基于LVDT 和SGS 的微定位控制系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米定位技术影响着纳米技术(nanotechnology)、纳米科学(nanoscience)、纳米制备(nanofabrication)、纳米制造(nanomanufacturing)及纳米计量(nanometrology)等科学/技术的发展,纳米定位技术是发展纳米计量仪器的基础,同时也是研制纳米制造装备不可缺少的核心关键技术。纳米定位的运动位移在纳米、微米、介观以及宏观(厘米级)范围内,其移动目标的定位精度、分辨率和重复定位定位精度在亚纳米级到几纳米内[1]。纳米定位技术包含驱动器,定位机构,纳米级位移传感器以及纳米自动化(nanoautomation)。在纳米定位技术中,纳米位移传感器是最关键的单元,纳米定位的分辨率,很大程度上取决于位移传感器的分辨率。目前适合集成于直接驱动的压电驱动器的位移传感器主要有三种:电容式、电感式(LVDT,线性可变差动变换器)和电阻应变式(SGS)。
     本文所做的主要工作为:
     (1)设计了三通道基于LVDT的微位移检测电路。并使用TRANS-TEK公司的Series 230系列LVDT传感器(量程为±130um),以及螺旋测微器完成了对该电路的验证,实验证明,该电路能非常精密的检测微小位移的变化,理论分辨率为无穷小(分辨率由后续的模数转换芯片决定),实测的线性度为0.01%(测量工具为螺旋测微器和五位半台式数字万用表)。
     (2)设计了三通道基于SGS的微位移检测电路。并用精密电阻和可变电阻组成的桥式电路对其进行了验证,实验证明,该电路能非常精密的检测微小位移的变化,基于电阻应变式的传感器从理论上讲,分辨率能达到30nm,线性度能达到0.1%。
     (3)设计了一款基于计算机并口的简易ARM仿真器。实验证明,通过使用一些公开的仿真软件(本系统仿真调试采用的是H-JTAG),该仿真器能很好的完成将程序从上位机下载到目标板的任务。
     (4)设计了以S3C44B0X(ARM7TDMI内核)为核心的数据采集、处理、显示以及驱动,并扩展了USB接口、以太网接口、RS232接口的目标板,实验证明,该目标板能很好的完成对六路模拟信号(范围为0-10V)的采集、处理,并通过LCD显示六个通道的模拟电压值。
Nano-position has a great influence on nanotechnology, nanoscience, nanofabrication, nanomanufacturing, nanometrology and many other subjects. Nano-positioning technology is the basics of the development of nano-measurement instrument, it’s also the core and key technology for the development of nano-manufacturing equipment. The displacement of nano-positioning is in the nano, micro, meso, and macro(centimeter) range, and the positioning accuracy, resolution, and repeatability of the moving target are in the sub-nanometer or nanometer positioning accuracy. Nano-positioning technology includes driver, positioning mechanism, nano-sensors and nano-automation, among these, the nano-displacement sensor plays the most critical role, as the resolution of nano-positioning largely depends on it. Now, there are mainly three types of displacement sensors used for the direct driving for the integrated piezoelectric actuator, they are capacitive, inductive(LVDT, linear variable differential transformer) and the resistance strain.
     The work I have done are:
     (1) Designed three channel micro-displacement detection circuit based on LVDT. The TRANS-TEK’s Series 230 LVDT sensors(has a displacement range of±130μm ) and the screw micrometer are used for the verification of the circuit. Experiments show that the circuit can be very precise for the detection of micro-displacement. In theory, the resolution of the sensor is Infinitesimal(determined by the subsequent AD conversion circuit), and the measured linearity is 0.01%.
     (2) Designed three channel micro-displacement detection circuit based on SGS. Bridge circuit is used for the verification of the circuit, Experiments show that the circuit can be very precise for the detection of micro-displacement. In theory, the resolution of the sensor is 30nm, and the linearity is 0.1%.
     (3) Designed a simple ARM emulator, experiments showed that the simulator plays a good job for the download of the program from the PC to the target board.
     (4) Designed a data collection, processing, display and drive target board which also integrated USB, Ethernet, and RS232 interface. Experiments show that the target board plays well for the collection, processing, and display of the six channels analog voltage which are in the range of 0-10V.
引文
[1]王国彪.纳米制造前沿综述.北京.科学出版社.
    [2]Lu L H, Liang Y C, Tachikawa H, et al. Nanometer Positioning System Based On Ball Screw[J]. Key Engineering Materials, 2006.
    [3]王建林,胡小唐.纳米定位技术研究现状.机械设计与研究[J], 2000, (1): 43-45.
    [4]崔玉国,孙宝元,董维杰等.基于纳米定位的压电陶瓷执行器控制方法的研究进展[J].中国机械工程,2003, 14(2): 164:168.
    [5]卢礼华,白清顺,梁迎春.纳米定位技术的发展现状[J].工具技术,2007,41(11):10-12.
    [6]魏强,纳米定位微位移工作台的控制技术研究[D].山东大学博士学位论文.2006.
    [7]裘晓辉.白春礼.中国纳米科技研究的进展[J].前沿科学.January2007,1:6-10.
    [8]王中林.从纳米技术到纳米制造.纳米科技, 2006, (1) :1—10.
    [9]王建林.压电陶瓷用于纳米定位系统的研究[J].航空精密制造技术.1997.
    [10]袁纵横,周晓军,刘永智,周元庆.采用频谱分析技术的高分辨率微位移测量方法[J].仪器仪表学报.2000.
    [11] Frank Bucholtz et al..Optimization of the Fiber/Metallic Glass Bond in Fiber-optic Magnetic Sensors.J.Lightwave Tech.1985,3(4):814~817.
    [12]曲东升,荣伟彬,孙立宁,徐晶,蔡鹤皋.压电陶瓷微位移器件控制模型的研究[J].光学精密工程.2002,10(6):602-607.
    [13]Toshihisa Yamaguchi,Katsumi Hamano.Interferometr-ic Method of Measuring Complex Piezoelectric Constants of Crystals in a Frequency Range Up to about 50kHz.Japanese Journal of Applied Physics,1979,18(5):927~932.
    [14]郭广平等.用于位移精密测量的光外差马赫—曾德尔干涉仪.光学技术,1997,6:17~22.
    [15]朱日宏等.压电晶体位移特性曲线干涉自动测量方法.光学学报,1998,27(2):180~183.
    [16]周恕义等.采用图像处理技术的高精度干涉计量系统.仪器仪表学报,1993,14(1):81~84.
    [17]Feong Du Kim,Soo Ryong Nam. A piezo-electrically driven micro-positioning system for the ductile-mode grinding of brittle materials[J]. Materials Processing Technology, 1996,61:309-319.
    [18]Kano, Yoshio, Masaki Yamaguchi et al. Two-dimensional do surface motor using window-shaped coils[J], Electrical Engineering in Japan(English Translation of Denki Gakkai Ronbunshi), 1999, 128(1):70-77.
    [19]刘红忠,卢秉恒,丁玉成等.超高精度定位系统及线性补偿研究[J],西安交通大学学报,2003,37(3): 277-281.
    [20]刘红忠,丁玉成,卢秉恒等.纳米压印光刻中的多步定位研究[J],西安交通大学学报,2006,40(3): 261-269.
    [21]孙立宁,孙绍云,曲东升等.大行程高精度宏/微双重驱动机器人系统的研究[J],高技术通讯,2004,14(4): 50-52.
    [22]孙绍云,曲东升,孙立宁等.宏/微驱动定位系统滑模变结构控制的研究[J],机器人, 2004,26(1): 32-34.
    [23]R.Riesenberg, A.Wuttig, Novel Optical MEMS/Micromechanical Devices As Field Selectors for Imaging Spectrometry, Proceedings of SPIE-The International Society for Opticcal Engineering: MOEMS and Miniaturized SystemⅡ, 2001. V339-347.
    [24]K.K.Tan, Tong Heng Lee, Micro-positioning of linear-piezoelectric motors based on a learning nonlinear PID controller[J], IEEE/ASME Transactions on Mechatronics, 2001,6(4):428-436.
    [25]Shapiro B. Workshop on control of micro and nano-scale systems[J].IEEE Control Systems Magazine, April 2005:82-88.
    [26]Crandall B C. Nanotechnology: molecular speculation on global abundance [M].Cambridge, MA: MIT Press. 1996.
    [27]Junhong Mao, Hiroyuki Tachikawa, Akira Shimokohbe. Precision Positioning of a DC-motor driven aerostatic slide system.[J]. Precision Engineering, 2003:32-41.
    [28]Heui Jae Pahk, Dong Sung Lee, Jong Ho Park. Ultra precision positioning system for servo motor-piezo actuator using the dual servo loop and digital filter implementation[J]. International Journal of Machine Tools&Manufacture, 2001:51-63.
    [29]Zhou Yu, Bradley J. Fusing Force and Vkion Feedback for Micromanipulation.Proceedings of the 1998 IEEE. International Conference on Robotics & Automation. Leuven, Belgium, 1998. 1220-1225.
    [30]Santosh Devasia, Evangelos Eleftheriou,S.O.Reza Moheimani. A Survey of Control Issues in Nanopositioning[J]. IEEE Transactions on Control Systems Technology. September 2007,15(5):802-823.
    [31]H.-J.Shieh, C.-H. Hsu. An Integrator-Backstepping-Based Dynamic Surface Control Method for a Two-Axis Piezoelectric Micropositioning Stage[J].IEEE Transactions on Control Systems Technology. September 2007,15(5):916-926.
    [32]Saeid Bashash, Nader Jalili.Robust Multiple Frequency Trajectory Tracking Control of Piezoelectrically Driven Micro/Nanopositioning Systems[J]. IEEE Transactions on Control Systems Technology, September 2007,15(5):867-878.
    [33]Pahk Heui Jae,Lee Dong Sung,Park Jong Ho. Ultra Precision Positioning Systems for Servo Motor-Piezo actuator using the dual servo loop and digital filter implementation[J]. International Journal of Machine Tools & Manufacture, 2001, 41:51-63.
    [34]A.Sharon, N.Hogan, D.Hardt. High bandwidth force and inertia reduction using a macro/micro manipulator system[C],Proc IEEE International Conference on Robotics and Automation,1985:126~132.
    [35]JUNG Seung-Bae.Improvement of Scanning Accuracy of PZT piezoelectric actuators by feed-forwar dmodel-reference control[J].Precision Engineering 1994,14:49-55.
    [36]Proksch R,Spanner K. Trends in nanopositioning and nanomanipulation, actuator. The 9th International Conference on New Actuaor, 2004:103-105.
    [37]Gorman J J, Kim Y S, Dagalakis N G. Control of MEMS nanopositioners with nano-scale resolution. American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division,2006.
    [38]Mueller K D, H.marth, Pertsch P, et al. Piezo-based, long-travel actuator for special environmental conditions. Proceedings of the 10th International Conference on New Actuator,Bremen,Germany,2006.
    [39]Tan K K,Lee T H, Zhou H X. Micro-positioning of linear-piezoelectric motors based on a learning non-linear PID controller. IEEE/ASME Transactions on Mechatronics, 2001, 6(4):428-436.
    [40]Hubbard N B, Culpepper M L, Howell L L. Actuators for micropositioners and nanopositioners. Applied Mechanics Reviews, 2006, 59(1-6):324-334.
    [41]Kramar J A. Nanometer resolution metrology with the molecular measuring machine. Measurement Science and Technology,2005,16(11):2121-2128.
    [42]白春礼.扫描隧道显微技术及其应用[M].上海:上海科学技术出版社,1992.
    [43]彭昌盛,宋少先,谷庆宝.扫描探针显微术理论与应用[M].北京:化学工业出版社,2007.
    [44]张早春,马以成,高理升,方晔.基于厚膜电容传感器的微位移信号处理电路设计[J].仪表技术与传感器.2009.
    [45]黄爱芹,孙宝元.电涡流位移计在压电复合圆盘微位移测量中的应用[J].仪器仪表与检测技术.2008.
    [46]摘自哈尔滨工业大学博实精密测控有限公司MPT系列纳米级精密定位工作台用户手册.
    [47]王立松,苏宝库等.大行程高精度两级定位工作台的控制方法研究[J].机械设计与制造.2001,4:71-72.
    [48]徐峰,文贵林.纳米定位技术的进展.机电工程,2001,3:1-3.
    [49]米凤文,戴旭涵等.精密工作台定位控制系统的设计与研究[J].光学仪器,1998,20(5):18-22.
    [50]林德教,吴健,殷纯永.具有纳米级分辨率的超精密定位工作台[J].光学技术,2001(27)6: 556-559.
    [51]王波,董申,赵万生.利用滚珠丝杠的微动特性实现纳米级定位[J].航空精密制造技术,1998,34(6):8-10.
    [52]熊木地.大行程亚微米精度激光直写设备定位技术的研究.博士学位研究生学位论文.2000.
    [53]吴一辉.纳米分辨率压电式X-Y微定位系统的研究.中国科学院长春光学精密机械与物理研究所博士论文,1996.
    [54]吴鹰飞,周兆英.超精密定位工作台.微细加工技术,2002, 2:41-47.
    [55]刘迎春.传感器原理设计与应用.国防科技大学出版社,1989:131-141.
    [56]Data Sheet. LVDT Signal Conditioner AD598 Analog Devices Inc.
    [57]朱镇华.智能式差动变压器控制装置.仪表技术与传感器,1992(6):31-33.
    [58]Ford R M, Weissbach R S, Loker D R, A novel DSP-based LVDT Signal Conditioner[J]. Instrumentation and Measurement, 2001, 50(3):768-773.
    [59]吴石增,黄鸿,传感器与测控技术,北京:中国电力出版社,2003:81-99.
    [60]严钟豪,谭祖根.非电量电测技术[M].北京:机械工业出版社,2003.
    [61]郭敏,李月贞.基于LVDT的微小位置测量系统设计[J].测试.测量.自动化. 2010, (7): 1-3.
    [62]李勇,张俊安.一种LVDT信号调理电路的研究[J]. 2007,37(3): 320-325.
    [63]杨爱民,宋仲康.基于LVDT传感器的圆柱体直径测量仪的设计[J].仪表技术,2005,(5):52-54.
    [64]郭怀天.基于电阻应变式称重传感器的电子天平的研制[D].吉林大学硕士论文, 2007,(2):1-73.
    [65]夏祁寒.应变片测试原理及在工程中的应用[J].山西建筑,2008(28):99-100.
    [66]肖麟芬.自动调零放大器在应变测试仪中的应用[J].电子技术应用,2006(6):125-127.
    [67]陈嵩,沙斐,周克生.基于嵌入式以太网技术的便携式数据采集系统.电子测量与仪器学报,2007, 21(6):62-66.
    [68]李岩,荣盘祥.基于S3C44B0X嵌入式uCLinux系统原理及应用[D].清华大学出版社. 2005:197-232.
    [69]杜春雷. ARM体系结构与编程[D].清华大学出版社. 2003:1-505.
    [70]AndrewN.Sloss, DominicSymes, ChrisWright. ARM嵌入式系统开发-软件设计与优化[D].北京航空航天大学出版社. 2005:1-644
    [71]张代远.计算机组成原理教程[D].清华大学出版社. 2009:1-461.
    [72]唐允宝,李银铃. LPC1768与AD7656带时标采样系统设计[J].单片机与嵌入式系统应用,2010,(8):23-26.
    [73]靳红涛,赵勇进,张晓曦,刘释骏.高精度模数转换芯片AD7656与DSP的接口设计[J].电子元器件应用,2009,(12).
    [74]杨侃,孙尧,詹艳艳.基于S3C44B0嵌入式系统的SCCB设计与实现[J].现代电子技术,2008,(22).
    [75]张新菊,刘羽,张文革,郭豫容.基于S3C44B0的以太网驱动程序设计与实现.陕西理工学院学报.2006,22(4).
    [76]田泽.嵌入式系统开发与应用.北京.北京航天航空大学出版社.2005
    [77]田泽.嵌入式系统开发与应用实验教程.北京.北京航空航天大学出版社.2005
    [78]深圳英蓓特信息技术有限公司.Embest ARM实验教学系统用户手册. Version 2.01.2003.
    [79]SAMSUNG公司S3C44B0X_datesheet.pdf.
    [80]万永波,张根宝,田泽,杨峰.基于ARM的嵌入式系统Bootloader启动流程分析.陕西.陕西科技大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700