ChREBP基因RNA干扰真核表达载体的构建、筛选及转染
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的构建针对大鼠(Rattus Norvegicus )脂肪细胞ChREBP基因的miRNA干扰载体,通过脂质体转染大鼠脂肪细胞,观察不同浓度葡萄糖对转染48小时后的原代培养的脂肪细胞的增殖分化的影响,探索ChREBP在大鼠脂肪细胞生脂调控中的途径。
     方法1.根据RNA干扰原理,构建针对大鼠脂肪细胞ChREBP基因的四种质粒pcDNA6.2-GW/EmGFP-ChREBPⅠ、pcDNA6.2-GW/EmGFP-ChREBPⅡ、pcDNA6.2-GW/EmGFP-ChREBPⅢ、pcDNA6.2-GW/EmGFP-ChREBPⅣ;2.将构建的四种质粒和pcDNA6.2-GW/EmGFP-control分别转染大鼠脂肪细胞,用杀稻瘟素筛选得到转染成功的细胞克隆;3、采用荧光显微镜下观察脂肪细胞转染效果,选择较好的构建好的重组质粒;4、采用MTT法检测转染脂肪细胞的增殖情况;5、采用油红O法检测对脂肪细胞的分化的影响。
     结果1、成功构建了在大鼠脂肪细胞细胞核中表达pri-miRNA的四种质粒pcDNA6.2-GW/EmGFP-ChREBPⅠ、pcDNA6.2-GW/EmGFP-ChREBPⅡ、pcDNA6.2-GW/EmGFP-ChREBPⅢ、pcDNA6.2-GW/EmGFP-ChREBPⅣ;2、成功转染大鼠脂肪细胞,通过杀稻瘟素筛选稳定的转染细胞克隆。荧光显微镜下简单观察转染效果,观察到pcDNA6.2-GW/EmGFP-ChREBPⅢ转染效果较好,总体转染率都很低;3、不同浓度葡萄糖处理重组质粒pcDNA6.2-GW/EmGFP-ChREBPⅢ转染后48小时后对脂肪细胞增殖分化的影响:20mmol/L葡萄糖浓度处理组对大鼠脂肪细胞分化的影响显著高于0mmol/L、5mmol/L和10mmol/L葡萄糖浓度处理组(p<0.05),对于25mmol/L和15mmol/L没有显著性(P>0.05);在细胞培养的第二天、第四天、第六天和第八天,与培养基中维持细胞生长的葡萄糖浓度组(0mmol/L)相比,10mmol/L、15mmol/L和20mmol/L葡萄糖处理的大鼠脂肪细胞增殖作用显著增强(P<0.05),其中15mmol/L葡萄糖处理的大鼠脂肪细胞增殖作用极显著(p<0.05),而5mmol/L和25mmol/L浓度有增强的趋势,但没有统计学显著性(P>0.05)。
     结论结果表明构建的真核表达载体对于大鼠脂肪细胞转染效率不高,其中pcDNA6.2-GW/EmGFP-ChREBPⅢ转染效果较好,不同浓度葡萄糖对转染48小时后的大鼠脂肪细胞增值分化影响与未转染脂肪细胞对其影响相比较变化不大。
Objective: To construct four plasmids which can inhibit expression of ChREBP of rat adipocyte, observe effects of glucose on rat adipocyte multiplication and differentiation by lipofectamine 2000 transfecting and the regulation role of ChREBP on its lipogenesis.
     Methods: 1. Four short DNA targetsequence were designed according to gene-silencing technologies principle, chcmically synthesized , and reconstructed to four plasmids: pcDNA6.2-GW/EmGFP-ChREBPⅠ、pcDNA6.2-GW/EmGFP-ChREBPⅡ、pcDNA6.2-GW/EmGFP-ChREBPⅢ、pcDNA6.2-GW/EmGFP-ChREBPⅣ. 2. Four recombinant plasmids and control plasmid were transfected to primary rat adipocyte,respectively. 3. Effective transfection recombinant plasmids can be obeseved by fluorescence-microscope. 4. The rate of increase of primary rat adipocyte proliferation were detected by MTT.5. Effects of primary rat adipocyte differentiation by oil red O.
     Results: 1. Four plasmids were constracted successfully. 2. Four recombinant plasmids and control plasmid were transfected to primary rat adipocyte and was used Blasticidin to gain the cell clones that express stably. Recombinant plasmids pcDNA6.2-GW/EmGFP-ChREBPⅢ’s fluorescent images shows batter than others .Tissue that were not digested were good in transfection unexpected. 3. Effects of glucose on rat preadipocytes differentiation by applications,that were transfected by pcDNA6.2-GW/EmGFP-ChREBPⅢ48 h, 20mmol/L glucose(P<0.05) was higher significantly than 0mmol/L、5mmol/L and 10mmol/L glucose, 25mmol/L、15mmol/L was no significant(P>0.05). Effects of glucose on rat proliferation applications RNAi,that were transfected by pcDNA6.2-GW/EmGFP-ChREBPⅢ48 h,15mmol/L glucose was more enhancement significantly than 10mmol/L、15mmol/L and 20mmol/L glucose(P<0.05), 5mmol/L、25mmol/L glucose was no significant(P>0.05).
     Conclusion: The recombinant plasmids was inefficiency express ChREBP specific RNA,but pcDNA6.2-GW/EmGFP-ChREBPⅢcan more efficiency. Effects of glucose on rattus norvegicus preadipocytes differentiation and proliferation by applications RNAi,that were transfected by pcDNA6.2-GW/EmGFP-ChREBPⅢ48 h,has few changes.
引文
[1] Gregoire F M,Smas C M,Sul H S.Understanding adipocyte differentiation .Physiol Rev,1998,78(3):783-809.
    [2] Obesity:preventing and managing the global epidemic[J].Report of a WHO consultation.World
    [3] Saiki A,Ohira M,Endo K,Koide N,Oyama T,Murano T,Miyashita YShirai K.The angiotensin H receptor antagonist valsartan enhances lipoprotein lipase mass in preheparin serum in type 2 diabetes with hypertension Diabetes Res Clin Pract,2006,74(3):242-8.
    [4] Xiao Y,Junfeng H,Tianhong L,Lu W,Shulin C,Yu Z,Xiaohua L,weixia J,Sheng Z,Yanyun G,Guo LMin L.Cathepsin K in adipoeyte differentiation and its potential role in the pathogenesis of obesity.JClin Endoerinol Metab,2006,91(11):4520-7.
    [5] Novakofski J.Adipogenesis:usefulness of in vitro and in vivo experimental models[J].J Anim Sci,2004,82:905-15.
    [6] Ailhaud G.Adipose tissue as a secretory organ: from adipogenesis to the metabolic syndrome.C R Biol,2006,329(8):570-7;discussion 653-5.
    [7] Trayhurn P,Beattie J H. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc,2001,60(3):329-39.
    [8] DnaiC.,SmithA.G.,and Dessolin S.1997.Differentiation of embyronic stem cells into adipocyte in vitro [J].JCellSei,110:1279-1285.
    [9] PittengerM.F.,Mackay A.M.,and Beek SC.1999.Multilinegae potential of adult humna mesenchymal stem cells[J].Seience,284:43-147.
    [10] Taylor S.M,Jones P.A.Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 52 Azacy tidine[J].Cell,1979,17:771-9.
    [11] Hung SC,Chang CF,Ma HL,et al.Gene expression profiles of early adipogenesis in humanmesenchymal stem cells[J].Gene,2004,340:141-50.
    [12] Nakamura T,Shiojima S,Hirai Y,et al.Temporal gene expression changes during adipogenesis in human mesenchymal stem cells[J].Biochem Biophys Res Commun,2003,303:306-12.
    [13] Gregoire F M,Smas C M ,Sul H S. Understanding adipocyte differentiation. Physiol Rev,1998,78(3):783-809.Tong Q,Hotamisligil GS. Molecular mechanisms of adipocyte differentiation Rev Endocr Metab Disord,2001,2(4):349-55.
    [14] Hentges EJ,and Hausman GJ. Primary cultures of stromal-vaseular cells from pig adipose tissue:the influence of glucocorticoids and inslin as inducers of adipocyte differentiation. Domest.Anim. Endocrinol.1989,(6):275-285.
    [15] Ailhaud G.Extracellular factors,signalling pathways and differentiation of adipose precursor cells[J]. Curr Opin Cell Biol,1990,2:1043-9.
    [16] Smas CM,Chen L,Zhao L,et al.Transcriptional repression of pref-1 by glucocorticoids promotes 3T3-L1 adipocyte differentiation[J].J Biol Chem, 1999, 274: 12632 -41.
    [17] Butterwith SC.Molecular events in adipocyte development[J].PharmacolTher,1994,61:399-411.
    [18] Smas CM,Chen L,Sul HS.Cleavage of membrane-associated pref-1 generates a soluble inhibitor of adipocyte differentiation[J].Mol Cell Biol,1997,17:977-88.
    [19] Hausman GJ.The influence of dexamethasone and insulin on expression of CCAAT/enhancer binding protein isoforms during preadipocyte differentiation in porcine stromal-vascular cell cultures: evidence for very early expression of C/EBP alpha[J].J Anim Sci,2000,78:1227-35.
    [20] Smith SB,Mersmann HJ,Smith EO,et al.Stearoyl-coenzyme A desaturase gene expression during growth in adipose tissue from obese and crossbred pigs[J].J Anim Sci,1999,77:1710-6.
    [21] Suryawan A,Swanson LV,Hu CY.Insulin and hydrocortisone,but not triiodothyronine,are required for the differentiation of pig preadipocytes in primary culture[J].J Anim Sci,1997,75:105-11.
    [22] Dani C,Doglio A,Amri EZ,et al.Cloning and regulation of a mRNA specifically expressed in the preadipose state[J].J Biol Chem,1989,264:10119-25.
    [23] Casimir DA,Ntambi JM.cAMP activates the expression of stearoyl-CoA desaturase gene 1 during early preadipocyte differentiation[J].J Biol Chem,1996,271:29847-53.
    [24] Tominaga K,Kondo C,Johmura Y,et al.The novel gene fad104,containing a fibronectin type III domain,has a significant role in adipogenesis[J].FEBS Lett,2004,577:49-54.
    [25] Tominaga K,Kondo C,Kagata T,et al.The novel gene fad158,having a transmembrane domain and leucine-rich repeat,stimulates adipocyte differentiation [J].J Biol Chem,2004,279:34840-8.
    [26] Yu Z W,Eriksson J W.The upregulating effect of insulin and vanadate on cell surface insulin Receptors in rat adipocytes is modulated by glueose and energy availability [Jl.Horm Metab Res,2000,32:310-315.
    [27] Tanti JF,Gxemeaux T ,Gxillo S,et al Overexperssion of a constitutively active form of phosphatidylinositol 3-kinase is sufficient to promote Glut4 trannslocation in adipocytes [J].J Biol Chem,1996,271:25227-25232.
    [28] Ueki K,Yamamoto HR,Kaburagi Y,et al.Potential role cf protein kinase B in insulin-induced glucose transport,glycogen synthesis and protein synthesis [J].J Biol Chem,1998,273:5315-5322.
    [29] Gil J,Esteban M.Introduction of apoptosis bythe dsRNAi-depended protein kinnase (PKR):Mechanism of action [J].Apoptosis,2000,5:107-114.
    [30] Gunter M,Thomas T.Mechanisms of Gene silencing by double- depended protein kinnase (PKR):Mechanism of action [J].Apoptosis,2000,5:107-114.
    [31] Sato GD,Kawamoto T,LeAD,et al . Biological effects in vitro of mono clonal antibodies to human epidermal growth factor receptor [J] .Mol Biol Med,1983,1:511-529.
    [32] Holen T,Amarzguioui M,Wiiger MT,et al.Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor[J].Nucleic Acids Res,2002,30:1757-66.
    [33] Caplen NJ.A new approach to the inhibition of gene expression[J].TrendsBiotechnol,2002,20:49-51.
    [34] Hutvagner G,Zamore PD.RNAi:nature abhors a double-strand[J].Curr Opin Genet Dev,2002,12:225-32.
    [35] Elbashir SM,Harborth J,Weber K,et al.Analysis of gene function in somatic mammalian cells using small interfering RNAs[J].Methods,2002,26:199-213.
    [36] Reynolds A,Leake D,Boese Q,et al.Rational siRNA design for RNA interference [J].NatBiotechnol,2004,22:326-30.
    [37] Jackson AL,Bartz SR,Schelter J,et al.Expression profiling reveals off-target gene regulation by RNAi[J].Nat Biotechnol,2003,21:635-7.
    [38] Gunsalus KC,Yueh WC,MacMenamin P,et al.RNAiDB and PhenoBlast:web tools for genome-wide phenotypic mapping projects[J].Nucleic Acids Res,2004,32:D406-10.
    [39] Grosshans H,Slack FJ.Micro-RNAs:small is plentiful[J].J Cell Biol, 2002, 156:17-21.
    [40] Amarzguioui M,Holen T,Babaie E,et al.Tolerance for mutations and chemical modifications in asiRNA[J].Nucleic Acids Res,2003,31:589-95.
    [41] Hohjoh H.Enhancement of RNAi activity by improved siRNA duplexes[J].FEBS Lett,2004,557:193-8
    [42] Caplen NJ.RNAi as a gene therapy approach[J].Expert Opin BiolTher, 2003, 3:575-86.
    [43] Zheng BJ,Guan Y,Tang Q,et al.Prophylactic and therapeutic effects of small interfering RNA targeting SARS-coronavirus[J].Antivir Ther,2004,9:365-74.
    [44] Hemann MT,Bric A,Teruya-Feldstein J,et al.Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants[J].Nature,2005,436:807-11.
    [45] Paddison PJ,Hannon GJ.RNA interference:the new somatic cellgenetics? [J]. Cancer Cell,2002,2:17-23.
    [46] Rubinson DA,Dillon CP,Kwiatkowski AV,et al.A lentivirus-based system to functionally silencegenes in primary mammalian cells,stem cells and transgenic mice by RNA interference[J].Nat Genet,2003,33:401-6.
    [47] Castanotto D,Li H,Rossi JJ.Functional siRNA expression from transfected PCR products[J].RNA,2002,8:1454-60.
    [48] Xia H,Mao Q,Paulson HL,et al.siRNA-mediated gene silencing in vitro and in vivo[J].Nat Biotechnol,2002,20:1006-10.
    [49]Arts GJ,Langemeijer E,Tissingh R,et al.Adenoviral vectors expressing siRNAs for discovery and validation of gene function[J].Genome Res,2003,13:2325-32.
    [50] Shen C,Buck AK,Liu X,et al.Gene silencing by adenovirus-delivered siRNA[J].FEBS Lett,2003,539:111-4.
    [51] Zhao LJ,Jian H,Zhu H.Specific gene inhibition by adenovirus-mediated expression of small interfering RNA[J].Gene,2003,316:137-41.
    [52] Hosono T,Mizuguchi H,Katayama K,et al.RNA interference of PPARgamma using fiber-modified adenovirus vector efficiently suppresses preadipocyte-to-adipocyte differentiation in 3T3-L1 cells[J].Gene,2005,348:157-65.
    [53]Xu Y,Mirmalek-Sani SH,Yang X,et al.The use of small interfering RNAs to inhibit adipocyte differentiation in human preadipocytes and fetal-femur-derived mesenchymal cells[J].Exp Cell Res,2006,312:1856-64.
    [54] Bangham ad.diffusion of univalentions aeross the lamellae of swollen phosvphlipids[J].Mol.Biol,1965,13:238-252.
    [55]于维平,牟小莹,孙萍.脂质体不同给药系统的研究[J].齐鲁要事,2004,23(6): 36-38.
    [56] Timmons L,Court DL,Fire A.Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans[J]. Gene,2001,263:103-12.
    [57] Yamashita H et al.Proc Natl Acad Sci USA,2001,98(16):9116-9121.
    [58] Uyeda K et al.Biochem Pharmacol,2002,63(12):2075-2080.
    [59] Kawaguchi T, Takenoshita M, Kabashima T, Uyeda K. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/ dephosphorylation of the carbohydrate response element binding protein. PNAS, 2001;98:13710-5.
    [60] Kawaguchi T, Osatomi K, Yamashita H, et al. Mechanism for fatty acids“sparing”effect on glucose-induced transcription: regulation of carbohydrate responsive element-binding protein by AMP-activated protein kinase. J Biol Chem 2002; 277:3829-35.
    [61] Uyeda K,Yamashita H,Kawaguchi T. Carbohydrate responsive element-binding protein (ChREBP): a key regulator of glucose metabolism and fat storage. Biochemical Pharmacology, 2002,63: 2075-2080.
    [62] Stoeckman AK, Ma L, Towle HC. Mlx Is the Functional Heteromeric Partner of the Carbohydrate Response Element-binding Protein in Glucose Regulation of Lipogenic Enzyme Genes. J. Biol. Chem. 2004,279(15): 15662-15669.
    [63] Dentin R, Pégorier JP, Benhamed F, et al. Hepatic Glucokinase Is Required for the Synergistic Action of ChREBP and SREBP-1c on Glycolytic and Lipogenic Gene Expression J Biol Chem, 2004, 279(19): 20314-20326.
    [64] Xu J et al. Regulation of Rat Hepatic L-Pyruvate Kinase Promoter Composition and Activity by Glucose, n-3 Polyunsaturated Fatty Acids, and Peroxisome Proliferator-activated Receptor-αAgonist J Biol Chem, 2006, 281(27): 18351-18362.
    [65]卢建雄,杨公社,陈粉粉.Effect of Insulin on transcription of lipogenic and lipolytic-related genes and lipid metabolism in primary porcine adipocytes.农业生物技术学报,2006,14(1):11-16.
    [66]卢建雄,杨公社,陈粉粉.TNF-α影响胰岛素对原代培养大鼠脂肪细胞增殖及生脂基因转录表达的调控.动物学报,2006,52(1):123-129.
    [67] Ishii S,IIzuka K, Bonnie C,et al. Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription. PNAS. 2004, 101(44): 15597-15602.
    [68] Katsumi Iizuka, Richard K. Bruick, Guosheng Liang, Jay D. Horton, and Kosaku Uyeda. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. PNAS, 2004,101: 7281-7286.
    [69]李影,杨公社,卢荣华等.原代猪前体脂肪细胞培养方法的优化[J].细胞生物学杂志,2005:697-700.
    [70] MosmannT.Rapid colorimetric assay for cellular growth and survival: Appliaction to proliferation and cytotoxicity assay[J].J Immunol Meth,1983,65:55.
    [71] Gregoire F M,Adipocyte differentiation: from fibroblast to endocrine cell.Exp Biol Med (Maywood),2001,226(11):997-1002.
    [72] Rosen E D,MacDougald 0 A.Adipocyte differentiation from the inside out .Nat Rev Mol Cell Biol,2006,7(12):885-96.
    [73] Prentki M,Tornheim K,Corkey BE.Signal transduction mechanisms in nutrient-induced insulin secretion[J].Diabetologia.1997,40 Suppl 2:S32-41.
    [74] Huopio H,Shyng SL,Otonkoski T,Nichols CG.K(ATP)channels and insulin secretion disorders[J].Am J Physiol Endocrinol Metab.2002,283:E207-216.
    [75] Henquin JC.Triggering and amplifying pathways of regulation of insulin secretion by glucose[J].Diabetes.2000,49:1751-1760.
    [76] Komatsu M,Sato Y,Aizawa T,Hashizume K.KATP channel-independent glucose action:an elusive pathway in stimulus-secretion coupling of pancreatic beta-cell[J]. Endocr J.2001,48(3):275-288.
    [77] Calls-Escandon J,Robbins DC.Loss of early phase of insulin release inhumans impairs glucose tolerance and blunts thermic effect of glucose[J].Diabetes. 1987,36(10):1167-1172.
    [78] Luzi L,DeFronzo RA.Effect of loss of first-phase insulin secretion on hepatic glucose disposal in humans[J].Am J Physiol.1989,257(2 Pt 1):E241-6.
    [79] Fire A,Xu s,Montgomery M K,et al.Potent and specific genetic interference by double-stranded RNA inCaenorhabditis elegans[J].Nature,1998,391(6669):806-811.
    [80] Gil J,Esteban M.Introduction of apoptosis bythe dsRNAi-depended protein kinnase (PKR):Mechanism of action [J].Apoptosis,2000,5:107-114.
    [81] Gunter M,Thomas T.Mechanisms of Gene silencing by double-syranded RNA[J]. Nature,2004,431:343-349.
    [82] Ramamswamy G,SIack FJ.siRNA:A guide for RNAsilencing.Chem Biol,2002,9(10): 1053-1055.
    [83] Nykanen A,Haley B,Zamore PD.ATP requirenments and small interfering RNA structure in the RNA ingterference pathway.Cell,2001,107(3):309-321.
    [84] Zamore PD,Tuschl T,Sharp PA,Bartel DP,et.al.RNAi:double-stranded intervals. Cell,2000,101(1):25-33.
    [85] Ronald H.A.Plasterk,RNA silencing: the genomes immune system,Science,2002,296(17),1263-1265.
    [86]陈长宝.siRNAs介导的基因沉默技术和相关应用的研究进展[N].上海第二医科大学学报,2005年11月25日.
    [87] Novina CD,Murray MF,Dykxhooa DM,et al. SiRNA-directed inhibition of HIV-1 infection.Nat Med,2002,8(15):681-686.Lieberman J,Song.
    [88] Scherr M,Battmer K,et al.Specific inhibition of ben-abl gene expression by small interfering RNA.Blood,2003,101(4):1556-1559.
    [89] E,Lee SK,et al. Interfering with disease: opportunities and roadbLocks to harnessing RNA interfere. Trends Mol Med,2003,9(9):397-403.
    [90]吴元明,陈苏民.RNA干涉的最新研究进展「J」.中国生物化学与分子生物学报,2003,19(4):411-417.
    [91] Tuschl T.Expanding small RNA interference.NatureBiotechnology,2002,20:446-448
    [92] Reynolds A,Leake D,Boese Q,et al.Rational siRNA design for RNA interference[J].Nat Biotechnol.2004;22(3):326-30.
    [93] Paddison PJ,Candy AA,Bemstein E,et a1.Short hairpin RNAs(shRNAs)ind sequence-specific silencing in mammalian cells[J].Genes 2002;948-958.
    [94] Bmmmclkamp TR,Bemards R,Agami R.A system for stable expression of s interfering RNAs in mammalian cells[J].Science 2002;296:550-553.
    [95] Yang D,Buchholz F,Huang Z,et a1.ShortRNA duplexes produced by hydrolysis with Escherichia coli RNasem mediaeefective RNA interference in mammalian cells[J].Proc Nail Acad Sci U S A.2002;99:9942 9947.
    [96] Hasegawa J,Osatomi K,Wu RF,Uyeda K.A novel factor binding to the glucose response elements of liver pyruvate kinase and fatty acid synthase genes [J].J Biol Chem 1999,274:1100-1107.
    [97] Yamada K,Tanaka T,Noguchi T.Characterization and purification of carbohydrate response element-binding protein of the rat L-type pyruvate Kinase gene promoter [J].Biochem Biophys Res Commun,1999,257:44-9.
    [98] Uyeda K,Yamashita H,Kawaguchi T.Carbohydrate responsive element-binding protein(ChREBP):a keyregulatao of glucose metabolism and fat storage[J].Biochemical Pharmacology,2002,63:2075-2080.
    [99] Xu J et al. Regulation of Rat Hepatic L-Pyruvate Kinase Promoter Composition and Activity by Glucose, n-3 Polyunsaturated Fatty Acids, and Peroxisome Proliferator-activated Receptor- Agonist J Biol Chem, 2006, 281(27): 18351-18362
    [100] Kawaguchi T, Takenoshita M, Kabashima T, Uyeda K. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/ dephosphorylation of the carbohydrate response element binding protein. PNAS, 2001;98:13710-5.
    [101] Iizuka K, Bruick R K, Liang G,et al. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis a well as glycolysis [J]. Proc Natl Acad Sci U S A, 2004,101(19):7281-7286.
    [102] Ishii S, IIzuka K, Miller B C,et al. Carbohydrate response elemen binding protein directly promotes lipogenic enzyme gene transcriptio[J]. Proc Natl Acad Sci US A,2004,101(44):15597-15602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700