用户名: 密码: 验证码:
中亚干旱区MIS 3以来黄土地层中生物标志物和单烃碳同位素组成与古气候的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中亚干旱区是三大气候系统(西风带、东亚季风和极地气团)交汇衔接的区域,具有敏感的气候响应,因此是全球气候变化研究的热点区域之一。对中亚干旱区古气候变化的研究将有助于加深对全球气候变化机制和过程的理解。然而,迄今为止,对中亚干旱区的气候记录的研究尚不完善,全新世的记录较多,但扩展到MIS3高分辨率序列研究很少,对MIS3以来的中亚干旱区气候变化过程的了解很不清晰。
     为此,本文选取中亚干旱区哈萨克斯坦境内3个黄土-古土壤序列(VA、TR和RM)为研究对象,通过对沉积序列中生物标志物和单烃碳同位素组成指标,以及孢粉等常规指标,并结合AMS14C年代控制,重建中亚干旱区MIS3以来的气候环境变化历史。同时,讨论和验证了生物标志物和单烃碳同位素组成在黄土-古土壤序列中的气候响应关系和表现。本研究主要结论和认识如下:
     (1)VA剖面气候重建:32-20ka BP,湿润;20-11ka BP,湿度有所上升;11-7ka BP,干旱;7-4ka BP,湿度增加;4ka BP以来,趋于干旱
     (2)TR和RM剖面气候重建:50-43ka BP,干旱;43-37ka BP,相对较湿;37-34ka BP,干旱;34-30ka BP,湿度略有增加;30-25ka BP,湿润;25-11kaBP,干旱;11-6ka BP,相对湿润;6kaBP以来,气候变干。
     (3)对比中亚干旱区附近的重建记录结果表明,MIS3以来,中亚干旱区的气候状况主要受西风系统强度变化和区域气候系统影响,西风是其主要的水汽来源。早中全新世西风系统的增强促成了中亚干旱区气候相对湿润的表现。
     (4)在中亚干旱区,区域蒸发量的大小对有效湿度表现的影响显著。在寒冷的末次冰盛期,低温导致的蒸发量下降使研究区出现区域性的湿度增加表现。
     (5)黄土-古土壤序列沉积的正构烷烃组成分布特征可以有效指示有机质物源信息,并且特征单烃稳定碳同位素组成可以与湿度有很好的相关关系。单烃碳同位素组成偏负对应湿润时期,而偏正对应相对干旱时期。此外单烃碳同位素组成由于有机组分的来源确定,可以排除全有机碳同位素组成中混合来源的影响,因此具有更敏感和可靠的环境指示。
Arid Central Asia is one of the most sensitive area response to climate change because it is a converge area of three main climatic systems (westerlies, East Asia monsoon and polar airmass). Therefor, it should be helpful for understanding dynamic and process of global change via researching paleoclimate change in arid Central Asia. Whereas, studies based on paleoclimate records is still incomplete, most of which are in Holocene and few of which could reach MIS3although in a low resolution. The detail of climate change in arid Central Aisa is still unknown since MIS3.
     This dissertation focuses on three loess-paleosoil sequences (VA, TR and RM) in Kazakhstan, which locate in the core area of arid Central Asia. Based on analysis of biomarker, compound specific carbon isotopic compositions, multi-proxies (including pollen, particle size, TOC, carbonate, magnetic susceptibility, strata) and reliable AMS14C dating results, a reconstruction of climate change history is built since MIS3. Meanwhile, features of biomarker and compound specific carbon isotopic compositions from loess-paleosoil sequences and their responses to climate change are discussed and verified. The main conclusions are as follows:
     (1) Climate restruction of VA section (western):32-20ka BP, humid.20-11ka BP, humidity decreased.11-7ka BP, arid.7-4ka BP, humidity increased. After4ka BP, climate tended to arid.
     (2) Climate restruction of TR and RM (easten):50-43ka BP, arid.43-37ka BP, mild humid.37-34ka BP, arid again.34-30ka BP, humidity increased.30-25ka BP, humid.25-11ka BP, arid.11-6ka BP, mild wet. After6ka BP, climate tended to arid.
     (3) Comparing lots of records from arid Central Asia suggests the climatic condition was mainly controlled by westerlies system, which brought most moisture to research area since MIS3. In that case, humidity increased in early and middle Holocene followed stronger westerlies resulting from energy enrich (possible NAO positive phase).
     (4) Local evaporation capability could affect effective humidity dramatically in arid Central Asia. During the cold Last Glacial Maximum (LGM), humid condition appeared in research area is caused of evaporation capability decreasing and precipitation increasing.
     (5) Distribution characteristics of n-alkane, as one kind of common biomarker, could indicate sources of organic matters very well. The compound specific carbon isotopic compositions have a close relation with humidity, which is more negative when humidity increase. On contrast, it become more positive when humidity decrease. Besides, compound specific carbon isotopic compositions is more reliable as climatic indicator than δ13Corganic, which could biased in multi-source organic matter's mixture.
引文
[1]Aboglila, S., Grice, K., Trinajstic, K., et al. Use of Biomarker Distributions and Compound Specific Isotopes of Carbon and Hydrogen to Delineate Hydrocarbon Characteristics in the East Sirte Basin (Libya)[J]. Organic Geochemistry.2010,41(12):1249-1258.
    [2]Aleshinskaya, Z.V., Bondarev, L.G., Voskoresenskaya, T.N., et al. Cross-section of the newest deposits in Issyk-Kul hollow[M] (in Russian). MGU, Moscow.1971.
    [3]Alfano, M.J., Barron, E.J., Pollard, D., et al. Comparison of climate model results with European vegetation and permafrost during oxygen isotope stage three. Quaternary Research[J]. 2003,59:97-107
    [4]An, Z.S. Kukla, G. Porter, S.C., et al. Late Quaternary dust f ow on the Chinese Loess Plateau. Catena[J].1991,18:125-132.
    [5]An, Z.S., John, E.K., Warren, P., et al. Evolution of Asian monsoons and Phased uplift of the Himalaya Tibetan Plateau since late Miocene times [J]. Nature.2001,411:62-66.
    [6]An, Z.S., Kukla, G., Porter, S.C., et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of Central China during the last 130,000 years[J]. Quat. Res.1991,36:29-36.
    [7]An, C.B., Zhao, J.J., Tao, S.C., et al. Dust variation recorded by lacustrine sediments from arid Central Asia since~15 cal ka BP and its implication for atmospheric circulation[J]. Quaternary Research.2011,75:566-573.
    [8]Babek, O., Chlachula, J. and Grygar, T.M. Non-magnetic indicators of pedogenesis related to loess magnetic enhancement and depletion:Examples from the Czech Republic and southern Siberia. Quaternary Science Reviews[J].2011,30:967-979.
    [9]Bai, Y., Fang, X.-M., Nie, J.-S., et al. A preliminary reconstruction of the paleoecological and paleoclimatic history of the Chinese Loess Plateau from the application of biomarkers. Palaeogeography, Palaeoclimatology, Palaeoecology[J].2009,271(1-2):161-169.
    [10]Barbara, M., Thompson, R. Mineral magnetic record of the Chinese loess and paleosols [J]. Geology.1991,19:3-6.
    [11]Barnola, J.M., Raynaud, D., Korotkevich, Y.S., et al. Vostok ice core provides 160,000-year record of atmospheric CO2[J]. Nature.1987,329:408-414.
    [12]Beer, R., Kaiser,F., Schmidt,K., et al. Vegetation history of the walnut forests in Kyrgyzstan (Central Asia):natural or anthropogenic origin? Quaternary Science Reviews [J].2008,27:621-632.
    [13]Berger A. Long-term variations of daily insolation and Quaternary climatic change[J] Journal of Atmospheric Science.1978,35:2362-2367.
    [14]Berger, A., Melice, J.L. and Hinnov, L.A. A strategy for frequency spectra of Quaternary climate records[J]. Climate Dyn.1991,5:227-240.
    [15]Bi, X., Sheng, G., Liu, X., et al. Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes[J]. Organic Geochemistry.2005,36:1405-1417.
    [16]Blumer, M., Guillard, R.R.L. and Chase, T. Hydrocarbons of marine plankton[J]. Marine Biology.1971,8:183-189.
    [17]Bond, G.C. and Lotti, R. Iceberg discharges into the North Atlantic on millenial time scales during the last glaciations[J]. Science.1995,267:1005-1010.
    [18]Bond, G.C., Broecker, W., Johnson, S.J., et al. Correlation between climate records from North Atlantic sediments and Greenland ice[J]. Nature.1993,365:143-147
    [19]Bond, G.C., Heinrich, H., Broccker, W., et al. Evidence for massive discharge of iceberg into the North Atlantic ocean during the last glacial period[J]. Nature.1992,360:245-249
    [20]Bond, G.C., Showewrs, W., Cheseby, M., et al. A pervasive millennial-scale cycle in the North Atlantic Holocenee and glacial climate[J].Science.1997,278:1257-1265
    [21]Bradley, R. Paleoclimatology:Reconstructing Climates of the Quaternary[M]. Academic Press, 1999.
    [22]Brassell, S.C., Eglinton, G., Marlowe, I.T., et al. Molecular stratigraphy:a new tool for climatic assessment[J]. Nature.1986,320:129-133.
    [23]Bray, E.E. and Evans, E.D. Distribution of n-paraffins as a clue to recognition of source beds[J]. Geochimica et Cosmochimica Acta.1961,22:2-15.
    [24]Bridgman, H.A. and Oliver, J.E. The global climate system[M]. Cambridge University Press, Cambridge.2006.
    [25]Brincat, D., Yamada, K., Ishiwatari, R., et al. Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments[J]. Organic Geochemistry.2000, 31(4):287-294.
    [26]Bronger, A. Correlation of loess-paleosol sequences in East and Central Asia withSE Central Europe:towards a continental Quaternary pedostratigraphy and paleoclimatic history[J]. Quaternary International.2003,106-107:11-31.
    [27]Bronger, A., Pant, R.K., Singhvi, A.K. Micromorphology, mineralogy, genesis and dating of loess-paleosol-sequences and their application to Pleistocene chronostratigraphy and paleoclimate:a comparison between southeast Central Europe and the Kashmir valley/Central Asia. In:Liu, T.S. (Ed.), Aspects of Loess Research[M]. China Ocean Press.1987.
    [28]Callonnec, L.L., Person, A., Renard, M., et al. Preliminary data on chemical changes in the Aral Sea during low-level periods from the last 9000 years[J]. C. R. Geoscience.2005, 337:1035-1044.
    [29]Cerling, T.E., et al. Global vegetation change through the Miocene/Pliocene boundary[J]. Nature.1997,389:153-158.
    [30]Cerling, T.E., Quade, J., Wang, Y., et al. Carbon isotope in soils and paleosols as ecology and paleoecology indicators[J]. Nature.1989,341:138-139.
    [31]Cerling, T.E., Wang, Y. and Quade, J. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene[J]. Nature.1993,361:344-345.
    [32]Chen, F.H., Qiang, M.R., Feng, Z.D., et al. Stable East Asian monsoon climate during the Last Interglacial (Eemian) indicated by paleosol S1 in the western part of the Chinese Loess Plateau[J]. Global and Planetary Change.2003,36:171-179.
    [33]Chen, F.H., Yu,Z.C., Yang, M.L., et al. Holocene moisture evolution in and central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews. 2008,27:351-364.
    [34]Chikaraishi, Y., Naraoka, H. Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants[J]. Phytochemistry.2003,63:361-371.
    [35]Chlachula, J. Pleistocene climate change, natural environments and palaeolithic occupation of the upper Yenisei area, south-central Siberia[J]. Quaternary International.2001,80-81:101-130.
    [36]Chlachula, J. The Siberian loess recordandits significance for reconstruction of Pleistocene climate change in north-central Asia[J]. Quaternary Science Reviews.2003,22:1879-1906.
    [37]Collister, J.W., Rieley, G., Stern, B.. et al. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms[J]. Org. Geochem.1994,21:619-627.
    [38]Connin, S.L. Isotopic discrimination during long-term decomposition in an arid land ecosystem [J]. Soil Biology & Biogeoch emistry.2001,33(1):41-45.
    [39]Cour, P., Zheng, Z., Duzer, D., et al. Vegetational and climatic significance of modern pollen rain in northwestern Tibet[J]. Review of Palaeobotany and Palynology.1999, 104:183-204.
    [40]Cranwell, P.A., Eglintion, G. and Robinson, N. Lipids of aquatic organisms as potential contributors to lacustrine sediments-II[J]. Organic Geochemistry.1987,6:513-527.
    [41]Damste, J.S.S., Kuypers, M.M.M., Schouten, S., et.al. The lycopane/C31 n-alkane ratio as a proxy to assess palaeoxicity during sediment deposition[J]. Earth and Planetary Science Letters.2003,209:215-226.
    [42]Dansgaard, W., Johnsen, S.J., Clausen. H.B., et al. North Atlantic oscillations revealed by deep Greenland ice cores. In:J.E. Hansen and T. Takahashi (Editors), Climate Processes and Climate Sensitivity (Geophys. Monogr.,29)[M]. AGU, Washington.1984.
    [43]Ding, Z.L., Ranov, V., Yang, S.L., et al. The loess record in southern Tajikistan and correlation with Chinese loess[J]. Earth and Planetary Science Letters.2002,200:387-400
    [44]Ding, Z.L., Yang, S.L., Sun, J.M., et al. Iron geochemistry of loess and red clay deposits in the Chinese loess plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma [J]. Earth Planet Sci Lett.2001,185:99-109.
    [45]Dodonov, A.E. and Baiguzina, L.L. Loess stratigraphy of central asia:palaeoclimatic and palaeoenvironmental aspects[J]. Quaternary Science Reviews.1995,14:707-720.
    [46]Eddy J.A. Past Global Changes ProjectProposed Implementation Plans for Research Activities.Global Change Report No.19,International Geosphere-Biosphere Programme, Stockholm, Sweden.1992.
    [47]Eglinton. G. and Hamilton, R.J. The dist ribution of alkanes[A]. Swain T. Chemistry plant taxonomy[M]. New York:Academic Press.1963.
    [48]EPICA Community Members,2006. One-to-one coupling of glacial climate variability in Greenland and Antarctica[J]. Nature,449:195-198.
    [49]Farquhar, G. D. and Caemmerer, S. Modelling of photosynthetic response to environmental conditions. In'Physiological Plant Ecology'. Encycl. Plant Physiol., New Series[J].1982, 12B:549-87.
    [50]Felauer, T., Schlutz, F., Murad, W., et al. Late Quaternary climate and landscape evolution in arid Central Asia:A multiproxy study of lake archive Bayan Tohomin Nuur, Gobi desert, southern Mongolia[J]. Journal of Asian Earth Sciences.2012,48:125-135.
    [51]Feng Z.D, An C.B, Tang L.Y, et al. Stratigraphic evidence of megahumid mid-Holocene climate in the western part of the Chinese Loess Plateau[J]. Global Planet Change.2004, 43:145-155.
    [52]Feng, X., Xu, Y., Jaffe, R., et al. Turnover rates of hydrolysable aliphatic lipids in Duke Forest soils determined by compound specific 13C isotopic analysis[J]. Organic Geochemistry.2010,41:573-579.
    [53]Feng, Z.D., An, C.B., Wang, H.B., et al. Holocene Climatic and Environmental Changes in the Arid and Semiarid Regions of China:A Review[J]. The Holocene.2006,16:119-130.
    [54]Feng, Z.-D., Ran, M., Yang, Q.L., et al. Stratigraphies and Chronologies of Late Quaternary Loess-Paleosol Sequences in the Core Area of Central Asian Arid Zone[J]. Quaternary international.2010,240:256-266.
    [55]Z.-D. Feng, Ran, M., Yang, Q.L. Geomorphological and sedimentological precautions in radiocarbon dating of eolian and lacustrine sequences in arid Asia[J]. Quaternary International.2013,286:126-137.
    [56]Feng, Z.-D., Wang, W.G., Guo, L.L., et al. Lacustrine and eolian records of Holocene climate changes in the Mongolian Plateau:preliminary results[J]. Quaternary International. 2005,136:25-32.
    [57]Ficken, K.J., Li, B., Swain, D.L. and Eglinton, G. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Org. Geochem.2000, 31:745-749.
    [58]Galimov, E.M. Carbon isotopes in oil-gas geology[M]. Moscow:Nedra.1973:384.
    [59]Gelpi, E., Scheider, H., Mann, J., et al. Hydrocarbons of geochemical significance in microscopic algae[J]. Phytochemistry.1970,9:603-612.
    [60]Glaser, B. and Zech, W. Reconstruction of climate and landscape Changes of a High Mountain Lake Catchment in the Gorkha Himal, Nepal, during the Late Glacial and Holocene Deduced from Radiocarbon and Compound-Specific Stable Isotope Analyses of Terrestrial, Aquatic, and Microbial Biomarkers[J]. Organic Geochemistry.2005,36:1086-1098.
    [61]Gong, D.Y., Wang, S.M. and Zhu, J.H. East Asian winter monsoon and Arctic Oscillation[J]. Geophysical Research Letters.2001,28:2073-2076.
    [62]Grasset, L., Brevet,J., Schafer,T., et al. Sequential extraction and spectroscopic characterisation of organic matter from the Callovo-Oxfordian formation[J]. Organic Geochemistry.2010,41:221-233.
    [63]Grice, K., Schouten S., Peters, K.E., and Sinninghe-Damste, J.S. Molecular isotopic characterization of hydrocarbon biomarkers in Palaeocene-Eocene evaporitic lacustrine source rocks from the Jianghan Basin, China[J]. Organic Geochemistry.1998,29:1397-1406.
    [64]Grootes, P.M., Stuiver, M., White, J.W.C., et al. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores[J]. Nature.1993,366:552-554.
    [65]Guthrie, J.M. Molecular and carbon isotopic analysis of individual biological markers: evidence for sources of organic matter and paleoenvironmental conditions in the Upper Ordovician Maquoketa Group, Illinois Basin, U.S.A[J]. Org. Geochem.1996,25(8):439-460.
    [66]Han, J.M., Keppens, E., Liu, T.S., et al. Stable isotope composition of the carbonate concretionin loess and climate change[J]. Quaterl Inter.1996,21 (6):39-44.
    [67]Hayes, J.M. Factors controlling the 13C contents of sedimentary organic compounds: principles and evidence[J]. Marine Geology.1993,113:111-125.
    [68]Hayes, J.M., Freeman, K.H., Popp, B.N., et al. Compound-specific isotope analysis:a novel tool for reconstruction of ancient biogeochemical processes [J]. Organic Geochemistry. 1990,16:1115-1128.
    [69]Hedges, J.I., Oades, J.M. Comparative Organic Geochemistries of Soils and Marine Sediments[J]. Organic Geochemistry.1997,11:319-361.
    [70]Heller, F., Liu, T.S. Magnetism of Chinese loess the role of Fe2O3[J]. Geophysical Journal of the Royal Astronomical Society.1984,77:125-141.
    [71]Hoogendoorn,R.M., Boels, J.F., Kroonenberg, S.B., et al. Development of the Kura delta, Azerbaijan:a record of Holocene Caspian sea-level changes[J]. Marine Geology.2005,222-223:359-380.
    [72]Hu, J.F., Peng, P.A., Fang, D.Y.. et al. No aridity in Sunda Land during the Last Glaciation: Evidence from molecular-isotopic stratigraphy of long-chain n-alkanes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology.2003,201:269-281.
    [73]Huang, Y., Street-Perrott, F.A., Perrott, R.A., et al. Glacial-interglacial environmental changes inferred from molecular and compound-specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya[J]. eochimica et Cosmochimica Acta.1999,63:1383-1404.
    [74]Huang, Y., Street-Perrott, F.A., Metcalfe, S.E. et al. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance[J]. Science.2001,293:1647-1651.
    [75]Huntley, B., Alfano, J.M., Allen, J.R.M., et al. European vegetation during Marine Oxygen Isotope Stage 3[J]. Quaternary Research.2003,59:195-212
    [76]IPCC,2001:Climate Change 2001:The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change.
    [77]IPCC,2007. Climate Change 2007:The Physical Science Basis, Summary for Policymakers, Paris, February 2007. http://www.ipcc.ch
    [78]Ishiwatari, R., Yamamoto, S. and Shinoyama. S. Lignin and fatty acid records in Lake Baikal sediments over the lastl 30 kyr:Acomparison with pollen records[J]. Organic Geochemistry.2006,37:1787-1802.
    [79]Izart, A., Palhol, F., Gleixner, G., et.al. Palaeoclimate reconstruction from biomarker geochemistry and stable isotopes of n-alkanes from Carboniferous and Early Permian humic coals and limnic sediments in western and eastern Europe[J].Organic Geochemistry.2012, 43:125-149.
    [80]Karimi, A., Khademi,H.and Ayoubi,S. Magnetic susceptibility and morphological characteristics of a loess-paleosol sequence in northeastern Iran[J]. Catena.2013,56-60.
    [81]Kates, R.W., Clark, W.C., Corell R., et al. Sustainability science[J]. Science.2001,292: 641-642.
    [82]Kawamura, K., Ishimura, Y. and Yamazaki, K. Four years'observations of terrestrial lipid class compounds in marine aerosols from the western North Pacific[J]. Global Biogeochem. Cycles.2003,17:1003.
    [83]Knutti, R., Fluckiger J., Stocker T.F., et al. Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation [J].Nature.2004,430:851-856.
    [84]Krull, E., Sachse, D., Mugler, I., et al. Compound-specific δ13C and δ2H analyses of plant and soil organic matter:A preliminary assessment of the effects of vegetation change on ecosystem hydrology[J]. Soil Biology & Biochemistry.2006,38:3211-3221.
    [85]Kuhn, T.K., Krull, E.S., Bowater, A., et al. The occurrence of short chain n-alkanes with an even over odd predominance in higher plants and soils[J]. Organic Geochemistry.2010, 41:88-95.
    [86]Kukla, G., Heller, F., Liu, X.M. Pleistocene climates in China dated by magnetic susceptibility [J]. Geology.1988,16:811-814.
    [87]Kutzbach, J.E., Webb, T. Conceptual basis for understanding Late-Quatermary climates. Global Climates Since the Last Glacial Maximum[M]. Univ. of Minnesota Press, Minneapolis, London.1993.
    [88]Li, X.Q., Zhou, J., Shen, J., et al. Vegetation history and climatic variations during the last 14 ka BP inferred from a pollen record at Daihai Lake, north-central China[J]. Review of Palaeobotany and Palynology.2004,132:195-205.
    [89]Li,X.Q., Zhao,K.L., Dodson,J., et al. Moisture dynamics in central Asia for the last 15 kyr: new evidence from Yili Valley, Xinjiang, NW China[J]. Quaternary Science Reviews.2011, 30:3457-3466.
    [90]Liao, Y.H. and Geng, A.S. Stable carbon isotopic fractionation of individual n-alkanes accompanying primary migration:evidence from hydrocarbon generation-expulsion simulation of selected terrestrial source rocks[J]. Applied Geochemistry.2009,24:2123-2132.
    [91]Lichtfouse, E., Derenne, S., Mariotti, A., Largeau, C. Possible algal origin of long chain odd n-alkanes in immature sediments as revealed by distributions and carbon isotope ratios[J]. Organic Geochemistry.1994,22(6):1023-1027.
    [92]Liu, W.G., Liu, Z.H., Fu, M.Y., et al. Distribution of the C37 tetra-unsaturated alkenone in Lake Qinghai, China:a potential lake salinity indicator[J]. Geochimica et Cosmochimica Acta.2008,72:988-997.
    [93]Liu, X.M, Liu T.S, Xu, T.C., et al. The Chinese loess in Xifeng:The primary study on magneto stratigraphy of loess profile in Xifeng area, Gansu Province[J]. Geophysical Journal of the Royal Astronomical Society.1988,92:345-348.
    [94]Liu, X.M., Shaw, J., Liu, T.S.,et al. Magnetic mineralogy of Chinese loess and its significance[J]. Geophys J Int.1992,108:301-308.
    [95]Liu, X.Q., Herzschuh, U., Shen, J., et al. Holocene environmentaland climatic changes inferred from Wulungu Lake in northern Xinjiang, China[J]. Quaternary Research.2008, 70:412-425.
    [96]Liu,W.G., Liu, Z.H., Wang, H.Y., et.al. Salinity control on long-chain alkenone distributions in lake surface waters and sediments of the northern Qinghai-Tibetan Plateau, China[J]. Geochimica et Cosmochimica Acta.2011,75:1693-1703.
    [97]Lu, H.Y., Wu, N.Q., Liu, K.B., et al. Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes[J]. Quaternary Science Reviews.2011,30:947-966.
    [98]Luo, C.X., Zheng, Z., Tarasov, P. Characteristics of the modern pollen distribution and their relationship to vegetation in the Xinjiang region, northwestern China[J]. Review of Palaeobotany and Palynology.2009,153:282-295.
    [99]Ma, Y.Z., Liu, K.B., Feng, Z.D.,et al. A survey of modem pollen and vegetation along a south-north transect in Mongolia[J]. Journal of Biogeography.2008,35:1512-1532.
    [100]Maher, B.A. and Taylor,.M. Formation of ultrafine magnetite in soils[J]. Nature.1988, 336:368-370.
    [101]Mansuy, L., Philp, R.P., Allen, J. Source identification of oil spills based on the isotopic composition of individual components in weathered oil samples [J]. Environ. Sci. Technol. 1997,31:3417-3425.
    [102]Mazeas, L., Budzinski, H., Raymond, N. Absence of stable carbon isotope fractionation of saturated and polycyclic aromatic hydrocarbons during aerobic bacterial biodegradation[J]. Organic Geochemistry.2002,33:1259-1272.
    [103]Mazeas, L., Budzinski, H., Raymond, N. Absence of stable carbon isotope fractionation of saturated and polycyclic aromatic hydrocarbons during aerobic bacterial biodegradation[J]. Org. Geochem.2002,33:1259-1272.
    [104]McKirdy, D.M., Thorpe, C.S., Haynes, D.E., et al. The biogeochemical evolution of the Coorong during the mid-to late Holocene:An elemental, isotopic and biomarker perspective[J]. Organic Geochemistry.2010,41(2):96.
    [105]Meeker, L.D. and Mayewski, P.A. A 1400-year high-resolution record of atmospheric circulation over the North Atlantic and Asia[J]. The Holocene.2002,12(3):257-266.
    [106]Meyers, P.A. and Ishiwatari, R. Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments[J]. Organic Geochemistry.1993,20:867-900.
    [107]Meyers, P.A., Ishiwatari, R. Lacustrine organic geochemistry:An overview of indicators of organic mat ter sources and diagenesis in lake sediments[J]. Org. Geochem.1993,20(7): 867-900.
    [108]Mischke, S., Rajabov, I., Mustaeva, N., et al. Modem hydrology and late Holocene history of Lake Karakul, eastern Pamirs (Tajikistan):A reconnaissance study[J]. Palaeogeography, Palaeoclimatology, Palaeoecology 2010,289:10-24.
    [109]Morse, J.W., Mackenzie, F.T. Geochemistry of Sedimentary Carbonates[M]. Elsevier, Amsterdam.1990.
    [110]Nie, J.S, Song, Y.G., John, W., et al. Consistent grain size distribution of pedogenic maghemite of surface soils and Miocene loessic soils on the Chinese Loess Plateau[J]. J QuatSci.2009,25:261-266.
    [111]Nott, C.J., Xie, S.C., Avsejs, L.A., et al. n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation[J]. Organic Geochemistry. 2000,31:231-235.
    [112]Odden, W., Barth, T., Talbot, M.R. Compound-specific carbon isotope analysis of natural and artificially generated hydrocarbons in source rocks and petroleum fluids from offshore Mid-Norway[J]. Organic Geochemistry.2002,33:47-65.
    [113]Ogura, K., Machilara, T., Takada, H. Diagenesis of biomarkers in Biwa lake sediments over 1 million years. Organic Geochemistry[J].1990,16:805-813.
    [114]Ortiz, J.E., Gallego, J.L.R., Torres, T., et al. Palaeoenvironmental reconstruction of Northern Spain during the last 8000 cal yr BP based on the biomarker content of the Ronanzas peat bog (Asturias) [J]. Organic Geochemistry.2010,41:454-466.
    [115]Pancost, R.D., Baas, M., van Geel, B., et al. Biomarkers as proxies for plant inputs to peats: an example from a sub-boreal ombotrophic bog[J]. Organic Geochemistry.2002,33:675-690.
    [116]Peters, K.E., Walters,C.C. and Moldowan,J.M. The Biomarker Guide:Biomarkers and Isotopes in Petroleum Exploration and Earth History[M].Cambridge.2007.
    [117]Petit, J.R., Jouzel, J., Raynaud, D., et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature.1999,399:429-436.
    [118]Popp, B.N., Parekh, P., Tilbrook, B., et al. Organic carbon 813C variations in sedimentary rocks as chemo-stratigrapnic and paleoenvironmental tools[J]. Palaeogeography, Palaeoclimatology,Palaeoecology.1997,132:119-132.
    [119]Porter, S.C. and Hallet, B. Dependence of Near-Surface Magnetic Susceptibility on Dust Accumulation Rate and Precipitation on the Chinese Loess Plateau[J]. Quaternary Research. 2001,55:271-283
    [120]Poynter, J.G., Eglinton, G. Molecular composition of three sediments from hole717C:the Bengal fan. [M] Proceedings of the Ocean Drilling Program Scientific Results.1990, 116:155-161
    [121]Renssen, H., Lougheed, B.C., Aerts, J.C.J.H., et al. Simulating long-term Caspian Sea level changes:The impact of Holocene and future climate conditions[J]. Earth and Planetary Science Letters.2007,261:685-693
    [122]Ricketts, R.D., Johnson, T.C., Brown, E.T., et al. The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan:trace element and stable isotope composition of ostracodes[J] Palaeogeography, Palaeoclimatology, Palaeoecology.2001,176:207-227
    [123]Rousseau, D.D., Wu, N.Q. A new mollusk record of the monsoon variabil ity over the past 130000 yr in the Luochuan loess sequence, China[J]. Geology.1997,25:275-278
    [124]Rousseau, D.D., Wu, N.Q. Mollusk record of monsoon variability during the L2-S2 cycle in the Luochuan loess sequence, China[J]. Quaternary Research.1999,52:286-292
    [125]Rousseau, D.D., Wu, N.Q., Guo, Z.T. The terrestrial mollusks as new indices of the Asian paleomonsoons in the Chinese Loess Plateau[J]. Global and Planetary Change.2000,26(1-3):199-206.
    [126]Ruddiman,W. Earth's Climate:Past and Future[M]. W.H.Freeman and Company.2001.
    [127]Salomons,W. and Mook,W.G. Isotope geochemistry of carbonate dissolution and reprecipitation in soils[J]. Soil Sci.1976,122:15-24.
    [128]Schaetzl, R., Luehmann, M. Coarse-textured basal zones in thin loess deposits:Products of sediment mixing and/or paleoenvironmental change[J]? Geoderma.2013,192:277-285.
    [129]Schwalb, A., Burns, S.J., Cusminsky, G., et al. Assemblage diversity and isotopic signals of modern ostracodes and host waters from Patagonia, Argentina[J]. Palaeogeography Palaeoclimatology Palaeoecology.2002,187:323-339.
    [130]Seki, O., Nakatsuka, T., Shibata, H., et al. A compound-specific nalkane δ13C and δD approach for assessing source and delivery processes of terrestrial organic matter within a forested watershed in northern Japan[J]. Geochimica et Cosmochimica Acta.2010,74:599-613.
    [131]Shimoyama, A., Johns, W.D. Formation of alkanes from fatty acids in the presence of CaCO3[J]. Geochim Cosmochime Acta.1972,36:87-91.
    [132]Siddall, M., Rohling, E.J., Thompson, W.G., et al. Marine isotope stage 3 sea level fluctuations:data synthesis and new outlook[J]. Reviews of Geophysics.2008,46:1-29.
    [133]Sofer, Z., John, E., Zumberge, et al. Advances in Organic Geochemistry 1985[J]. Org.Geochemi.1986,10:377-389.
    [134]Stahl, W.J. Carbon and nitrogen isotopes in Hydrocarbon rese-arch and exploration[J]. Chemical Geology.1977,20(2):121-149.
    [135]Sun, D.H., Bloemendal, J., Rea, D.K., et al. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology.2002,152:263-277.
    [136]Sun, J.M. and Liu, T.S. Multiple origins and interpretations of the magnetic susceptibility signal in Chinese windblown sediments [J]. Eart h and Planetary Science Letters.2000, 180:287-296.
    [137]Sun, Y.G., Sheng, G.Y., Peng, P.A., et.al. Compound-specific stable carbon isotope analysis as a tool for correlating coal-sourced oils and interbedded shale-sourced oils in coal measures:an example from Turpan basin, north-western China[J]. Organic Geochemistry. 2000,31:1349-1362.
    [138]Tanner, B.R., Kelley, J.T, Uhle, M.E.. et al. Comparison of Bulk and Compound-Specific dl 3C Analyses and Determination of Carbon Sources to Salt Marsh Sediments Using n-Alkane Distributions (Maine, USA), Estuarine[J]. Coastal and Shelf Science.2010,86:283-291.
    [139]Tanner, B.R., Uhle, M.E., Kelley. J.T., and Mora, C.I. C3/C4 Variations in Salt Marsh Sediments:An Application of Compound Specific Isotopic Analysis of Lipid Biomarkers to Late Holocene Paleoenvironmental Research[J]. Organic Geochemistry.2007,8:474-484.
    [140]Tarasov, P., Williams,J.W., Andreev, A., et al. Satellite- and pollen-based quantitative woody cover reconstructions for northern Asia:Verification and application to late-Quaternary pollen data[J]. Earth and Planetary Science Letters.2007,264:284-298.
    [141]Thompson, L.G., Mosley-Thompson, E.M., Henderson, K.A. Ice-core palaeoclimate records in tropical South America since the Last Glacial Maximum[J]. J Quaternary Sci.2000, 15(4):377-94.
    [142]Tipple, B.J., Pagani, M. A 35 Myr North American leaf-wax compound-specific carbon and hydrogen isotope record:implications for C4grasslands and hydrologic cycle dynamics [J]. Earth Planet. Sci. Lett.2010,299 (1-2):250-262.
    [143]Tissot, B., Pelet, R., Roucache, J. Alkanes as geochemical fossils indicators of geological environments. In:Campos R, Goni J (eds). Advances in organic Geochemistry[M]. Madrid:Enadimsa,1977,117-154.
    [144]Trust, B.A., Mueller, J.G., Coffin, R.B., et al. The biodegradation of fluoranthene as monitored using stable carbon isotopes. In:Hinchee, R.E., Douglas, G.S., Ong, S.K. (Eds.), Monitoring and verification of bioremediation[M]. Batelle Press, Columbus.1995:233-239.
    [145]van Andel, T.H. Reconstructing climate and landscape of the middle part of the last glaciation in Europe-The Stage 3 Project[J]. Quaternary Research.2002,57:2-8.
    [146]van Meerbeeck, C.J., Renssen, H. and Roche, D.M. How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ?-Perspectives from equilibrium simulations[J]. Climate of the Past,2009,5:33-51.
    [147]Viso, A.C., Pesando, D., Bernard, P., et al. Lipids components of the Mediterranean seagrass Posidonea Oceanica[J]. Phytochemistry.1993,34:381-387.
    [148]Volkman, J.K., Eglinton, G., Corner, E.D.S., et al. Long chain alkenes and alkenones in the marine cocco lithopho rid Em iliania Huxleyi[J]. Phytochemistry.1980,19:2619-2622.
    [149]Wang, W., Ma, Y.Z., Feng, Z.D., et al. A prolonged dry mid-Holocene climate revealed by pollen and diatom records from Lake Ugii Nuur in central Mongolia[J]. Quaternary International.2011,229:74-83.
    [150]Welte, D.H. and Waples, D. Uber die Bevorzugung geradzahliger nalkane in sedimentgesteinen[J]. Naturewissenschaften.1973,60:516-517.
    [151]Wright, James D. Global Climate Change in Marine Stable Isotope Records. Quaternary geochronology:methods and applications[J]. American Geophysical Union,2000.
    [152]Wu, N.Q., Pei, Y.P., Lu, H.Y., et al. Marked ecological sh ifts during 62-24M a revealed by a terrestrialm olluscan record from the Chinese Red Clay Formation and implication for palaeoclimatic evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology.2006, 233(3-4):287-299.
    [153]Xiao, J.L., Nakamura, T., Lu, H.Y., et al. Holocene climate changes over the desert/loess transition of north-central China[J]. Earth and Planetary Science Letters.2002,197:11-18.
    [154]Xu, Q.H., Li, Y.C., Tian, F., et al.. Pollen assemblages of tauber traps and surface soil samples in steppe areas of China and their relationships with vegetation and climate[J]. Review of Palaeobotany and Palynology.2009,153:86-101.
    [155]Yamada, K. and Ishiwatari, R. Carbon isotopic compositions of long-chain n-alkanes in the Japan Sea sediments:implications for paleoenvironmental changes over the past 85 kyr[J]. Organic Geochemistry.1999,30:367-377.
    [156]Yamamoto, S., Kawamura, K., Seki, O., et al. Paleoenvironmental significance of compound-specific 813C variations in n-alkanes in the Hongyuan peat sequence from southwest China over the last 13 ka[J]. Organic Geochemistry.2010,41(5):491-497.
    [157]Yamamoto, S., Kawamura, K., Seki, O., et.al. Environmental influences over the last 16 ka on compound-specific 813C variations of leaf wax n-alkanes in the Hani peat deposit from northeast China[J]. Chemical Geology.2010,277:261-268.
    [158]Yen, T.F. Genesis and degradation of petro leum hydrocarbons in marine environments [A]. In:Church T N ed. M arine Chem istry in the Coastal Environment [C]. A. C. S Synposium Series 18, Washington.1975,237.
    [159]Yiou, P., Genthon, C., Ghil, M., Jouzel, J., LeTrout, H., Barnola, J.M., Lorious, C. and Korotkevitch, Y.N. High-frequency paleovariablility in climate and C02 levels from Vostok ice core records[J]. J. Geophys. Res.1991,96:365-378.
    [160]Yoshito, C., Yuichiro, K., and Nanako, O.O., et al. A compound-specific isotope method for measuring the stable nitrogen isotopic composition of tetrapyrroles[J]. organic Geoehemistry.2008,39(5):510-520.
    [161]Zeng, F.M., Xiang, S.Y., Zhang, K.X. and Lu, Y.L. Environmental evolution recorded by lipid biomarkers from the Tawan loess-paleosol sequences on the west Chinese Loess Plateau during the late Pleistocene[J]. Environmental Earth Science.2011,64:1951-1963.
    [162]Zheng, Y.H., Zhou, W.J., Meyers, P.A., et al. Lipid biomarkers in the Zoige-Hongyuan peat deposit:Indicators of Holocene climate changes in West China[J]. Organic Geochemistry. 2007,38(11):1927-1940.
    [163]Zhong,W., Pen,Z.H., Xue, J.B., et al. Geochemistry of sediments from Barkol Lake in the westerly influenced northeast Xinjiang:Implications for catchment weathering intensity during the Holocene[J]. Journal of Asian Earth Sciences.2012,50:7-13.
    [164]Zhou, L.P., Oldfield, F., Wintle, A.G., et al. Partly pedogenic origin of magnetic variations in Chinese loess [J]. Nature.1990,36:737-739.
    [165]Zhou, W., Xie, S., Meyers, P.A., et al. Reconstruction of late glacial and Holocene climate evolution in southern China form geolipids and pollen in the Dingnan peat sequence[J]. Organic Geochemistry.2005,36:1272-1284.
    [166]Zhu, R.X., Matasova, G., Kazansky, A., et al. Rock magnetic record of the last glacial-interglacial cycle from the Kurtak loess section, southern Siberia[J]. Geophys J Int.2003, 152:335-343.
    [167]Zhu, R.X., Matasova, G., Kazansky, A.,et al. Rock magnetic record of the last glacial-interglacial cycle from the Kurtak loess section, Southern Siberia [J]. Geophys. J. Int.2003, 152:335-343.
    [168]安成邦,冯兆东,唐领余,等.黄土高原西部9-3.8 kaBP的湿润气候[J].海洋地质与第四纪地质.2004,24(3):111-116.
    [169]安芷生,Porter S, Kukla G,肖举乐.最近13万年黄土高原季风变迁的磁化率证据[J].科学通报.1990,35(7):529-532.
    [170]蔡颖,钟巍,薛积彬,等.干旱区湖泊沉积物腐殖化度的古气候指示意义——以新疆巴里 坤湖为例[J].湖泊科学.2009,21(1):69-76.
    [171]陈德牛,张国庆.新疆托木尔峰黄土地层中蜗牛化石组合及其意义[J].动物分类学报.1998,23(3):235-244.
    [172]陈发虎,黄小忠,张家武,等.新疆博斯腾湖记录的亚洲内陆干旱区小冰期湿润气候研究[J].中国科学(D辑).2007,37(1):77-85.
    [173]陈发虎,饶志国,张家武,等.陇西黄土高原末次冰期有机碳同位素变化及其意义[J].科学通报.2006,51(11):1310-1317.
    [174]陈骏,安芷生,刘连文,等.最近2.5 Ma以来黄土高原风尘化学组成变化与亚洲内陆的化学风化[J].中国科学(D辑).2001,31(2):136-145.
    [175]陈骏,安芷生,汪永进,等.最近800ka洛川黄土剖面中Rb/Sr分布和古季风变迁[J].中国科学(D辑).1998,28(6):498-504.
    [176]陈骏,安芷生,王洪涛,高燕.黄土高原中部S1古土壤次生碳酸盐稳定同位素组成与成因初探[J].科学通报. 1996,41(14):1297-1300.
    [177]陈骏,仇刚,鹿化煜,等.最近130ka黄土高原夏季风变迁的Rb和Sr地球化学证据[J].科学通报.1996,41(21):1963-1966.
    [178]陈骏,季峻峰,仇纲,等.陕西洛川黄土化学风化程度的地球化学研究[J].中国科学(D辑).1997,27(6):531-536.
    [179]陈骏,王洪涛,鹿化煜.陕西洛川黄土沉积物中稀土元素及其它微量元素的化学淋滤研究[J].地质学报.1996,70(1):61-72.
    [180]陈渠,刘秀铭,HELLER F,等.伊犁黄土磁化率的增减及其成因[J].科学通报.2012,57(24):2310-2321.
    [18]陈天虎,陈骏,季峻峰,等.洛川黄土纳米尺度观察:纳米棒状方解石[J].地质论评.2005,51(6):713-718.
    [182]崔景伟,黄俊华,谢树成.湖北清江现代植物叶片正构烷烃和烯烃的季节性变化[J].科学通报.2008,53(11):1318-1323.
    [183]邓宏文,钱凯编著.沉积地球化学与环境分析[M].甘肃科学技术出版社.1993.
    [184]邓少福,杨太保,秦宏毅,等.新疆塔城黄土古土壤磁化率特征及其影响因素[J].中国沙漠.2011,31(4):848-854.
    [185]刁桂仪,文启忠.渭南黄土剖面碳酸盐和铁变化的古气候记录[J].地球化学.1995,24(supp1):75-82
    [186]菲尔普,R.P.化石燃料生物标志物—应用与谱图(傅家漠,盛国英译)[M].北京:科学出版社.1987.
    [187]巩俊成,张菀漪,张成君,等.青藏高原可可西里地区湖泊沉积物中有机质正构烷烃分布特征[J].地质评论.2012,58(4):636-642.
    [188]顾延生,李长安,章泽军.植硅石分析在第四纪环境研究中的应用.地质科学情报,1997,16(4):55-58.
    [189]郭正堂,魏兰英,吕厚远,等.晚第四纪风尘物质成分的变化及其环境意义[J].第四纪研究.1999,(1):41-48.
    [190]郭志刚,杨作升,林田,等.东海泥质区单体正构烷烃的碳同位素组成及物源分析.第四纪研究.2006,26(3):384-390.
    [191]韩家懋,姜文英,刘东生,等.黄土碳酸盐中古气候变化的同位素记录[J].中国科学(D 辑).1996,26(5):399-404.
    [192]胡建芳,彭平安,贾国东,等.三万年来南沙海区古环境重建:生物标志物定量与单体碳同位素研究[J].沉积学报.2003,21(2):211-218.
    [193]黄秉维,郑度,赵名茶,等著.现代自然地理.北京:科学出版社,1999.
    [194]黄昌庆.末次冰期以来中亚干旱区孢粉记录的环境变化.兰州大学博士研究生学位论文.2011.
    [195]黄成敏,王成善,艾南山.土壤次生碳酸盐碳氧稳定同位素古环境意义及应用[J].地球科学进展.2003,18(4):619-625.
    [196]黄小忠,赵艳,程波,等.新疆博斯腾湖表层沉积物的孢粉分析.冰川冻土.2004,26(5):602-609
    [197]黄小忠,赵艳,程波,等.新疆博斯腾湖表层沉积物的孢粉分析.冰川冻土.2004,26(5):602-609.
    [198]纪中奎,刘鸿雁.天山北坡玛纳斯河流域晚冰期以来植被垂直带推移.古地理学报.2009,11(5):534-541.
    [199]季俊峰.陕西洛川黄土化学风化程度的地球化学研究.中国科学(D辑).1997,27(6):531-536.
    [200]贾蓉芬,彭先芝.西峰剖面有机质记录的黄土高原L6-L1古湿度演变[J].地理科学.2004,(6):693-697.
    [201]姜钦华.植物细胞的硅化化石:植硅石.化石.1994,3:304.
    [202]焦克勤,姚檀栋,李世杰.西昆仑山32 ka来的冰川与环境演变.冰川冻土.2000,22(3):250-256.
    [203]康跃惠,盛国英,傅家漠,等.珠江澳门河口沉积物柱样品正构烷烃研究.地球化学.2000,29(3):302-310.
    [204]李传想,宋友桂,王乐民.伊犁盆地黄土分布、年代及粉尘来源分析.2012,40(3):314-320.
    [205]李丰江,吴乃琴,Rousseau D D黄土高原秦安中新世黄土-古土壤序列的蜗牛化石初步研究.中国科学(D辑).2006.,36(5):438-444.
    [206]李丰江,吴乃琴,裴云鹏.黄土高原西部秦安新近纪风尘堆积的蜗牛化石证据.第四纪研究.2005,25(4):510-515.
    [207]李国胜.艾比湖冰消期以来的δ13C记录与突变气候事件研究.科学通报.1993a,38(22):2069-2071.
    [208]李国胜.艾比湖最近20ka的氧碳同位素记录与气候突变.海洋地质与第四纪地质.1993b,13(4):75-84.
    [209]李吉均,朱俊杰,康建成,等.末次冰期旋回兰州黄土剖面与南极东方站冰岩芯的对比.中国科学(B辑).1990,10:1086-1095.
    [210]李江风.新疆气候.北京:气象出版社.1991.
    [211]李钜源.单分子烃碳同位素分析方法及影响因素探讨.地球学报.2004,25:109-113.
    [212]李元芳,李炳元,王国,等.西昆仑甜水海古湖泊介形类及其环境意义[J].湖泊科学.1997,9(3):223-230.
    [213]刘丛强,张劲,李春来.黄土中CaCO3含量及其Sr同位素组成变化与古气候波动记录[J].科学通报.1999,44(10):1088-1092.
    [214]刘东生.黄土的物质成分与结构.北京:科学出版社.1965.
    [215]刘东生.全球变化和可持续发展科学.地学前缘.2002,9(1):1-9.
    [216]刘东生等著.黄土与环境.北京:科学出版社.1985.
    [217]刘卫国,宁有丰,安芷生,等.黄土高原现代土壤和古土壤有机碳同位素对植被的响应.中国科学(D辑).2002,32(10):830-836.
    [218]刘秀铭,刘东生,夏敦胜,等.中国与西伯利亚黄土磁化率古气候记录—氧化和还原条件下的两种成土模式分析[J].中国科学(D辑).2007,37(10):1382-1391.
    [219]刘秀铭,夏敦胜,刘东生,等.中国黄土和阿拉斯加黄土磁化率气候记录的两种模式探讨.第四纪研究.2007,27:210-220.
    [220]刘秀铭,夏敦胜,刘东生,等.中国黄土和阿拉斯加黄土磁化率气候记录的两种模式探讨[J].第四纪研究.2007,27(2):210-220.
    [221]鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义.中国科学(D辑).1994,28(3):278-283.
    [222]鹿化煜,安芷生.洛川黄土粒度组成的古气候意义.科学通报.1997,42(1):66-69.
    [223]吕厚远,韩家懋,吴乃琴,等.中国现代土壤磁化率分析及其古气候意义[J].中国科学B辑.1994,24(12):1290-1297.
    [224]吕厚远,韩家懋,吴乃琴,等.中国现代土壤磁化率分析及其古气候意义[J].中国科学B辑.1994,24(12):1290-1297.
    [225]吕厚远,贾继伟,王伟铭,等.“植硅体”含义和禾本科植硅体的分类[J].微体古生物学报.2002,19(4):389-396.
    [226]吕厚远,刘东生,吴乃琴,等.末次间冰期以来黄土高原南部植被演替的植物硅酸体记录[J].第四纪研究.1999,4:336-349.
    [227]吕厚远,王永吉.晚更新世以来洛川黑木沟黄土地层中植物硅酸体研究及古植被演替[J].第四纪研究.1991,1:72-84.
    [228]密文天,林丽,周玉华,等.贵州瓮安陡山沱组磷块岩生物标志物特征及对沉积环境的指示[J].沉积与特提斯地质.2009,29(2):55-59.
    [229]莫晓勇,孙永革.沉积有机质分子地球化学应用于古气候古环境研究[J]地球与环境.2005,33(02):85-90.
    [230]宁有丰,刘卫国,安芷生.甘肃西峰黄土-古土壤剖面的碳酸盐与有机碳的碳同位素差值(△δ13C)的变化及其古环境意义[J].科学通报.2006,51(15):1828-1832.
    [231]庞奖励,黄春长,张战平,等.陕西岐山黄土剖面Rb、Sr组成与高分辨率气候变化[J].沉积学报.200 1,19(4):637-641.
    [232]彭先芝,贾蓉芬.西峰与段家坡黄土剖面中有机质的特征及古环境信息[J].地理科学.2001,21(1):36-41.
    [233]乔彦松,郭正堂,郝青振,等.中新世黄土·古土壤序列的粒度特征及其对成因的指示意义[J].中国科学(D辑).2006,36(7):646-653.
    [234]秦伯强,施雅风,于革.亚洲内陆湖泊在18kaBP及6kaBP的水位变化及其指示意义[J].科学通报.1997,42(24):2586-2596.
    [235]冉敏.中亚干早区黄土记录的过去5万年以来古气候变化历史.兰州大学博士研究生学位论文.2012.
    [236]饶志国,陈发虎,曹洁等.黄土高原西部地区末次冰期和全新世有机碳同位素变化与 C3/C4植被类型转换研究[J].第四纪研究.2005,25(1):107-114.
    [237]沈吉,薛滨,吴敬禄,等.湖泊沉积与环境演化[M].科学出版社.2010
    [238]盛雪芬,陈骏,杨杰东,等.不同粒级黄土-古土壤中碳酸盐碳氧稳定同位素组成及其古环境意义[J].地球化学.2002,31(2):105-112.
    [239]师焕芝,李福春,孙旭辉,等.洛川黄土/古土壤中有机碳的分布特征及其与粘土矿物的相关性[J].中国地质.2011,38(5):1355-1362.
    [240]师育新,戴雪荣,宋之光,等.我国不同气候带黄土中粘土矿物组合特征分析[J].沉积学报.2005,23(4):690--695.
    [241]史正涛,董铭,方小敏.伊犁盆地晚更新世黄土-古土壤磁化率特征[J].兰州大学学报.2007,43(2):7-10.
    [242]宋友桂,史正涛.伊犁盆地黄土分布与组成特征[J].地理科学.2010,30(2):267-372.
    [243]孙东怀,鹿化煜,David Rea,等.中国黄土粒度的双峰分布及其古气候意义[J].沉积学报.2000,18(3):327-335.
    [244]孙东怀.黄土粒度分布中的超细粒组分及其成因[J].第四纪研究.2006,26(6):958-936.
    [245]孙湘君,杜乃秋,翁成郁.新疆玛纳斯湖盆周围近14000年以来的古植被古环境第四纪研究[J].1994,3:239-248.
    [246]索玉霞,王正兴,刘闯,等.中亚地区1982年至2002年植被指数与气温和降水的相关性分析[J].资源科学.2009,31(8):1422-1429.
    [247]唐晓宏,钟巍,尹焕玲.新疆巴里坤湖9.0cal ka BP以来沉积物地球化学元素分布特征与古气候环境演化[J].华南师范大学学报(自然科学版).2012,44(2):134-140.
    [248]陶士臣,安成邦,陈发虎,等.孢粉记录的新疆巴里坤湖16.7 cal ka BP以来的植被与环境[J].科学通报.2010,55(11):1026-1035.
    [249]汪海斌,陈发虎,张家武.黄土高原西部地区黄土粒度的环境指示意义[J].中国沙漠.2002,22(1):21-26.
    [250]王国安,韩家懋,刘东生.中国北方黄土区C-3草本植物碳同位素组成研究[J].中国科学(D辑).2003,33(6):550-556.
    [251]王国安,韩家懋,周力平,等.中国北方黄土区C4植物稳定碳同位素组成的研究[J].中国科学(D辑).2005,35(12):11 74-11 79.
    [252]王沛.中亚五国概况[M].新疆人民出版社.1997.
    [253]王启军,陈建渝.油气地球化学[M].中国地质大学出版社.1988.
    [254]王绍武PAGES计划和CLIVAR计划中的交叉科学问题[J].气象学报.1997,55(6):662-669.
    [255]王永莉,方小敏,白艳,等.我国气候(水热)连续变化区域现代土壤中类脂物分子分布特征及其气候意义[J].中国科学(D辑).2007,37(3):386-396.
    [256]王玉斌,关平,刘文汇.四川西部沉积物中饱和烃单体烃碳同位素研究及其环境意义[J].北京大学学报.2005,41(4):542-550.
    [257]王志远,刘占红,易轶,等.不同气候和植被区现代土壤类脂物分子特征及其意义[J].土壤学报.2003,40(6):967-970.
    [258]王志远,谢树成,陈发虎.临夏塬堡黄土地层S1古土壤中的正构烷烃及其古植被意义[J].第四纪研究.2004,24(2):231-235.
    [259]文启忠,等.中国黄土地球化学[M].北京:科学出版社.1989.
    [260]蓊成郁,孙湘君,陈因硕.西昆仑地区表土花粉组合特征及与植被的数量关系[J].植物学报.1993,35(1)69-79.
    [261]吴敬禄,沈吉,王苏民,等.新疆艾比湖地区湖泊沉积记录的早全新世气候环境特征[J].中国科学(D辑).2003,33(6):569-575.
    [262]吴敬禄,王洪道,王苏民.全新世艾比湖流域不同时段降水量的估算[J].湖泊科学.1993,5(4):299-306.
    [263]吴乃琴,D. D. Rousseau,刘东生.末次冰期晚期黄土蜗牛化石记录的气候不稳定性[J].科学通报.1998,43(15):1654-1658.
    [264]吴乃琴,李丰江.陆生蜗牛化石与中国黄土古环境研究[J].第四纪研究.2008,28(5):831-840.
    [265]吴乃琴,刘秀平,顾兆炎,等.末次盛冰期黄土高原蜗牛化石记录的气候快速变化及其影响机制[J].第四纪研究.2002,22(3):283-291.
    [266]吴乃琴,吕厚远,孙湘君,等.植物硅酸体一气候因子转换函数及其在渭南晚冰期以来古环境研究中的应用[J].第四纪研究.1994,3:270-279.
    [267]夏敦胜,陈发虎,马剑英,等.新疆伊犁地区典型黄土磁学特征及其环境意义初探[J].第四纪研究.2010,30(5):902-910.
    [268]夏敦胜,魏海涛,马剑英,等.中亚地区现代表土磁学特征及古环境意义[J].第四纪研究.2006,26(6):937-946.
    [269]肖家仪.水稻植物蛋白石及其考古学意义.见:周昆叔编,环境考古研究(第一辑)[M],北京:科学出版社.1991,218-220.
    [270]谢方克,殷进垠.哈萨克斯坦共和国油气地质资源分析[J];地质与资源.2004,13(1):59-64.
    [271]谢树成,梁斌,顾延生,等.脂肪酮分子在第四纪古土壤中的分布及其古气候意义[J].古生物学报.2008,47(3):273-278.
    [272]谢树成,梁斌,郭建秋,等.生物标志化合物与相关的全球变化[J].第四纪研究.2003,23(5):521-528
    [273]谢树成,王志远,王红梅,等.末次间冰期以来黄土高原的草原植被景观:来自分子化石的证据明.中国科学(D辑).2002,32(1):28-35.
    [274]谢树成,易轶,梁斌,等.泥炭分子化石单体碳氢同位素的古气候意义[J].矿物岩石地球化学通报.2003,22(1):8-13.
    [275]熊尚发,刘东生,丁仲礼.东亚冬夏季风变化的相位差及热带太平洋在季风变化中的驱动作用[J].第四纪研究.1996,(3):202-210.
    [276]许清海,李月丛,赵登海,等.中国北方典型灌丛群落表土花粉组合特征[J].古地理学报.2006,8(2):1 57·1 64.
    [277]闫顺.新疆第四纪孢粉组合特征及植被演替[J].干旱区地理.1991,14(2):1-9
    [278]颜备战,贾蓉芬,胡凯.陕西渭南黄土剖面系列链烃化合物的分布与古气候意义[J].地球化学.1998,27(2):180-186.
    [279]杨明生,张虎才,雷国良,等.洛川黄土剖面末次冰期间冰段弱古土壤L1SS1分子化石及其古植被与古环境[J].第四纪研究.2006,26(6):976-984.
    [280]姚政权,吴妍,王昌燧,等.温州老鼠山遗址的植硅石分析[J].农业考古.2005,1:66-70
    [281]叶佰生,李世杰,施雅风.从末次冰盛期冰川规模探讨当时的气候环境——以乌鲁木齐 河源区末次冰盛期冰川为例[J].冰川冻土.1997,19(1):1-9.
    [282]叶玮,靳鹤龄.新疆伊犁地区黄土的粒度特征与物质来源[J].干旱区地理.1998,21(4):1-8.
    [283]叶玮.新疆西风区黄土与古土壤磁化率变化特点[J].中国沙漠.2001,21(4):380-386.
    [284]叶玮.新疆伊犁地区黄土矿物特征与沉积环境[J].干旱区研究.2000,17(4):1-10.
    [285]叶玮.新疆伊犁地区黄土与黄土状土粒度对比[J].干旱区地理.2000,23(4):310-314.
    [286]于革,王苏民.欧亚大陆湖泊记录和两万年来大气环流变化[J].第四纪研究.1998,4:360-367.
    [287]于天仁,陈志诚主编.土壤发生中的化学过程[J].北京:科学出版社.1990.
    [288]张成君,郑绵平,Prokopenko, A.,等.博斯腾湖碳酸盐和同位素组成的全新世古环境演变高分辨记录及与冰川活动的响应[J].地质学报.2007,81(21):1658-1671.
    [289]张虎才,杨明生,张文翔,等.洛川黄土剖面S4古土壤及相邻黄土层分子化石与植被变化[J].中国科学(D辑).2007,37(12):1634-1642.
    [290]张普,刘卫国.黄土高原中部黄土沉积有机质记录特征及C/N指示意义[J].海洋地质与第四纪地质.2008,28(6):1 19-124.
    [291]张文正,昝川莉,李先奇,等.塔里木盆地凝析油单体烃碳同位素特征与成因分析[J].沉积学报.1995,13(4):109-115.
    [292]张新荣,胡克,王东坡,等.植硅体研究及其应用的讨论[J].世界地质.2004,23(2):112-117.
    [293]张玉兰,张敏斌.植硅石研究在考古及古环境解释中的应用[J].上海地质.2002,1:15-18.
    [294]张枝焕,陶澍,吴水平,等.天津地区表层土壤和河流沉积物中正构烷烃化合物的成因分析[J].地球与环境.2005,33(1):15-22.
    [295]张志强,孙成权.全球变化研究10年新进展[J].科学通报.1999,44(5):464..477.
    [296]赵常庆.列国志-哈萨克斯坦[M].社会科学文献出版社.2004.
    [297]赵孟军,黄第藩.不同沉积环境生成的原油单体烃碳同位素分布特征[J].石油实验地质.1995,17(2):171-179.
    [298]赵兴有.克里雅河流域黄土的矿物组合特征及环境意义[J].干旱区地理.1997,20(3):62-68.
    [299]郑洪汉,顾雄飞,韩家懋,等.中国黄土的粘土矿物及其在地层剖面中的变化趋势——辂川和陇西黄土剖面的初步研究[J].中国第四纪研究.1985,6(1):158-165.
    [300]郑艳红,周卫健,谢树成,等.正构烷烃分子化石与孢粉记录的指示意义对比:以华南地区为例[J].科学通报.2009,54(12):1749-1755.
    [301]郑卓,黄康有,许清海.中国表土花粉与建群植物地理分布的气候指示性对比[J].中国科学.2008.
    [302]钟巍,吐尔逊,克依木,等.塔里木盆地东部台特玛湖近25.0ka BP以来气候与环境变化[J].干旱区地理.2005,20(2):123-127.
    [303]钟艳霞,陈发虎,安成邦,等.陇西黄土高原秦安地区全新世植被的讨论[J].科学通报.2007,52(3):318-323
    [304]钟艳霞,薛骞,陈发虎.黄土高原西部地区现代植被及其表土正构烷烃分布模式研究[J].第四纪研究.2009,29:767-773.
    [305]周群英,黄春长,庞奖励,等.黄土高原褐土和黑垆土剖面中Rb和Sr分布与全新世成土环 境变化[J]土壤学报.2003,40(04):490-496.
    [306]朱日祥,Alexey K, Galina M,等.西伯利亚南部黄土沉积物的磁学性质[J].科学通报.2000.45:1200-1205.
    [307]朱扬明,苏爱国,梁狄刚,等.柴达木盆地咸湖相生油岩正构烷烃分布特征及其成因[J].地球化学.2003,32(2):117-123.
    [308]祝一志,余华贵,程鹏,等.关中地区2万年以来黄土序列中蜗牛化石及其有机质的14CAMS测年初探[J].地球科学进展.2008,23(9):959-964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700