fungus Heteroconium chaetospira. FEMS Microbiology Letter, 252(2): 191-196
    Trappe JM. 1996. What is a mycorrhiza? In: Azcon-Aguilar C, Barea J-M (eds) Mycorrhiza in integrated systems-from genes to plant development. Proceeding of Fourth European Symposium on Mycorrhiza. Commission of the European Union, Luxembourg, pp 3-6
    Jacoba C, Courbota M, Martinb F. 2004. Transcriptomic responses to cadmium in the ectomycorrhizal fungus Paxillus involutus. FEBS Letters 576: 423- 427
    Joner E, Briones R, Leyval C. 2000. Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil, 226:227-234
    Jumpponen A, Trappe JM .1996. Population structure of Phialocephala fortinii on a receding glacier forefront. In: Azcon- Aguilar C, Barea J-M, eds. Mycorrhiza in Integrated Systems. From Genes to Plant Development. Luxemburg: Commission of the European Union (Cost 8.2), 128-130.
    Jumpponen A, Mattson KG, Trappe JM .1998. Mycorrhizal functioning of Phialocephala fortinii: interactions with soil nitrogen and organic matter. Mycorrhiza, 7: 261-265
    Jumpponen A, Trappe JM, 1998. Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytologist, 140(2): 295-310
    Kapoor A, Vraraghvan T. 1995. Fungal biosorption alternative treatment option for heavy metal bearing water:a review. Bioresource Technology, 53:195-206
    Kowalski S, 1973. Mycorrhiza-forming properties of various strains of the fungus Mycelium radicis atrovirens Melin. Bulletin de l’Academie Polonaise des Sciences, Sèrie des Sciences Biologiques, 21:767-770
    Lamb RJ. 1974. Effect of D-glucose on utilization of simple carbon sources by ectomycorrhizal fungi.Transactions of the British mycological Society, 54:371-378
    Laursen G, Treu R, Seppelt RD, Stephenson SL, 1997. Mycorrhizal assessment of vascular plants from subantarctic Macquarie Island. Arctic and Alpine Research, 29(4): 483-491
    Leung HM, Ye ZH, Wong MH. 2007. Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere, 66: 905-915
    Livingston WH, Blaschke H, 1984. Deterioration of mycorrhizal short roots and occurrence of Mycelium radicis atrovirens on declining Norway spruce in Bavaria. European of Forest Pathology, 14(6): 340-348
    Li AR, Guan KY, 2006. Mycorrhizal and dark septate endophytic fungi of Pedicularis species from northwest of Yunnan Province, China. Mycorrhiza, 17(2):103-109
    Li LF, Yang AN, Zhao ZW, 2005. Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in southwest China. FEMS Microbiology Ecology, 54(3): 367-373
    Linderman RG. 1988. Mycorrhizal interactions with the rhizosphere microflora: the mycorrihosphere effect. Journal of Environment Quality, 26:169-775
    Lynch JM, Moffat AJ. 2005. Bioremediation- prospects for the future application of innovative applied biological research. Annals of Applied Biology, 146: 217- 221
    McGinnis, MR, Ajello L. 1974. A new species of Exophiala isolated from channel catfish. Mycologia, 66: 518-520
    McGinnis, MR, Padhye AA. 1977. Exophiala jeanselmeL a new combination for Phialophora jeanselmei. Mycotaxon, 5: 341-352
    Melin E, 1922. On the mycorrhizas of Pinus sylvestris L. and Picea abies Karst. A preliminary note. Journal of Ecology, 9: 254-257
    Mikola P. 1948. On the physiology and ecology of cenococcum graniforme. Communs Inst for fenn, 36:1-104
    Morselt AFM, Smits WTM, Limonard T.1986. Histochemical demonstration of heavy metal tolerance in ectomycorrhizal fungi. Plant and soil, 96:417-420
    Muthukumar T, Senthilkumar M, Rajangam M, Udaiyan K, 2006. Arbuscular mycorrhizal morphology and dark septate fungal associations in medicinal and aromatic plants of western Ghats, southern India. Mycorrhiza, 17(1):11-24
    Neal JL, Bollen WB, Zale B. 1964. Rhizosphere microflora associated- with the specimen preparation in the ecomycorrhizal fungus Pisolithus tinctorius. Protoplasma, 173:91-102
    Mullen RB, Schmidt SK, Jaeger CH, 1998. Nitrogen uptake during snowmelt by the snow buttercup, Ranunculus adoneus. Arctic and Alpine Research, 30(2): 121-125
    Mullen MD, Wolf DC, Beveridge TJ, Bailey CW. 1992. Sorption of heavy metals by the soil fungi Aspergillus niger ang Mucor rouxill. Soil Biology & Biochemistry, 24:129-135
    Narisawa K, Hambleton S, Currah RS, 2007. Heteroconium chaetospira, a dark septate root endophyte allied to the Herpotrichiellaceae (Chaetothyriales) obtained from some forest soil samples in Canada using bait plants. Mycoscience, 48(5):274-281
    Narisawa K, Usuki F, Hashiba T, 2004. Control of verticillium yellows in Chinese cabbage by the dark septate endophytic fungus LtVB3. Phytopathology, 94(5):412-418
    Newsham KK, 1999. Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliata ssp.ambigua. New Phytologist, 144(3):517-524
    Newman LA, Reynolds CM. 2005. Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends in Biotechnology, 23: 6-8
    O' Dell TE, Massicotte HB, Trappe JM. 1993. Root colonization of Lupines latifolius Agardh. and Pines contorta Dougl. By Phialocephala fortinii Wang&Wilcox. New Phytologist, 124: 93-100
    Palmer JG, Hacskaylo E. 1970. Ectomycorrhizal fungi in pure culture. 1. growth on single carbon sources. Physiologia, 23:1187-1197
    Petrini O. 1991. Fungal endophytes of tree leaves. In:Andrews JH. Hirano SS eds. Microbial Ecology of Leaves. New York:Springer-Verlag, 179-197
    Piercey M, 2003. Dark septate root endophytic (DSE) fungi in Canada: geographic distribution and patterns of variation. M.Sc.thesis, Department of Biological Sciences, University of Alberta, Edmonton, Canada
    Rains KC, Nadkarni NM, Bledsoe CS, 2003. Epiphytic and terrestrial mycorrhizas in a lower montane Costa Rican cloud forest. Mycorrhiza, 13(5):257-264
    Rajapaksha RMCP, Tobor-Kap&on M, B??th EA. 2004. Metal toxicity affects fungal and bacterial activitiesin soil differently. Applied Environmental Microbiology, 70: 2966-2973
    Rawald W. 1962. Zur Abhangigkeit des mycelwachstums hoheren pilze von versongung mit kohlenhydraten. Zallg Nikrobiology, 2:303-313
    Redon PO, Béguiristain T, Leyval C. 2008. In?uence of Glomus intraradices on Cd partitioning in a pot experiment with Medicago truncatula in four contaminated soils. Soil Biology & Biochemistry, 40: 2710-2712
    Richard C, Fortin JA, 1974. Distribution géographique,écologie, physiologie, pathogenicitéet sporulation du mycelium radicis atrovirens. Phytoprotection, 55: 67-88
    Richter C, Dainty J. 1989. Ion behavior in plant cell walls. I. Characterization of the sphagnum russowil cell wall ion exchanger. Canadian Journal Botany, 67: 451-459
    Schol-Schwarz, M.B. 1968. Rhinocladiella, its synonym, Fonsecaea and its relation to Phialophora. Antonie van Leeuwenhoek, 34: 119-152
    Smith SE, Read DJ. 2008. Mycorrhizal Symbiosis (3rd edition). Academic Press.
    Stoyke G, Egger KN, Currah RS .1992. Characterization of a sterile endophytic fungi from the mycorrhizae of subalpine plants. Canadian Journal of Botany, 70: 2009-2016
    Treu R, Laursen GA, Stephenson SL, Landolt JC, Densmore R, 1996. Mycorrhizae from Denali National Park and Preserve, Alaska. Mycorrhiza, 6(1): 21-29
    Turnau K, Anielska T, Ryszka P, Gawroński S, Ostachowicz B, Jurkiewicz A. 2008. Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes–new solution for waste revegetation. Plant Soil, 305: 267-280
    Turnau K, Kottke I, Dexheimer J. 1996. Toxic element filtering in Rhizopon roseolus pinus sylvestris mycorrhizas collected from calamine dumps. Mycologia Research, 100: I 6-22
    Usuki F, Narisawa K, 2007. A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia, 99(2): 175-184
    Val CD, Andrade SAL, Abreu CA. 1999.Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Applied and Environmental Microbiology, 65: 718-723
    Viire H, Vestberg M, EuroIa S, 1992. Mycorrhiza and root-associated fungi in Spitsbergen. Mycorrhiza, 1(3):193-104
    Vivas A, BiróB, Ruíz-Lozano JM. 2006. Two bacterial strains isolated froma Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxity. Chemosphere, 62: 1523- 1533
    Wang CJK, Wilcox HE, 1985. New species of ectendomycorrhizal and pseudomycorrhizal fungi: Phialophora finlandia, Chloridium paucisporum and Phialocephala fortinii. Mycologia, 77(6):951-958
    Wang FY, Lin XG, Yin R. 2007. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens- a field case. Environ Pollut, 147: 248-255
    Wang K, Zhao ZW, 2006. Occurrence of arbuscular mycorrhizas and dark septate endophytes in hydrophytes from lakes and streams in southwest China. International Review of Hydrobiology, 91(1): 29-37
    Wilberforce EM, Boddy L, Griffiths R, Griffith GW, 2003. Agricultural management affects communities of culturable root-endophytic fungi in temperate grasslands. Soil Biology & Biochemistry, 35(8):1143-1154
    Wilcox HE, wang CJR.1987. Ectomycorrhizal and ectendomycorrhizal associations of Phialophora finlandia with Picea resinosa, and Betula alleghaensis. Canadian Journal of Forest Research, 17: 976-990
    Wilson BJ, Addy HD, Tsuneda A, Hambleton S, Currah RS, 2004. Phialocephala sphaeroides, sp. nov., a new species among the dark septate endophytes (DSE) from a boreal wetland in Canada. Canadian Journal of Botany, 82(5): 607-617
    Wu LQ, Guo SX, 2008. Interaction between an isolate of dark-septate fungi and its host plant Saussurea involucrata. Mycorrhiza, 18(2):79-85
    Wu SC, Cheung KC, Luo YM. 2006. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environment Pollution, 4: 124- 135
    Yan ZH, Rogers SO, Wang CJK, 1995. Assessment of Phialophora species based on ribosomal DNA internal transcribed spacers and morphology. Mycologia, 87(1): 72-83
    刘茂军,张兴涛,赵之伟.2009.深色有隔内生菌(DSE)研究进展.菌物学报28(6):888-894
    杨志多,金静,李宝笃,罗丽,李桂舫,王远路. 2009.山东海岸木生海洋真菌的研究V.格孢腔菌属.菌物学报28(1):049-055
    SUN Su-Li, JIN Jing, LI Bao-Du, LU Bing-Sheng, DIAO Li-Gong.2008. Wood–inhabiting marine fungi from the coast of Shandong, China IV. Buergenerula, a genus new to China. 菌物学报27(4): 520-524
    张延威,韩燕峰.2009.石斛内生真菌多样性的初步研究.贵州教育学院学报(自然科学)20(6):9-12
    黄丽华,冯俊清,周树良,洪亚辉.2009.千层塔内生真菌的分离与鉴定.现代生物医学进展9(14):2641-2645
    李文超,孙翔,郭守玉,郭良栋.2009.内生真菌IX.中国地衣内生真菌3个丝孢菌新记录种.菌物学报28(5): 689-691
    王艳红,汪洪,徐磊,杨信东.2009.温莪术内生真菌的分离及其分类鉴定.时珍国医国药20(11):2803-2806
    XIANG Yong, LIU Jun, LIU Dang-sheng, LU An-guo, WU Wen-fang.2004. Identification of Taxus cuspidata Sieb.et Zucc endophytic fungi new recorded-genus-species of China and the metabolite. Journal of Forestry Research 15(1):61-66
    王冬梅,李多川,赵春青.2004.中国毁丝霉属嗜热型真菌两新记录种.菌物研究2(2):47-49
    孙剑秋,郭良栋,臧威,李文超,迟德富.2006.内生真菌IV. Sporormiella属的两个中国新记录种.菌物学报25(4):688~690
    孙翔,李文超,郭守玉,郭良栋.2007.内生真菌V.中国树木和地衣内生真菌三个新记录属种.菌物学报26(2):182-185
    刘斌,黄福常,覃培升,刘杏忠.2009.菌寄生真菌卷囊丝菌属Helicogonium——中国新记录属.菌物学报28(4): 610-611
    侯丽冰,贺伟,刘小勇,杨佐忠.2002.我国几种松干锈菌亲缘关系的ITS序列分析.北京林业大学学报24(5):175-182
    陈凤毛.2007.真菌ITS区序列结构及其应用.林业科技开发21(2):5-7
    董安国,高琳,赵建邦,呼加路.2008.基于DNA序列的系统进化树构建.西北农林科技大学学报(自然科学版) 36(10):221-226
    李亚玲,韩国民,何沙娥,张智俊.2008.基于DNA分子标记数据构建系统进化树的新策略. 生物信息学6(4):168-170
    谭严芳,金人超.2004.一种基于NJ的高效构建系统进化树算法.计算机工程与应用21:84-87
    徐小芳,罗庆熙,闫杰,张凤龙.2009.干旱胁迫下外源物质对黄瓜幼苗的影响.北方园艺(2):12~17
    李思龙,张玉刚,陈丹明,马健,郭绍霞.2009.丛枝菌根对高温胁迫下牡丹生理生化的影响.中国农学通报25(07):154-157
    高祥斌,张秀省,蔡连捷.2009.干旱胁迫对白蜡苗生理指标的影响.林业科技34(5):7-9
    张春梅,邹志荣,张志新,黄志.2009.外源亚精胺对模拟干旱胁迫下番茄幼苗活性氧水平和抗氧化系统的影响.应用与环境生物学报15 (3): 301-307
    宋玉伟,赵丽英,杨建伟.2009.水分胁迫下玉米幼苗光合变化和生理特性分析.河南大学学报(自然科学版) 39(4):387-391
    李清芳,马成仓,季必金.2009.硅对干旱胁迫下玉米水分代谢的影响.生态学报29(8):4163-4168
    江燕霞,杨建平,马宁,袁亭亭,李秀梅.2009.微生物液体肥料SP-100对油菜苗期生长和生理生化指标的影响.山东农业科学7:72-73
    刘迪,金忠华,王娜.2008.双微生物液浸种对玉米幼苗生理及生长的影响.山东农业科学2: 52~53
    吉增宝,王进鑫.2009.干旱胁迫对侧柏幼树某些生理特性的影响.西北林学院学报24(6): 6-9
    施晓明,李淑芹,许景钢,佟玉欣.2009.干旱胁迫下DA-6浸种对大豆苗期叶片保护酶活性的影响.东北农业大学学报40(9): 48~51
    覃永嫒,时成俏,王兵伟,黄安霞,覃嘉明.2009.干旱胁迫对不同栽培方式玉米的生理及产量的影响.耕作与栽培(3):26-27,35
    白向历,齐华,刘明,张振平.2007.玉米抗旱性与生理生化指标关系的研究.玉米科学15(5): 79-83
    关周博,王士强,陈亮,唐娜,胡银岗.2009.模拟干旱胁迫下冬小麦胚芽鞘长度变化及与抗旱性的关系研究.干旱地区农业研究27(4):125-130
    李才生,巫薇薇,胡寿祥.2009.干旱胁迫下维生素C对玉米幼苗生长的影响.安徽农业科学37(20):9433-9435
    张扬,沈玉芳,李世清.2009.施肥对干旱胁迫下夏玉米根系提水的调节作用研究.西北植物学报29(3):0535-0541
    姚正阳,张秋良.2009.干旱胁迫对鞑靼忍冬生理生化指标的影响.安徽农业科学37(11):5199-5200,5203
    杨恩琼,袁玲,何腾兵,杨光梅.2009.干旱胁迫对高油玉米根系生长发育和籽粒产量与品质的影响.土壤通报40(1):85-88
    李文娆,张岁岐,山仑,张彤,山颖.2008. PEG模拟旱后复水对紫花苜蓿茎叶生理生态特性的影响.西北农业学报17(6):247-252
    刘婷,赵永富.2009.低聚壳聚糖对小麦幼苗抗干旱胁迫的影响.江苏农业科学(1):88-89
    宋丽华,王世虹.2009.干旱胁迫对7种绿化树种苗木蒸腾耗水的影响.林业科技34(4):6-9
    郭数进,李贵全.2009.干旱胁迫对不同大豆品系酶类变化的影响.大豆科学28(3):445-449
    王书宏,杜永吉.2008.外源激素对干旱胁迫下草莓光合特性的影响.中国农学通报24(12):367-371
    蔡小东,郭见林.2008. PEG模拟干旱胁迫下辣椒相关生理指标的变化.湖南农业科学2(6):49-50,58
    王红梅,包维楷,李芳兰.2008.不同干旱胁迫强度下白刺花幼苗叶片的生理生化反应.应用与环境生物学报14(6):757-762
    杨峰,胡景江,李建龙,武卫敬.2008.干旱胁迫下壳聚糖对苹果幼苗抗旱性生理指标的影响.南京林业大学学报(自然科学版) 32(6):61-64
    郑海燕,王燕凌,廖康,郭献平,王瑾,赵蕾.2009.土壤干旱胁迫对野生樱桃李叶片渗透调节物质的影响.新疆农业大学学报32(1):47-51
    赵立群,刘玉良,孙宝腾,王彩琴.2009.干旱胁迫下一氧化氮对小麦离体根尖离子吸收的影响.作物学报35(3): 530?534
    李志军,罗青红,伍维模,韩路.2009.干旱胁迫对胡杨和灰叶胡杨光合作用及叶绿素荧光特性的影响.干旱区研究26(1):45-52
    姜佰文,戴建军,王春宏,孙聪姝.2009.干旱胁迫下硼对大豆植株保护酶活性的影响.作物杂志(1):50-53
    闫志利,轩春香,牛俊义,席玲玲,刘建华,赵天武.2009.干旱胁迫及复水对豌豆根系内源激素含量的影响.中国生态农业学报17(2): 297?301
    赵雅静,翁伯琦,王义祥,徐国忠.2009.植物对干旱胁迫的生理生态响应及其研究进展. 福建稻麦科技27(2):45-50
    苟升学,刘建民,翟周平,赵新春,穆建新.2009.干旱胁迫对香紫苏生理特性和光合特性的影响研究.现代生物医学进展9(10):1869-1873
    张美善,徐克章.2009.干旱胁迫对西洋参叶片光合日变化的影响.作物杂志(4):50-52
    周朝彬,宋于洋,王炳举,李荣,李明艳,李园园.2009.干旱胁迫对胡杨光合和叶绿素荧光参数的影响.西北林学院学报24(4): 5-9
    李云飞,李彦慧,王中华,关楠,冯晨静,杨建民.2009.土壤干旱胁迫对紫叶矮樱叶片呈色的影响.生态学报29(7):3678-3684
    周秋平,程积民,万惠娥,俞靓.2009.干旱胁迫下本氏针茅光合特性和水分利用效率日动态研究.草地学报17(4):510-514
    冯宝春,陈学森,杨红花,郭光智,郭斐.2009.干旱胁迫对枣树叶片生理的影响.林业科技34(4):10-13
    杨春杰,张学昆,邹崇顺,程勇,郑普英,李桂英.2007. PEG-6000模拟干旱胁迫对不同甘蓝型油菜品种萌发和幼苗生长的影响.中国油料作物学报29(4):425– 430
    阎勇,罗兴录,张兴思,兰旺彬.2007.不同供水条件下玉米耐旱生理特性比较.中国农学通报23(9):323-326.
    韩苗苗,张仁和,朱永波,卜令铎,薛吉全.2008.不同玉米品种对干旱胁迫的响应.种子27(10):49-51,55
    孙海燕,罗兵,吴佳平.2007.茶多酚对干旱胁迫下黄瓜幼苗生理特性的影响.安徽农业科学35(36):11751-11752,11767
    马玉华,马锋旺,马小卫,李明军,王永红,韩明玉,束怀瑞。2008.干旱胁迫对苹果叶片抗坏血酸含量及其代谢相关酶活性的影响。西北农林科技大学学报(自然科学版) 36(3):150-154,160
    王生毅,邓西平,薛崧,薛思林.2003.干旱胁迫对西红柿根系水导的影响研究.西北农林科技大学学报(自然科学版) 31(2):105-108
    张艳馥,沙伟,徐忠文.2007.干旱胁迫对玉米幼苗生理特性的影响.种子26(6):38-40
    郭丹钊,王斌,朱彬.2007.干旱胁迫条件下细菌多糖对玉米苗期抗旱性的影响.安徽农业科学35(34):11050-11051
    张焕仕,贺学礼.2007.干旱胁迫下AM真菌对油蒿叶片保护系统的影响.生物技术通报(3):129-133
    汪宝卿,李召虎,段留生,翟志席.2007.干旱胁迫下冠菌素对玉米幼苗光合参数和内源激素含量的影响.植物生理学通讯43(2):269-272
    曲东,邵丽丽,王保莉,周莉娜.2004.干旱胁迫下硫对玉米叶绿素及MDA含量的影响.干旱地区农业研究22(2):91-94
    任安芝,高玉葆,王巍,王金龙.2005.干旱胁迫下内生真菌感染对黑麦草光合色素和光合产物的影响.生态学报25(2):225-231
    任安芝,高玉葆,陈悦.2004.干旱胁迫下内生真菌感染对黑麦草叶内几种同工酶的影响. 生态学报24(7):1323-1329
    高世斌,冯质雷,李晚忱,荣廷昭.2005.干旱胁迫下玉米根系性状和产量的QTLs分析. 作物学报31(6):718-722
    曾小红,伍建榕,马焕成.2008.接种根瘤菌的台湾相思对干旱胁迫的生化响应.浙江林学院学报25(2): 181-185
    齐健,宋凤斌,刘胜群.2006.苗期玉米根叶对干旱胁迫的生理响应.生态环境15(6): 1264-1268
    郭丽红,王德斌,王定康,陈善娜.2007.热激对干旱胁迫中玉米幼苗的某些抗逆生理指标的影响.西南农业学报20(3):375-378
    张扬,沈玉芳,李世清.2009.施肥对干旱胁迫下夏玉米根系提水的调节作用研究.西北植物学报29(3):0535-0541
    郭丽红,王定康,杨晓虹,陈善娜.2004.外源乙烯利对干旱胁迫过程中玉米幼苗某些抗逆生理指标的影响.云南大学学报(自然科学版) 26 (4):352-356
    朱教君,许美玲,康宏樟,徐慧,闫军杰.2005.温度、pH及干旱胁迫对沙地樟子松外生菌根菌生长影响.生态学杂志24(12):1375-1379
    马飞,姬明飞,陈立同,徐婷婷,赵长明.2009.油松幼苗对干旱胁迫的生理生态响应.西北植物学报29(3):0548-0554
    葛体达,隋方功,张金政,吕银燕,周广胜.2005.玉米根、叶质膜透性和叶片水分对土壤干旱胁迫的反应.西北植物学报25(3):507—512
    刘永红,何文铸,杨勤,高强.2009.玉米花粒期干旱胁迫对植株矿质灰分的影响研究.玉米科学17(1):71-74,79
    汪宝卿,李召虎,段留生,翟志席.2008.干旱胁迫下外源冠菌素对玉米幼苗生长和内源激素含量的影响.作物杂志(5):35-38
    花晓梅. 1995.外生菌根真菌彩色豆马勃优良菌株营养的研究.林业科学研究. 8(6):597-604
    李志真. 1993.外生菌根菌的培养技术与应用.福建林业科技. 20(1):71-74
    李永庚,蒋高明. 2004.矿山废弃地生态重建研究进展.生态学报. 24(1): 95-100
    伦世仪. 2002.现代生物工程.北京化学工业出版社. 152
    宋静,朱荫湄. 1998土壤重金属污染修复技术.农业环境保护. 17(6):271-273
    王桂文,李海鹰, 2003.钦州湾红树植物根部内生真菌初步研究.广西林业科学. 32(3):121-124
    张立军等.2007.植物生理学实验教程.中国农业大学出版社,北京. 23-26
    高俊凤.2006.植物生理学实验指导.高等教育出版社,北京.46-48
    易晓华.2009.植物内生真菌多样性研究进展.安徽农业科学.37(28):13468-13469.
    石瑛.2010.内生真菌对植物生长发育的影响.农业基础科学.(6):36-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700