应用纳米零价铁处理含铬污染物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究了实验室自制的纳米零价铁处理模拟含Cr(Ⅵ)无氧地下水的影响因素、吸附动力学,并结合体系中Fe2+浓度、氧化还原电位、Zeta电位和理论计算得到的pe-pH图对纳米零价铁去除Cr(Ⅵ)的机制进行了探讨。
     实验结果表明,纳米零价铁对Cr(Ⅵ)的去除率随着初始Cr(Ⅵ)/Fe质量比的升高而降低。当溶液的pH为7.0,初始Cr(Ⅵ)/Fe质量比为0.025、0.050、0.075和0.100时,相应的Cr(Ⅵ)的去除率分别为100.0%、85.6%、72.7%和39.6%。酸性条件更有利于纳米零价铁对Cr(Ⅵ)的去除,当初始Cr(Ⅵ)/Fe质量比为0.100,溶液的pH为3.0、5.0、7.0、9.0和11.0时,体系中Cr(Ⅵ)的去除率分别为73.4%、57.6%、39.6%、44.1%和41.2%。纳米零价铁去除Cr(Ⅵ)的过程符合拟二级动力学方程。当溶液的pH为7.0,初始Cr(Ⅵ)/Fe质量比为0.025时,吸附速率常数(k)最大,为9.76×10-3g·(mg·min)-1。
     通过Fe-Cr体系形态分布图,Fe(Ⅱ)浓度分析以及反应过程中的氧化还原电位可知,Cr2072-吸附到纳米零价铁表面后被迅速地还原为Cr3+,生成的Cr3+与纳米零价铁表面的FeOOH结合生成Cr-Fe膜。而Cr-Fe膜将阻断电子在纳米零价铁与Cr2072-之间的传输,Cr(Ⅵ)得不到还原,从而纳米零价铁对Cr2072-的去除以吸附为主。
     应用该纳米零价铁处理实际铬渣,结果表明,应用纳米零价铁处理铬渣萃取液,当萃取液中Cr(Ⅵ)/Fe=0.017时,Cr(Ⅵ)的去除率可达100%;应用纳米零价铁同铬渣直接混合,当纳米零价铁同铬渣的质量比为4%时,铬渣中Cr(Ⅵ)的含量在一天内由16 g·kg-1降至0.01 g·kg-1以下;应用纳米零价铁和水泥处理铬渣,铬渣中的六价铬并不能被有效地去除。
Laboratory experiments and theoretical modeling studies were performed to investigate the mechanisms of Cr (Ⅵ) removal from deoxygenated simulated groundwater using nanoscale zero-valent iron, and to evaluate influencing factors and kinetics based on zeta potential, redox potential, ferrous concentrations, and the pe-pH diagram of Fe-Cr-H2O system.
     Experimental results demonstrate that the removal efficiency of Cr (Ⅵ) decreases with the increasing Cr (VI)/Fe mass ratio. When the Cr (Ⅵ)/nZVI mass ratio is 0.025, 0.050,0.075, and 0.100, the corresponding Cr (Ⅵ) removal rate is 100.0%,85.6%, 72.7% and 39.6%, respectively. The Cr (Ⅵ) removal is favorable at acidic pH with fixed Cr(Ⅵ)/Fe mass ratio of 0.100. When pH is 3.0,5.0,7.0,9.0 and 11.0, the Cr (Ⅵ) removal rate is 73.4%,57.6%,39.6%,44.1%, and 41.2%, accordingly. The Cr(Ⅵ) removal follows the pseudo second-order kinetics. When pH is 7.0 and Cr (Ⅵ)/nZVI mass ratio is 0.025, the rate of Cr (Ⅵ) removal is the highest with the rate constant at 9.76×10-3g·(mg·min)-1.
     The following conclusion could be inferred by analyzing pe-pH diagram of Fe-Cr-H2O system, redox potential and the concentration of ferrous. The conversion from Cr2O72- to Cr3+ should be instantaneous when Cr2O72- is absorbed on the surface of Fe. The Cr (Ⅵ) was reduced to Cr (Ⅲ), which was subsequently incorporated into the FeOOH shell and formed a Cr-Fe film. The film once formed could further inhibit the electron transfer between Cr2O72- and Fe. Then Cr (Ⅵ) removal was primary controlled by the adsorption process.
     Deoxygenated COPR extract was treated with nZVI at the mass ratio of Cr (Ⅵ)/nZVI=0.017, and 100% Cr (Ⅵ) was removed; The ZVI could reduce the Cr(Ⅵ) content in COPR from 16 g·kg-1 to less than 0.01 g·kg-1 within 1 d of treatment at nZVI/COPR mass ratio of 4%; the Cr(Ⅵ) in COPR cannot be reduced efficiently with the S/S treatment.
引文
[1]张从,夏立江.污染土壤生物修复技术[M]:中国环境科学出版社,2000.
    [2]周加祥,刘铮.铬污染土壤修复技术研究进展[J].环境污染治理技术与设备,2000,1(4):52-56
    [3]Lan Y, Deng B, Kim C, et al. Catalysis of elemental sulfur nanoparticles on chromium(Ⅵ) reduction by sulfide under anaerobic conditions[J]. Environ Sci Technol,2005,39:2087-2094.
    [4]Schwartz L M. More on autocatalytic reaction data analysis[J]. Journal of Chemical Education,1989,66:677-678.
    [5]Kabir-ud-Din KH. Unusual rate inhibition of manganese(Ⅱ) assited oxidation of citric acid by chromium(Ⅵ) in the presence of ionic micelles[J]. Transition Metal Chemistry 2000,25: 478-484.
    [6]Prabijna S S, Babu, Zaheer Khan. Electron transfer reaction in the chromium(Ⅵ)-manganese(Ⅱ) system in the presence of ethylenediaminetetraacetic acid(EDTA) [J]. Transition Metal Chemistry,2004,29:885-892.
    [7]李晶晶,彭恩泽.综述铬在土壤和植物中的赋存形式及迁移规律[J].工业安全与环保,2005,31(3):31-33.
    [8]Famer J G, Paterson E, Bewley R J F, et al. The implications of integrated assessment and modelling studies for the future remediation of chromite ore processing residue disposal sites[J]. Sci Total Environ,2006,360(1-3):90-97.
    [9]Buerge I J, Hug S J. Influence of organic ligands on chromium (Ⅵ) reduction by iron[J]. Environ Sci Technol,1998,32:2092-2099.
    [10]Deng B, Stone A T. Surface-catalyzed chromium(Ⅵ) reduction:the TiOz Cry-mandelic acid system.[J]. Environ Sci Technol,1996,30:463-472.
    [11]史瑞和等.农业化学分析[M]:中国农业出版社,1996.
    [12]朱月珍.影响土壤中铬迁移转化的几个因素[J].土壤学报,1985,22(4):390-393.
    [13]陈英旭,朱荫媚,袁可能,等.土壤中铬的化学行为[J].浙江农业大学学报,1990,16(2):119-124.
    [14]Deng B, Stone A T. Surface-catalyzen chromium(Ⅵ) reduction:reactivity comparisons of different organic reductants and different oxide surfaces[J]. Environ Sci Technol,1996,30: 2484-2494.
    [15]刘婉,李泽琴.水中铬污染治理的研究进展[J].广东微量元素科学,2007,14(9):5-9.
    [16]秦巧燕,贾陈忠,周学丽.活化煤矸石对含铬废水的吸附处理研究[J].工业安全与环保2007,33(6):23-25.
    [17]贾陈忠,秦巧燕,樊生才.活性炭对含铬废水的吸附处理研究[J].应用化工,2006,35(5):369-372.
    [18]杨璐,胡澄.铬污染水体修复技术研究进展[J].广西轻工业,2008,24(7):96-97.
    [19]丁绍兰,王防现.微乳状液膜与乳状液膜分离废水中Cr(Ⅵ)的对比研究[J].环境污染与防治,2007,29(11):824-828.
    [20]孙一平.氢氧化铬沉淀气浮的动力学研究[J].环境污染与防治,1995,17(3):3-5.
    [21]牛晓霞.含铬废水的处理方法综述[J].洛阳大学学报,1999,14(4):39-43.
    [22]颜家保,王朝霞.还原沉淀法处理含铬废水的工艺研究[J].武汉科技大学学报:自然科学版,2002,25(1):43-44.
    [23]戴向东,刘光全.还原沉淀法处理含铬废水的条件优化[J].江汉石油学院学报,1994,16(4):64-68.
    [24]李梦耀,钱会,李淑琴.D311A型阴离子交换树脂吸附Cr(Ⅵ)[J].有色金属,2008,60(4):73-75,83.
    [25]邓小红.铁屑内电解法处理电镀含铬废水的实验研究及应用[J].环境工程学报,2008,2(10):1349-1352.
    [26]邓小红,张晓霞.微电解技术处理电镀综合废水[J].中国给水排水,2009,(12):63-64,68.
    [27]常文越,陈晓东,王磊,等.土著微生物修复Cr(Ⅵ)污染土壤还原后有效铬分析及其稳定性的初步实验研究[J].环境保护科学,2008,34(2):78-79,98.
    [28]胡恭任,于瑞莲,吕斌.桐花树对水体中铬、镍、铜污染的修复实验研究[J].中国矿业,2009,(1):68-72.
    [29]纪柱.干法解毒渣的去向[J].铬盐工业,2006,(2):10-12.
    [30]孟凡伟,张茂山,肖勇,等.铬渣作矿化剂制备水泥应用研究[J].无机盐工业,2007,39(10):49-51.
    [31]石玉敏,苏丹,常春芝.铬渣堆存现状及干法解毒工程技术[J].四川大学学报:自然科学版,2009,46(1):189-194.
    [32]盛灿文,柴立元,王云燕,等.铬渣的湿法解毒研究现状及发展前景[J].工业安全与环保,2006,32(2):1-3.
    [33]杨丽芳,王宜明,李理.微波辐照铬渣解毒的工艺研究[J].环境工程学报,2008,2(6):820-825.
    [34]罗金明,周运星,王云燕.铬渣的微生物治理新技术研究[J].湖南有色金属,2005,21(6):31-33,52.
    [35]刘亚辉,马书文,刘亚.铬渣的处理及利用[J].无机盐工业,2008,40(8):53-55.
    [36]光建新.铁屑还原法处理含铬废水的研究[J].电镀与环保,2007,27(3):42-43.
    [37]Lai K C K, Lo I M C. Removal of chromium (VI) by acid-washed zero-valent iron under various groundwater geochemistry conditions[J]. Environ Sci Technol,2008,42(4):1238-1244.
    [38]王仲军.硫酸亚铁除地下水中六价铬[J].唐山师范学院学报,2006,28(2):41-42.
    [39]杨俊香,兰叶青.硫化物还原Cr(Ⅵ)的反应动力学研究[J].环境科学学报,2005,25(3):356-360.
    [40]程荣,王建龙,Zhang W X.纳米Fe0作用下4-氯酚的脱氯特性及机理[J].环境科学,2007,28(3):578-583.
    [41]Liu Y Q, Phenrat T, Lowry G V. Effect of TCE concentration and dissolved groundwater solutes on nZVI-promoted TCE dechlorination and H2 evolution[J]. Environ Sci Technol, 2007,41(22):7881-7887.
    [42]席宏波,杨琦,尚海涛,等.纳米铁去除废水中硫离子的研究[J].环境科学,2008,29(9):2529-2535.
    [43]Kanel S R, Greneche J M, Choi H. Arsenic(Ⅴ) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material[J]. Environ Sci Technol,2006,40(6): 2045-2050.
    [44]Uzum C, Shahwan T, Eroglu A E, et al. Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions[J]. Chem Eng J, 2008,144(2):213-220.
    [45]Wang C B, Zhang W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environ Sci Technol,1997,31(7):2154-2156.
    [46]Sun Y P, Li X Q, Zhang W X, et al. Characterization of zero-valent iron nanoparticles[J]. Adv Collloid interface Sci,2006,120(1-3):47-56.
    [47]徐锦昌,蔡裕丰.分光光度法测定水和废水中六价铬的改进[J].污染防治技术,2009,22(2):102-103.
    [48]Andrew D E, Lenore S C, Arnold E G. Standard Methods for the Examination of Water and Wastewater[M]. Washington,DC:American Public Health Association (APHA),1995.
    [49]James B R, Petura J C, Vitale, R J, et al. Hexavalent chromium extraction from soils:A comparison of 5 methods[J]. Environ Sci Technol,1995,29(9):2377-2381.
    [50]王炳华,赵明.固体废弃物浸出毒性特性及美国EPA的实验室测定(待续)[J].干旱环境监测2001,15(4):224-230,233.
    [51]王炳华,赵明.固体废弃物浸出毒性特性及美国EPA的实验室测定(续完)[J].干旱环境监测,2002,16(1):50-53,62.
    [52]Tessier A, Campbell, P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Anal Chem,1979,51(7):844-851.
    [53]Jing C Y, Meng X G, Korfiatis G P. Lead leachability in stabilized/solidified soil samples evaluated with different leaching tests[J]. J Hazard Mater,2004,114(1-3):101-110.
    [54]胡六江,李益民.有机膨润土负载纳米铁去除废水中硝基苯[J].环境科学学报,2008,28(6):1107-1112.
    [55]Drits V, Srodon J, Eberl D D. XRD measurement of mean crystallite thickness of illite and illite/smectite:reapparaisal of the kubler index and the scherrer equation[J]. Clays Clay Mineral, 1997,45(3):461-475.
    [56]季桂娟,赵勇胜.铁粉和煤灰去除地下水中的六价铬Cr(Ⅵ)的研究[J].生态环境, 2006,15(3):499-502.
    [57]Snoeyink V L, Jenkins D. Water Chemistry[M]. New York:John Wiley and Sons,1982.
    [58]Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions[M]. New York: Oxford,1974.
    [59]Li X Q, Cao J S, Zhang W X. Stoichiometry of Cr (Ⅵ) immobilization using nanoscale zerovalent iron (nZVI):A study with high-resolution X-ray photoelectron Spectroscopy (HR-XPS)[J]. Ind Eng Chem Res,2008,47(7):2131-2139.
    [60]Manning B A, Kiser J R, Kwon H, et al. Spectroscopic investigation of Cr(Ⅲ)-and Cr(Ⅵ)-treated nanoscale zerovalent iron[J]. Environ Sci Technol,2007,41(2):586-592.
    [61]马书文.铬渣治理与资源化综述[J].无机盐工业,1999,(2):19-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700