宽粒级加重质流化床的数值模拟及分选特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气固流化床干法分选技术为世界干旱地区煤炭提供了一种高效分选方法。在工业性分选试验过程中,该技术所用的加重质(磁铁矿粉)粒级较窄,存在制备困难,成本较高的问题。此外,鉴于传统选煤厂建筑方式基建投资较大,中国矿业大学与唐山神州机械有限公司合作建立了40~60t/h的KZX40型模块式气固流化床干法选煤系统。因此,有必要拓展加重质适用粒级,增强该技术的适用性。本文应用实验与数值计算相结合的方法,研究了不同粒级加重质流化床的动力学特征。在此基础上,考察了宽粒级颗粒流化床的分选性能,优化了加重质设计,拓展了加重质的适用粒级。进而基于宽粒级复合加重质,研究了工业性流化床的流化特性及分选性能。同时,就工业分选试验过程中出现的相关问题进行了研究,为该技术的工业推广提供了基础。
     研究了Geldart B类粗磁铁矿粉的流化特性。结果表明:适宜采用Syamlal-O'Brien模型作为曳力方程,归还系数为0.9。此外,当静床高Hs≤300mm时,静床高对床层的流化特性影响较小。对于床层的流体动力学特征,数值计算结果与实验结果有较好的一致性。该Geldart B类粗颗粒流化床的表观气速不宜超过2.0Umf。
     基于来自南非的煤样,应用该粗磁铁矿粉与<1mm煤粉组成复合加重质,研究了气固流化床中试分选系统的分选特性。随入选煤粒度减小,流化床分选质量下降。应用颗粒动力学及数值模拟方法分析了分选差异产生的原因。该流化床对50~6mm煤炭分选性能很高,但床层活性相对较差,加重质制备困难,随后开展了降低磁铁矿粉适用粒度下限的研究。
     研究了颗粒的在流化床中的混合机理。实验及数值计算结果表明,增大细颗粒含量,可提高床层流化特性,同时,0.3~0.06mm颗粒总体上分布较为均匀,并没有产生分层分级现象。因此,以0.3~0.06mm为主导粒级(≥80%)的磁铁矿粉可用于煤炭分选。为了维持该宽粒级磁铁矿粉床层的稳定,气速的适宜操作范围为1.5Umf~1.8Umf。提出了宽粒级加重质流化床的高度及平均密度预测模型,为流化床自动化测控系统开发提供了基础。
     研究了宽粒级复合加重质分选特性以及煤粉在流化床中的分布行为。详细考察了流化数、布风板与床层压降比ΔPd/ΔPb、1.5~0.5mm煤粉含量对流化床的影响,得到了密度分布标准差、E值、各粒级煤粉分布标准差与三个因素间的函数关系。实验结果表明,ΔPd/ΔPb≥1时,压降比并不是影响床层流化质量和分选性能的显著因素。1.5~0.9mm煤粉不适合与该磁铁矿粉混合而作为加重质,应控制其在加重质中的含量不超过3.09%。0.9~0.5mm煤粉与该磁铁矿粉的混合物可作为加重质。此外,基于以0.3~0.06mm为主导粒级的磁铁矿粉,通过改变<1mm煤粉来调控床层密度的方法是合理的。在工业性分选试验过程中,采用了较大筛孔尺寸(3mm)的脱介筛。<1mm煤炭对流化床的影响已有报道。本文研究了3~1mm煤粉对气固流化床性能的影响。为了维持床层良好的流化及分选性能,在干法选煤过程中应控制加重质中的3~1mm煤粉含量小于4.5%。
     考察了0.3~0.06mm为主导粒级的磁铁矿粉和<1mm煤粉组成的复合加重质对模块式分选系统的适应性。工业性试验结果表明,床层流化质量优越。在低密度或高密度条件下,系统对50~6mm煤炭分选效果良好,E值为0.05~0.07g/cm~3。
Gas-solid fluidized bed separation expands the choices of highly-efficient beneficiation methods for world coals located in areas deficient in water resources. However, the following problem occurred with the medium solids (i.e. magnetite powder) during industrial scale separation experiments: it is difficult and costly to prepare a great deal of medium solids of narrow size range. To decrease the construction cost a modularized 40-60 ton per hour KZX40 dry coal beneficiation system was constructed by the workers of China University of Mining and Technology (CUMT) and Tangshan Shenzhou Manufacturing, Co. Ltd (TSM). Therefore, it is necessary to expand the suitable size range of medium solids for an increase in applicability of the system. The hydrodynamics of medium solids of various size ranges were studied using a combination of experimental and numerical methods. Furthermore, the separation performance of wide-size-range medium-solids fluidized bed was investigated. The design of medium solids was optimized thus expanding the applicable size range of medium solids. The characteristics of fluidization and beneficiation of the industrial-scale bed were studied. Moreover, some problems were detected and studied during industrial-scale experiment. This is beneficial to commercialization of the technique.
     The fluidization characteristics of large Geldart B magnetite powder were studied. The results show that Syamlal-O'Brien drag model is suitable for simulating the bed at a particle restitution-coefficient of 0.9. Moreover, for the static bed height Hs≤300mm there is little effect of the static bed height on the fluidization characteristics. The simulated hydrodynamic results are consistent with the experimental data. The superficial gas velocity should be adjusted to no more than 2.0Umf.
     Based on coal from South Africa, the separating performance of a pilot gas-solid fluidized bed beneficiation system using a compounded medium solids of mixed the large Gelart B particles and <1mm fine coal was investigated . The separating quality of the fluidized bed drops gradually as the feed-coal particle size decreases. The cause of the differences in separating characteristics was analyzed by particle dynamics and numerical modeling. Although the Geldart B bed has excellent separation performance for 50~6mm coal the bed activity is relatively low and it is difficult and costly to prepare a great deal of the large Geldart B magnetite powder for an industrial scale separation experiment. Then the study on decrease of the lower size limit of the magnetite powder was performed.
     The mixing mechanism of particles in bed was studied. The experimental and simulated results show that when the content of fine Geldart B particles increases the fluidization performance is improved. Furthermore, 0.3-0.06mm particles distributes uniformly overall with no strasfication. The magnetite powder having a major component, 0.3-0.06 mm particles (≥80% by wt.), can be, hence, used as medium solids for coal separation. The gas velocity should be adjusted in a range of 1.5Umf-1.8Umf to maintain the stability of the bed. Moreover, the models for prediction of the height and average-density of bed were proposed. This laid a foundation for the development of automatic control system of bed.
     The separation characteristics of the compounded medium solids having a wide size range and distribution of fine coal were studied. The effect of fluidization number, distributor-to-bed pressure drop ratioΔPd/ΔPb and 1.5-0.5mm fine coal content of medium solids on the bed was investigated. The experimental results show that, atΔPd/ΔPb≥1, the ratio is not a significant factor influencing the bed fluidization and separation performance. A mixture of 1.5-0.9mm coal and the magnetite powder is not suitably used as medium solids. The 1.5-0.9mm coal content in the medium solids should be controlled to no more than 3.09%. A mixture of 0.9-0.5mm coal and the magnetite powder is suitable for coal separation. Moreover, based on the magnetite powder having a major component, 0.3-0.06 mm particles, a method to adjust the bed density is reasonable by changing <1mm fine coal content in medium solids. During industrial-scale experiments screens of a large aperture diameter (3mm) were used to separate the medium solids from the products. The effect of the < 1mm fine coal on the performance of the fluidized beds has been reported. This paper emphasizes the effect of 3-1mm fine coal on the bed performance. To maintain good fluidization performance and separation quality the value of 3-1mm coal content in medium solids should be controlled to less than 4.5% during dry beneficiation processing of coal.
     The suitability of the medium solids, consisting of the magnetite powder having a major component (0.3-0.06 mm particles) and <1mm fine coal, for the modularized system was investigated. The industrial experimental results show that the fluidization quality of bed was good. The separation performance of the system was excellent at a low or high separating density. Effective separation of 50-6mm coal can be implemented by the system at a high or low separating density, with an E value in the range of 0.05-0.07g/cm3.
引文
[1] WEISTEIN R, SNOBY, R. Advances in dry jigging improves coal quality [J]. Mining Engineering, 2007, 59(26): 29-34.
    [2] DWARI R K, RAO K H. Dry beneficiation of coal-a review [J]. Mineral Processing and Extractive Metallurgy Review, 2007, 28(3): 177-234.
    [3] KALB G W. Dry beneficiation technologies in North America [C]// CHEN Q R,TANAKA Z. Dry separation science and technology. Xuzhou: China University of Mining and Technology Press, 2002: 24-28.
    [4] DAVYDOV M V. On development and practical application of pneumatic coal preparation in Russia[C]// CHEN Q R,TANAKA Z. Dry separation science and technology. Xuzhou: China University of Mining and Technology Press, 2002: 13-23.
    [5] FRASER T, YANCEY H F. The air-sand process of cleaning coal: US,1534846[P]. 1925-4-21.
    [6] LUO Z F, ZHAO Y M, FAN M M, TAO X X, CHEN Q R. Density Calculation of a Compound Medium Solids Fluidized Bed for Coal Separation [J]. The Journal of The Southern African Institute of Mining and Metallurgy, 2006, 106(11): 749-752.
    [7] LUO Z F, CHEN Q R. Effect of Fine Coal Accumulation on Dense Phase Fluidized Bed Performance [J]. International Journal of Mineral Processing, 2001, 63(4): 217-224.
    [8] LUO Z F, CHEN Q R. Dry Beneficiation Technology of Coal with an Air Dense-medium Fluidized Bed [J]. International Journal of Mineral Processing, 2001, 63(3): 167-175.
    [9] LUO Z F, CHEN Q R, ZHAO Y M. Dry Beneficiation of Coarse Coal Using an Air Dense Medium Fluidized Bed (ADMFB) [J]. Coal Preparation, 2002, 22(1): 57-64.
    [10] LUO Z F, ZHAO Y M, TAO X X, FAN M M, CHEN Q R, WEI L B. Progress in Dry Coal Cleaning Using Air-dense Medium Fluidized Beds [J]. Coal Preparation, 2003, 23(1/2): 13-20.
    [11] LUO Z F, ZHAO Y M, CHEN Q R, TAO X X, FAN M M. Effect of Gas Distributor on Performance of Dense Phase High Density Fluidized Bed for Separation [J]. International Journal of Mineral Processing, 2004, 74( 1/4): 337-341.
    [12] LUO Z F, ZHU J F, FAN M M, et al. Low density dry coal beneficiation using an air dense medium fluidized bed [J]. Journal of China University of Mining & Technology, 2007, 17(3): 0306-0309.
    [13] LUO Z F, FAN M M, ZHAO Y M, TAO X X, CHEN Q R, CHEN Z Q. Density-dependent Separation of Dry Fine Coal in a Vibrated Fluidized Bed [J]. Powder Technology, 2008, 187(2): 119-123.
    [14]骆振福,MAOMING FAN,陈清如,等.振动参数对流化床分选性能的影响[J].中国矿业大学学报, 2006, 35(2): 209-213.
    [15]骆振福,MAOMING FAN,赵跃民,等.物料在振动力场流化床中的分离[J].中国矿业大学学报, 2007, 36(1): 27-32.
    [16] LUO Z F, ZHAO Y M, CHEN Q R, FAN M M, TAO X X. Separation Characteristics for Fine Coal of the Magnetically Fluidized Bed [J]. Fuel Processing Technology, 2002, 79(1): 63-69.
    [17] LUO Z F, ZHAO Y M, CHEN Q R, TAO X X, FAN M M. Separation lower limit in a magnetically gas–solid two-phase fluidized bed [J]. Fuel Processing Technology, 2004, 85(2-3): 173-178.
    [18] van HOUWELINGEN J A, de JONG T P R. Dry cleaning of coal: review, fundamentals and opportunities [J]. Geologica Belgica, 2004, 7(3/4): 335-343.
    [19]杨云松,李功民.大型复合式干法选煤设备的开发和应用[J].选煤技术, 2008, 4: 47-50.
    [20]陈清如,骆振福.干法选煤评述[J].选煤技术, 2003, 6: 34-40.
    [21] KUNII D, LEVENSPIEL, O. Fluidization Engineering [M]. Boston: Butterworth - Heinemann, 1991.
    [22] CHAPMAN W R, MOTT, R.A. The Cleaning of Coal [M]. London: Chapman & Hall Ltd., 1928.
    [23] CHAN E W, BEECKMANS J M. Pneumatic beneficiation of coal fines using the counter-current fluidized cascade [J]. International Journal of Mineral Processing, 1982, 9(2): 157-165.
    [24] DONG X, BEECKMANS J M. Separation of particulate solids in a pneumatically driven counter-current fluidized cascade [J]. Powder Technology, 1990, 62(3): 261-267.
    [25] BEECKMANS J M, MINH T. Separation of mixed granular solids using the fluidized counter current cascade principle [J]. The Canada Journal of Chemical Engineering, 1977, 55(5): 493-496.
    [26] LIU Y Z, ZHANG J Y, ZHANG B J. Separation of a binary particle mixture in a vibrating fluidized bed of dense medium [J]. Powder Technology, 1998, 100(1): 41-45.
    [27] SOONG Y, SCHOFFSTALL M R, GRAY M L, et al. Dry beneficiation of high loss-on-ignition fly ash [J]. Separation and Purification Technology, 2002, 26(2/3): 177-184.
    [28] TANAKA Z, SATO H, KAWAI M, OKADA K, TAKAHASHI T. Dry Coal Cleaning Process for High-quality Coal [J]. Journal of chemical engineering of Japan, 1996, 29(2): 257-263.
    [29] TANAKA Z, OSHITANI J, KUBO Y, ZUSHI T. Dry coal cleaning in drewboy bath type by dry heavy medium [C]// CHEN Q R,TANAKA Z. Dry separation science and technology. Xuzhou:China University of Mining and Technology Press, 2002: 73-78.
    [30] KUBO Y, ZUSHI T. Designing points of the fluidized bed type dry coal cleaning system [C]// CHEN Q R,TANAKA Z. Dry separation science and technology. Xuzhou:China University of Mining and Technology Press, 2002: 79-89.
    [31] OSHITANI J, TANI K, TAKASE K, TANAKA Z. Dry coal cleaning by utilizing fluidized bed medium separation (FBMS) [C]// Proceedings of the SCEJ Symposium on Fluidization. Japan, 2003: 425-430.
    [32] LOCKHART N C. Dry beneficiation of coal [J]. Powder Technology, 1984, 40(1/3): 17-42.
    [33] BEECKMANS J M, STAHL B. Mixing and segragation kinetics in a strongly segregated gas-fluidized bed [J]. Powder Technology, 1987, 53(1): 31-38.
    [34] BEECKMANS J M, JEFFS A. Taylor dispersion in fluidized channel flow [J]. Chemical Engineering Science, 1982, 37(6): 863-867.
    [35] SAHU A K, BISWAL S K, PARIDA A. Development of Air Dense Medium Fluidized Bed Technology For Dry Beneficiation of Coal-A Review [J]. International Journal of Coal Preparation and Utilization, 2009, 29(4): 216-241.
    [36] EVESON G F. Dry cleaning of large or small coal or other particulate materials containing components of diff erent specific gravities: US,3367501 [P]. 1968.
    [37] CHEN Q R, LUO Z F, WANG H F, ZHAO Y M, WEI L B. Theory and practice of dry beneficiation technology in China [C]// Proceedings of XXIV International Mineral Processing Congress, Beijing, China, 2008: 1900-1907.
    [38] ZHAO Y M, LUO Z F, CHEN Q R, HE Y Q , CHEN Z Q, LIANG C C, DUAN C L. Development of Dry Cleaning With Fluidized Beds in China [C]// Proceedings of the 11th international mineral processing symposium, Belek-Antalya, Turkey, 2008: 639-646.
    [39] FAN M M, CHEN Q R, ZHAO Y M, LUO Z F. Fine coal (6-1 mm) separation in magnetically stabilized fluidized beds [J]. International Journal of Mineral Processing, 2001, 63(4): 225-232.
    [40] FAN M M, CHEN Q R, ZHAO Y M. Fundamentals of a Magnetically Stabilized Fluidized Bed for Coal Separation [J]. Coal Preparation, 2003, 23(1/2): 47-55.
    [41]骆振福,陈清如.空气重介流化床选煤过程中介质动态平衡的研究[J].煤炭学报, 1995, 30(3): 260-265.
    [42] WANG J H, CHEN Q R, KUANG Y L, LYNCH A J, ZHUO J W. Grinding Process Within Vertical Roller Mills: Experiment and Simulation [J]. Mining Science and Technology, 2009, 19(1): 97-101.
    [43] DUTTA A, DULLEA L V. Effects of external vibration and the addition of fibers on the fluidization of a fine powder [J]. AIChE Symposium Series, 1991, 87(281): 38-46.
    [44] KONO H O, CHIBA S, ELLS T, SUZUKI M. Characterization of the emulsion phase in fine particle fluidized beds [J]. Powder Technology, 1986, 48(1): 51-58.
    [45] LI H, LEGROS R, BRERETON C M H, GRACE J R, CHAOUKI J. Hydrodynamic behaviour of aerogel powders in high-velocity fluidized beds [J]. Powder Technology, 1990, 60(2): 121-129.
    [46] YANG Z, TUNG Y, KWAUK M. Characterizing fluidization by the bed collapsing method [J]. Chemical Engineering Communications, 1985, 39(1-6): 217-232.
    [47] ZHOU T, LI H. Effects of adding different size particles on fluidization of cohesive particles [J]. Powder Technology, 1999, 102(3): 215-220.
    [48]王兆霖.细颗粒的流态化及添加颗粒的作用[D].北京:中国科学院化工冶金研究所, 1995.
    [49]周涛,李洪钟.黏附性颗粒添加组分流态化试验[J].化工冶金, 1998, 19(3): 231-236.
    [50] AMOORTHY D S, RAO CH S. Multi-orifice plate distributors in gas fluidised beds-a model for design of distributors [J]. Powder Technology, 1979, 24(2): 215-223.
    [51] CHRISTENSEN D, NIJENHUIS J, VANOMMEN J R, COPPENS M O. Residence times in fluidized beds with secondary gas injection [J]. Powder Technology, 2007, 180(3): 321-331.
    [52] GAMCAREK Z, PRZYBYLSKI L, BOTTERILL J S M, BROADBENT C J. A quantitative assessment of the effect of distributor type on particle circulation [J]. Powder Technology, 1997, 91(3): 209-216.
    [53] GELDART D, BAEYENS J. The design of distributors for gas-fluidized beds [J]. Powder Technology, 1985, 42(1): 67-78.
    [54] JU S P, LU W M, KUO H P, CHU F S, LU Y C. The formation of a suspension bed on dual flow distributors [J]. Powder Technology, 2003, 131(2/3): 139-155.
    [55] KSKSAL M, VURAL H. Bubble size control in a two-dimensional fluidized bed using a moving double plate distributor [J]. Powder Technology, 1998, 95(3): 205- 213.
    [56] LEHMANN J, SCH GERL K. Investigation of gas mixing and gas distributor performance in fluidized beds [J]. The Chemical Engineering Journal 1978, 15(2): 91-109.
    [57] LOMBARDI G, PAGLIUSO J D, JR L G. Performance of a tuyere gas distributor [J]. Powder Technology, 1997, 94(1): 5-14.
    [58] OTERO A R, MUNOZ R C. Fluidized bed gas distributors of bubble cap type [J]. Powder Technology, 1974, 9(5/6): 279-286.
    [59] REES A C, DAVIDSON J F, DENNIS J S, FENNELL P S, GLADDEN L F, HAYHURST A N, MANTLE M D, M LLER C R, SEDERMAN A J. The nature of the flowjust above the perforated plate distributor of a gas-fluidised bed, as imaged using magnetic resonance [J]. Chemical Engineering Science, 2006, 61(18): 6002-6015.
    [60] ROWE P N, EVANS T J. Dispersion of tracer gas supplied at the distributor of freely bubbling fluidised beds [J]. Chemical Engineering Science, 1974, 29(11): 2235-2246.
    [61] SVENSSON A, JOHNSSON F, LECKNER B. Fluidization regimes in non-slugging fluidized beds: the influence of pressure drop across the air distributor [J]. Powder Technology, 1996, 86(3): 299-312.
    [62] BONNIOL F, SIERRA C, OCCELLI R, TADRIST L. Similarity in dense gas–solid fluidized bed, influence of the distributor and the air-plenum [J]. Powder Technology, 2009, 189(1): 14-24.
    [63] SATHIYAMOORTHY D, RAO C S. Gas distributor in fluidised beds [J]. Powder Technology, 1978, 20(1): 47-52.
    [64] SATHIYAMOORTHY D, RAO C S. The choice of distributor to bed pressure drop ratio in gas fluidised beds [J]. Powder Technology, 1981, 30(2): 139-143.
    [65] WHITEHEAD A B, DENT D C. Distributor stability in gas-solid fluidized beds [J]. Chemical Engineering Science, 1982, 37(1): 124-125.
    [66] WHITEHEAD A B, GARTSIDE G, DENT D C. Flow and pressure maldistribution at the distributor level of a gas-solid fluidised bed [J]. The Chemical Engineering Journal, 1970, 1(3): 175-185.
    [67] WHITEHEAD A B, DENT D C, YOUNG A D. Fluidisation studies in large gas-solid systems Part II: the effect of distributor design and solid properties on fluidisation quality [J]. Powder Technology,1967, 1(3): 149-156.
    [68] WALKER B V. The effect of distributor type on conversion in a bubbling fluidised bed [J]. The Chemical Engineering Journal, 1975, 9(1): 49-61.
    [69] UPADHYAY S N, SAXENA S C. Performance characteristics of multijet tuyere distributor plates [J]. Powder Technology, 1981, 30(2): 155-159.
    [70] SAXENA S C, CHATTERJEE A, PATEL R C. Effect of distributors on gas-solid fluidization [J]. Powder Technology, 1979, 22(2): 191-198.
    [71] LEUNG L S. Design of gas distributors and prediction of bubble size in large gas-solids fluidized beds [J]. Powder Technology, 1972, 6(4): 189-193.
    [72] LIN J, HAN M H, WANG T F, ZHANG T W, WANG J F, JIN Y. Influence of the gas distributor on the local hydrodynamic behavior of an external loop airlift reactor [J]. Chemical Engineering Journal, 2004, 102(1): 51-59.
    [73] SOBRINO C, ALMENDROS-IBA EZ J A, SANTANA D, DEVEGA M. Fluidization of Group B particles with a rotating distributor [J]. Powder Technology, 2007, 181(3): 273-280.
    [74] LIU D, KWAUK M, LI H. Aggregative and particulate fluidization—The two extremes of a continuous spectrum [J]. Chemical Engineering Science, 1996, 51(17): 4045-4063.
    [75]李洪钟,郭慕孙.气固流态化的散式化[M].北京:化学工业出版社, 2002.
    [76] WANG S Y, YANG X, LU H L, YU L, WANG S A, DING Y L. CFD studies on mass transfer of gas-to-particle cluster in a circulating fluidized bed [J]. Computers and Chemical Engineering, 2009, 33(2): 393-401.
    [77] WANG J W, VAN DER HOEF M A, KUIPERS J A M. Why the two-fluidmodel fails to predict the bed expansion characteristics of Geldart A particles in gas-fluidized beds: A tentative answer [J]. Chemical Engineering Science, 2009, 64(3): 622-625.
    [78] VAN DER HOEF M A, VAN SINT ANNALAND M, KUIPERS J A M. Computational fluid dynamics for dense gas-solid fluidized beds: a multi-scale modeling strategy [J]. Chemical Engineering Science, 2004, 59(22/23): 5157-5165.
    [79] UTIKAR R P, RANADE V V. Single jet fluidized beds: Experiments and CFD simulations with glass and polypropylene particles [J]. Chemical Engineering Science, 2007, 62(1/2): 167-183.
    [80] PEIRANO E, DELLOUME V, LECKNER B. Two-or three-dimensional simulations of turbulent gas-solid flows applied to fluidization [J]. Chemical Engineering Science, 2001, 56(16): 4787-4799.
    [81] LU H L, ZHAO Y H, DING J M, GIDASPOW D, LI W. Investigation of mixing/segregation of mixture particles in gas-solid fluidized beds [J]. Chemical Engineering Science, 2007, 62(1/2): 301-317.
    [82] LIU X J, XU X C, ZHANG W R. Numerical simulation of dense particle-gas two-phase flow using the minimal potential energy principle [J]. Journal of University of Science and Technology Beijing, 2006,13(4): 301-307.
    [83] LETTIERI P, FELICE R D, PACCIANI R, OWOYEMI O. CFD modelling of liquid fluidized beds in slugging mode [J]. Powder Technology, 2006, 167(2): 94-103.
    [84] GUENTHER C, SYAMLAL M. The effect of numerical diffusion on simulation of isolated bubbles in a gas-solid fluidized bed [J]. Powder Technology, 2001, 116(2/3): 142-154.
    [85] GAMWO I K, SOONG Y, LYCZKOWSKI R W. Numerical simulation and experimental validation of solids flows in a bubbling fluidized bed [J]. Powder Technology, 1999, 103(2): 117-129.
    [86] ENWALD H, PEIRANO E, ALMSTEDT A E. Eulerian two-phase flow theory applied to fluidization [J]. International Journal of Multiphase Flow, 1996, 22(Supp1): 21-66.
    [87] DEPYPERE F, PIETERS J G, DEWETTINCK K. CFD analysis of air distribution in fluidised bed equipment [J]. Powder Technology, 2004, 145(3): 176-189.
    [88] CHU K W, YU A B. Numerical simulation of complex particle-fluid flows [J]. Powder Technology, 2008, 179(3): 104-114.
    [89] BRUE E, BROWN R C. Use of pressure fluctuations to validate hydrodynamic fluidized media: bubbling beds [J]. Powder Technology, 2001, 119(2/3): 117-127.
    [90] BRANDANI S, ZHANG K. A new model for the prediction of the behaviour of fluidized beds [J]. Powder Technology, 2006, 163(1/2): 80-87.
    [91] LU H L, WANG S Y, ZHAO Y H, YANG L, GIDASPOW D, DING J. Prediction of particle motion in a two-dimensional bubbling fluidized bed using discrete hard-sphere model [J]. Chemical Engineering Science, 2005, 60(12): 3217-3231.
    [92] TAGHIPOUR F, ELLIS N, WONG C. Experimental and computational study of gas–solid fluidized bed hydrodynamics [J]. Chemical Engineering Science, 2005, 60(24): 6857-6867.
    [93] LINDBORG H, LYSBERG M, JAKOBSEN H A. Practical validation of the two-fluid model applied to dense gas-solid flows in fluidized beds [J]. Chemical Engineering Science, 2007, 62(21): 5854-5869.
    [94] CHALERMSINSUWAN B, PIUMSOMBOON P, GIDASPOW D. Kinetic theory based computation of PSRI riser: Part II—Computation of mass transfer coefficient with chemical reaction [J]. Chemical Engineering Science, 2009, 64(6): 1212-1222.
    [95] CHALERMSINSUWAN B, PIUMSOMBOON P, GIDASPOW D. Kinetic theory based computation of PSRI riser: Part I—Estimate of mass transfer coefficient [J]. Chemical Engineering Science, 2009, 64(6): 1195-1211.
    [96] SUN Q Q, LU H L, LIU W T, HE Y R, YANG L D, GIDASPOW D. Simulation and experiment of segregating/mixing of rice husk–sand mixture in a bubbling fluidized bed [J]. Fuel, 2005, 84(14/15): 1739-1748.
    [97] KUNII D, LEVENSPIEL O. Effect of exit geometry on the vertical distribution of solids in circulating fluidized beds. Part I: solution of fundamental equations; Part II: analysis of reported data andprediction [J]. Powder Technology, 1995, 84(1): 83-90.
    [98] KUNII D, LEVENSPIEL O. Circulating fluidized-bed reactors [J]. Chemical Engineering Science, 1997, 52(15): 2471-2482.
    [99] KUNII D, LEVENSPIEL O. Novel rotary gas/solid contactor [J]. Powder Technology, 1998, 96(1): 1-5.
    [100] KUNII D, LEVENSPIEL O. The K-L reactor model for circulating fluidized beds [J]. Chemical Engineering Science, 2000, 55(20): 4563-4570.
    [101] ABRAHAMSEN A R, GELDART D. Behaviour of gas-fluidized beds of fine powders part I. Homogeneous expansion [J]. Powder Technology, 1980, 26(1): 35-46.
    [102] ABRAHAMSEN A R, GELDART D. Behaviour of gas-fluidized beds of fine powders part II. Voidage of the dense phase in bubbling beds [J]. Powder Technology, 1980, 26(1): 47-55.
    [103] GELDART D. Types of gas fluidization [J]. Powder Technology, 1973, 7(5): 285-292.
    [104] GELDART D, ABRAHAMSEN A R. Homogeneous fluidization of fine powders using various gases and pressures [J]. Powder Technology, 1978, 19(1): 133-136.
    [105] GELDART D, ABDULLAH E C, VERLINDEN A. Characterisation of dry powders [J]. Powder Technology, 2009, 190(1/2): 70-74.
    [106] JOHNSSON F, ZIJERVELD R C, SCHOUTEN J C, VANDENBLEEK C M, LECKNER B. Characterization of fluidization regimes by time-series analysis of pressure fluctuations [J]. International Journal of Multiphase Flow, 2000, 26(4): 663-715.
    [107] PEIRANO E, DELLOUME V, JOHNSSON F, LECKNER B, SIMONIN O. Numerical simulation of the fluid dynamics of a freely bubbling fluidized bed: influence of the air supply system [J]. Powder Technology, 2002, 122(1): 69-82.
    [108] SASIC S, LECKNER B, JOHNSSON F. Fluctuations and waves in fluidized bed systems: The influence of the air-supply system [J]. Powder Technology, 2005, 153(3): 176-195.
    [109] SASIC S, LECKNER B, JOHNSSON F. Parametric modelling oftime series ofpressure fluctuations in gas-solid fluidized beds [J]. Chemical Engineering Science, 2005, 60(18): 5069-5077.
    [110] SASIC S, LECKNER B, JOHNSSON F. Time–frequency investigation of different modes of bubble flow in a gas–solid fluidized bed [J]. Chemical Engineering Science, 2006, 121(16): 27-35.
    [111] SASIC S, JOHNSSON F, LECKNER B. Inlet boundary conditions for the simulation of fluid dynamics in gas-solid fluidized beds [J]. Chemical Engineering Science, 2006, 61(16): 5183-5195.
    [112] GIDASPOW D. Multiphase flow and fluidization: continuum and kinetic theory description [M]. Boston: Academic Press, 1994.
    [113] JIRADILOK V, GIDASPOW D, DAMRONGLERD S, KOVES W J, MOSTOFI R. Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser [J]. Chemical Engineering Science, 2006, 61(17): 5544-5559.
    [114] JIRADILOK V, GIDASPOW D, BREAULTB R W, SHADLEB L J. Computation of gas and solid dispersion coefficients in turbulent risers and bubbling beds [J]. Chemical Engineering Science, 2007, 62(13): 3397-3409.
    [115] CHALERMSINSUWAN B, PIUMSOMBOON P, GIDASPOW D. Kinetic theory based computation of PSRI riser: Part I-Estimate of mass transfer coefficient [J]. Chemical Engineering Science, 2009, 64(6): 1195-1211.
    [116] CHALERMSINSUWAN B, PIUMSOMBOON P, GIDASPOW D. Kinetic theory based computation of PSRI riser: Part II-Computation of mass transfer coefficientwith chemical reaction [J]. Chemical Engineering Science, 2009, 64(6): 1212-1222.
    [117] GRACE J R, TAGHIPOUR F. Verification and validation of CFD models and dynamic similarity for fluidized beds [J]. Powder Technology, 2004, 139(2): 99-110.
    [118] KAWAGUCHI T, SAKAMOTO, M., TANAKA, T., TSUJI, Y. Quasi-three-dimensional numerical simulation of spouted beds in cylinder [J]. Powder Technology, 2000, 109(1-3): 3-12.
    [119] MUGURUMA Y, TANAKA T, TSUJI Y. Numerical simulation of particulate flow with liquid bridge between particles (simulation of centrifugal tumbling granulator) [J]. Powder Technology, 2000, 109(1/3): 49-57.
    [120] TSUJI Y, TANAKA T, ISHIDA T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe [J]. Powder Technology, 1992, 71(3): 239-250.
    [121] TSUJI Y, KAWAGUCHI T, TANAKA T. Discrete particle simulation of two-dimensional fluidized bed [J]. Powder Technology, 1993, 77(1): 79-87.
    [122] TSUJI Y, TANAKA T, YONEMURA S. Cluster patterns in circulating fluidized beds predicted by numerical simulation (discrete particle model versus two-fluid model) [J]. Powder Technology, 1998, 95(3): 254-264.
    [123] TSUJI Y. Activities in discrete particle simulation in Japan [J]. Powder Technology, 2000, 113(3): 278-286.
    [124] TSUJI Y. Multi-scale modeling of dense phase gas–particle flow [J]. Chemical Engineering Science, 2007, 62(13): 3410-3418.
    [125]李静海,欧阳洁,高士秋,等.颗粒流体复杂系统的多尺度模拟[M].北京:科学出版社, 2005.
    [126] GE W, MA J, ZHANG J, TANG D, CHEN F, WANG X, GUO L, LI J. Particle methods for multi-scale simulation of complex flows [J]. Chinese Science Bulletin, 2005, 50(11): 1057-1069.
    [127] GE W, LI J. Particle methods for complex flows in chemical engineering-the pseudo-particle approach [J]. China Particuology, 2005, 3(1/2): 58-59.
    [128] XU M, GE W, LI J. Adiscrete particle model for particle–fluid flowwith considerations of sub-grid structures [J]. Chemical Engineering Science, 2007, 62(8): 2302-2308.
    [129] BUSCIGLIO A, VELLA G, MICALE G, RIZZUTI L. Analysis of the bubbling behaviour of 2D gassolid fluidized beds Part II. Comparison between experiments and numerical simulations via Digital Image Analysis Technique [J]. Chemical Engineering Journal, 2009, 148(1): 145-163.
    [130] BUSCIGLIO A, VELLA G, MICALE G, RIZZUTI L. Analysis of the bubbling behaviour of 2D gas solid fluidized beds: Part I. Digital image analysis technique [J]. Chemical Engineering Journal, 2009, 148(1/3): 398-413.
    [131] SAHOO A, RAMESH CH, BISWAL, K C. Experimental and computational study of the bed dynamics of semi-cylindrical gas-solid fluidized bed [J]. The Canadian Journal of Chemical Engineering, 2009, 87(1):11-18.
    [132] BRZIC D, AHCHIEVA D, PISKOVA E, HEINRICH S, GRBAVCIC Z. Hydrodynamics of shallow fluidized bed of coarse particles [J]. Chemical Engineering Journal, 2005, 114(1/3): 47-54.
    [133] BEETSTRA R. V D H M A, KUIPERS J A M. Numerical study of segregation using a newdrag force correlation for polydisperse systems derived from lattice-Boltzmann simulations [J]. Chemical Engineering Science, 2007, 62(1/2): 246-255.
    [134] DEEN N G, VAN SINT ANNALAND M, VAN DER HOEF M A, KUIPERS J A M. Reviewof discrete particle modeling of fluidized beds [J]. Chemical Engineering Science, 2007, 62(1/2): 28-44.
    [135] MA J, GE W, XIONG Q, WANG J, LI J. Direct numerical simulation of particle clustering in gas-solid flow with a macro-scale particle method [J]. Chemical Engineering Science, 2009, 64(1): 43-51.
    [136] ZHU H P, ZHOU Z Y, YANG R Y, YU A B. Discrete particle simulation of particulate systems:Areview of major applications and findings [J]. Chemical Engineering Science, 2008, 63(23): 5728-5770.
    [137] WANG S Y, LU H L, LI X G, WANG J Z, ZHAO Y H, DING Y L. Discrete particle simulations for flow of binary particlemixture in a bubbling fluidized bed with a transport energy weighted averaging scheme [J]. Chemical Engineering Science, 2009, 64(8): 1707-1718.
    [138] CORONEO M, MONTANTE G, BASCHETTI M G, PAGLIANTI A. CFD modelling of inorganic membrane modules for gas mixture separation [J]. Chemical Engineering Science, 2009, 64(5): 1085-1094.
    [139] DAWES J E, HANSPAL N S, FAMILY O A, TURAN A. Three-dimensional CFD modelling of PEM fuel cells: An investigation into the effects of water flooding [J]. Chemical Engineering Science, 2009, 26(12): 2781-2794.
    [140] EESA M, BARIGOU M. . CFD investigation of the pipe transport of coarse solids in laminar power law fluids [J]. Chemical Engineering Science, 2009, 64(2): 322-333.
    [141] GU T, CHEW Y M J, PATERSON W R, WILSON D I. Experimental and CFD studies of fluid dynamic gauging in duct flows [J]. Chemical Engineering Science, 2009, 64(2): 219-227.
    [142] NG B H, DING Y L, GHADIRI M. Modelling of dense and complex granular flow in high shear mixer granulator—A CFD approach [J]. Chemical Engineering Science, 2009, 64(16): 3622-3632.
    [143] RATKOVICH N, CHAN C C V, BERUBE P R, NOPENS I. Experimental study and CFD modelling ofa two-phase slug flow for an airlift tubular membrane [J]. Chemical Engineering Science, 2009, 64(16): 3576-3584.
    [144] PAPADIKIS K, GU S, BRIDGWATER A V. CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part B: Heat, momentum and mass transport in bubbling fluidised beds [J]. Chemical Engineering Science, 2009, 64(5): 1036-1045.
    [145] LAN X, XU C, WANG G, WU L, GAO J. CFD modeling of gas–solid flow and cracking reaction in two-stage riser FCC reactors [J]. Chemical Engineering Science, 2009, 64(17): 3847-3858.
    [146] GUPTA R, FLETCHER D F, HAYNES B S. On the CFD modelling of Taylor flow in microchannels [J]. Chemical Engineering Science, 2009, 64(12): 2941-2950.
    [147] LAPPALAINEN K, MANNINEN M, ALOPAEUS V. CFD modeling of radial spreading of flow in trickle-bed reactors due to mechanical and capillary dispersion [J]. Chemical Engineering Science, 2009, 64(2): 207-218.
    [148] PANNEERSELVAM R, SAVITHRI S, SURENDER G D. CFD simulation of hydrodynamics of gas-liquid-solid fluidised bed reactor [J]. Chemical Engineering Science, 2009, 64(6): 1119-1135.
    [149] WANG S Y, LU H L, LI X, YU L, DING J M, ZHAO Y H. CFD simulations of bubbling beds of rough spheres [J]. Chemical Engineering Science, 2008, 63(23): 5653-5662.
    [150] LUN C K K, SAVAGE S B, JEFFREY D J, CHEPURNIY N. Kinetic theories of granular flow: inelastic particles in couette flow and slightly inelastic particles in a general flow field [J]. Journal of Fluid Mechanics, 1984, 140:223-256.
    [151] WEN C Y, YU Y H. A generalized method for predicting the minimum fluidization velocity [J]. AIChE Journal, 1966, 12(3): 610-612.
    [152] SYAMLAL M, O'BRIEN T J. Computer Simulation of Bubbles in a Fluidized Bed [J]. AIChE Symposium Series on Fluidization and Fluid Particle Systems: Fundamentals and Applications, 1989, 85: 22-31.
    [153] GIDASPOW D, BEZBURUAH R, DING J. Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach [C]// Proceedings of the 7th Engineering Foundation Conference on Fluidization. Brisbane, Australia. 1992.
    [154]蔡树棠.泥浆的力学性质和砂粒在泥浆中运动时所受的阻力[J].应用数学和力学, 1981, 2: 267-270.
    [155]韦鲁滨,边炳鑫,陈清如,赵跃民.物体在流化床中的终端末速[J].中国矿业大学学报, 2001, 30(1): 5-8.
    [156] DAVIDSON J F, HARRISON D. Fluidized Particles [M]. New York: Cambridge University Press, 1963.
    [157] DARTON R C, LANAUZE R D, DAVIDSON J F, HARRISON D. Bubble growth due to coalescence in fluidised beds [J]. Transactions of the Institute Chemical Engineering, 1977, 55: 274-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700