离子交换光波导及光功分器仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着PLC工艺的成熟和成本的降低,集成光器件日益取代原有的分立器件,无论从技术还是从市场角度来看,都是大势所趋。在众多PLC技术中,离子交换工艺因折射率及模场分布与光纤匹配良好、传输损耗小、光损伤小、制作工艺简单、成本低等优点,而成为研究的热点。特别是用于制备光功分器,因FTTH的广泛应用而受到关注。本论文的研究重点即为离子交换技术及光功分器。
     本论文以离子交换光波导的特性及MMI型光功分器设计为研究对象,研究内容主要包括渐变型光波导折射率分布的求解、离子交换扩散理论模型及工艺、混和盐离子交换、基于离子交换光波导的多模干涉型光功分器的设计及优化。具体内容如下:
     针对反WKB在模式数小于3时无法求解折射率分布的应用限制,总结了偏振态法、测试波长法和外部折射率法等三种改进方法,并从常见函数折射率分布及实际应用等方面进行了数学验证。结果表明不仅可应用于模式数小于3的渐变折射率光波导折射率分布求解问题,对模式数大于3的情况可进一步提高拟合精度。
     扼要介绍了离子交换的基本原理及扩散理论。提出了一种采用基于粒子群优化的离子交换神经网络模型来构造工艺参数与光波导特征参数之间关系的新方法,有效解决了常规扩散理论中因扩散系数难于精确确定而使得分析结果强烈受其影响的弊端。该模型具有计算简单、便捷,可靠性高,精度高,速度快等特点。
     针对常用交换离子源Ag+和K+具有的优缺点,提出采用AgNO3和KNO3的混和盐作为交换离子源,这样可既具有Ag+ (大的折射率变化)和K+(小的传输损耗)的优势,又可克服它们的缺点(高传输损耗和低交换速度),还可降低熔盐的熔点。
     摸索总结了离子交换光波导的制备工艺流程,对实验样品分别进行了成分及折射率分布测试,重点分析了样品的均匀性、双折射性、纯K+及AgNO3:KNO3混和盐离子交换特性、交换时间、折射率分布形态以及不同基底玻璃性能对比等多个方面的特点,给出了工艺参数选择的推荐条件。
     扼要介绍了多模干涉的基本原理,分别用导模传输法和光束传播法进行了分析。针对波导设计中的多目标参数优化,提出了基于遗传算法的优化设计方法,并将优化结果与传统结果对比,结果表明该方法可以在器件设计时有效提供最优解。
     总结了多模干涉型光功分器的基本设计流程。分别设计优化了工作在0.85μm的1×8MMI和工作在1.55μm的1×16MMI光功分器。在此基础上,提出了级联多模干涉结构的大分路数光功分器结构,可以有效优化器件性能,降低设计难度,缩小器件尺寸。
With the developing of PLC and cutting down of cost, it is possible that integratedoptical devices based on PLC replace traditional discrete ones. Ion exchange has becomethe research focus for its main advantages of similar refractive index profile with fiber, littletransmission loss, simple manufacturing technology and low cost over other PLC technolo-gies, especially for applied in optical power splitter in FTTH.
     This dissertation mainly researches on performance of ion-exchanged optical waveg-uide and design of MMI optical power splitter, which mostly includes solution of indexprofile of grade-index optical waveguide, diffusion theory and technique of ion-exchangedoptical waveguide, mixed salt ion exchange, design of MMI splitter based on ion-exchangedwaveguide. It has been carried out as the followings:
     Three improved methods of TE/TM, measuring wavelength and external refractive in-dex are addressed and discussed, both of which can satisfy the limitation that IWKB methodis useless when mode number is less than 3. Computing results are implemented from usualfunction refractive index and experiment data. It also showed that these methods couldimprove fitting accuracy when mode number is more than 3.
     Basic principle of ion exchange and diffusion theory are introduced. Ion exchangeNeural Network based on Particle Swarm Optimization algorithm was proposed to predictcharacters of ion-exchanged waveguide at any arbitrary experiment condition more easilyand quickly, because it overcame the limitation of the conventional theories in which theconclusion had error caused by uncertain diffusion coefficient. This model has the advan-tages of reliability, accuracy, and time saving, which are identified by simulation.Ion exchange of Ag + /K + mixed salts is considered for absorbing the advantages ofAg + (big index change) and K + (small transport loss), avoiding the disadvantages of Ag +(big loss) and K + (slow exchange speed), and dropping exchange temperature.
     The results of experiments, which are focused on uniformity, birefringence, characterof K+ and K+-Ag+ mixed salt ion exchange, ion exchange time, index profile and differentsubtract glass are discussed and analyzed by the measures of ingredient and refractive indexchange.
     Principle of multimode is introduced summarily and analyzed by mode transportmethod and beam propagating method. Optimizing design based on GA is brought forward,design result of which shows ability of affording efficient optimized solution.
     Basic components of waveguide splitter and design ?ow are analyzed in detail.Parameters optimization and technics errors of 1×8 optical splitter at 0.85μm and 1×16 optical splitter at 1.55μm are researched. Cascaded structure of multimode interference isput forward, which shows several advantages to parameters of optical splitter, such as insertloss, uniformity, size, et al.
引文
[1]龚倩,徐荣,张民,等.光网络的组网与优化设计,第1版.中国,武汉:北京邮电大学出版社,2002.
    [2] Davey R, Kani J, Bourgart F, et al. Options for Future Optical Access Networks. IEEE Commu-nications Magazine, 2006, 44(10):50–56.
    [3] Feldman R. An evaluation of architectures incorporating WDM for broad-band fiber access. J.Lightwave Technol., 1998, 16(9):1546–1559.
    [4] Lin Y. Passive optical subscriber loops with multiaccess. J. Lightwave Technol., 1989,7(???):1769.
    [5] Kikushima K, Yoshinaga H, Aoyagi S. Recent FTTH Systems and Services of NTT in Japan.Transparent Optical Networks International Conference, 2006, 14 17.
    [6] Shinohara H. Broadband access in Japan: rapidly growing FTTH market. IEEE CommunicationsMagazine, 2005, 9:72 78.
    [7] Gu G, Ramon S, D.sterling W. Opticl multiplexer with improved manufacturability. United States:US 2005/0196107 A1, 2005, 149-153.
    [8] Park S, Kim S S, Wang L, et al. InGaAsP-InP nanoscale waveguide-coupled microring laserswith submilliampere threshold current using Cl2-N2-based high-density plasma etching. Journalof Quantum Electronics, 2005, 41(3):351– 356.
    [9] Shuto K, Hattori K, Kitagawa T, et al. Erbium-doped phosphosilicate glass waveguide amplifierfabricated by PECVD. Electronics Letters, 1993, 29(2):139–141.
    [10]周立兵,罗风光,曹明翠. SiO2平面光波导工艺中的反应离子刻蚀研究.真空科学与技术学报, 2004, 24(6):434 438.
    [11] Howley B, Chen Y, Wang X, et al. 2-bit reconfigurable true time delay lines using 2/spl times/2polymer waveguide switches. Photonics Technology Letters, 2005, 17(9):1944– 1946.
    [12] Lousteau J, Furniss D, Seddon A, et al. The single-mode condition for silicon-on-insulator opticalrib waveguides with large cross section. Journal of Lightwave Technology, 2004, 22(8):1923–1929.
    [13] Chung H, Chang W S C, Betts. G. Microwave properties of travelling-wave electrode in LiNbO3electrooptic modulators. IEEE J. Lightwave Tech., 1993, 11(6):1274 1278.
    [14] Lawachi. M. Silica waveguides on silicon and their application to integrated optic components.Opt. Quantum Electr., 1990, 22(6):391 416.
    [15] BullaU D A P, Morimoto. N I. Deposition of thick TEOS PECVD silicon oxide layers for inte-grated optical waveguide applications. Thin Solid Films, 1998, 33(4):60 64.
    [16] Benatsou M, Capoen B, Bouazaoui. M. Preparation and characterization of Sol-Gel derived Er3+Al2O3-SiO2 planar waveguides. Appl. Phys. Lett., 1997, 71(4):428 430.
    [17] Izawa T, Nakagome H. Optical waveguide formed by electrically induced migration of ions inglass plates. Appl. Phys. Lett., 1972, 21:584–586.
    [18] Lupascu A. Modeling ion exchange in glass with concentration-dependent diffusion coefficientsand mobilities. Optical Engineering, 1996, 35(6):1603–1610.
    [19] Chuang R W, Lee C C. Low-Loss Deep Glass Waveguides Produced With Dry Silver Electromi-gration Process. IEEE Journal of Lightwave Technology, 2002, 20(8):1590–1597.
    [20] Palchetti L, Giorgetti E, Grando D, et al. Efficient Coupling Between Annealed K+-Na+ Ion-Exchanged Channel Waveguides and 10/125 Single-Mode Fibers atλ=1.321μm. IEEE Journalof Quantum Electronics, 1998, 34(1):179–189.
    [21] H.Hanafusa, F.Hanawa, Y.Hibino, et al. Reliability estimation for PLC-type optical splitters. Elec-tronics Letters, 1997, 33(3):263–265.
    [22] M M, R R, C N. Multiplexing characteristics of K+-Ag+ ion-exchanged directional couplers.Basel, Switzerland: Technical Digest of EFOC/LAN Conf., 1987, 111-114.
    [23] N G, L Y G. Y-Branch wavelength multi/demultiplexer forλ=1.30 and 1.55μm. ElectronicsLetters, 1990, 20(6):102–103.
    [24] L Y G, J F. Directional-coupler power divider by two-step K+ ion exchange. Optics Letters, 1984,20(9):423–425.
    [25] A B R, F L. Broadband polarization splitting couplers in ion-exchange glass. Electronics Letters,1990, 26(7):450–452.
    [26] Conzone S, Hayden J, Funk D, et al. Hybrid glass substrates for waveguide device manufacturing.Optics Letters, 2001, 26(7):509–511.
    [27] Jiang S, Luo T, Hwang B, et al. Er3+-doped phosphate glasses for fiber amplifiers with high gainper unit length. Journal of Non-Crystalline Solids, 2000, 263(1-4):364–368.
    [28] Veasey D, Funk D, Peters P, et al. Yb3+/Er3+-codoped and Yb3+-doped waveguide lasers inphosphate glass. Journal of Non-Crystalline Solids, 2000, 263-264:369–381.
    [29] Righini G, Pelli S, Brenci M, et al. Active optical waveguides based on Er3+ and Er3+/Yb3+-dopedsilicate glasses. Journal of Non-Crystalline Solids, 2001, 284:223–229.
    [30] Liu K, Pun E Y B. K+-Na+ Ion-Exchanged Waveguides in Er3+-Yb3+ Codoped PhosphateGlasses Using Field-Assisted Annealing. Applied Optics, 2004, 43(15):3179–3184.
    [31] Sorbello G, Taccheo S, Marano M, et al. Comparative study of Ag+-Na+ thermal and field-assistedion exchange on Er-doped phosphate glass. Opt. Materials, 2001, 17(15):425–435.
    [32] Taccheo S, Sorbello G, Laporta P, et al. Over 23-dBm single-frequency tunable Er:Yb: glass laser.IEEE Photonics Technology Letters, 2001, 13(15):19–21.
    [33] Sorbello G, Taccheo S, Laporta P, et al. Singlemode Er-Yb waveguide laser at 1.5μm. ElectronicsLetters, 2001, 37(15):1014–1015.
    [34] Jose G, Taccheo S, Sorbello G, et al. Multiwavelength waveguide laser array in the C-band.Electronics Letters, 2002, 38(15):1275–1276.
    [35] Taccheo S, Jose G, Sorbello G, et al. Efficient high-concentration Er:Yb doped glass waveguideamplifiers. Copenhagen: ECOC 2002, Month, 2002, 37.
    [36] Hwang B, Jiang S, Luo T, et al. Cooperative upconversion and energy transfer of new high Er3+-and Yb3+-Er3+-doped phosphate glasses. J. Opt. Soc. Am. B, 2000, 17(2):833–839.
    [37] S.I.Najafi. Introduction to Glass Integrated Optics, 1 ed.
    [38] C.Ciminelli, A.D’Orazio, Sario M, et al. Effects of thermal annealing on the optical characteristicsof K+-Na+ waveguides. Appl. Opt., 1998, 37(14):2346–2356.
    [39] Zou J, Zhao F, T.Chen R. Two-step K+-Na+ and Ag+-Na+ ion-exchanged glass waveguides forC-band applications. Appl. Opt., 2002, 41(36):7620–7626.
    [40] O.Bryngdahl. Image formation using self-imaging techniques. J.Opt.Soc.Amer., 1973, 63(4):416–419.
    [41] Ulrich R, Ankele G. Self-imaging in homogeneous planar optical waveguides. Appl. Phys. Lett.,1975, 27(5):337–339.
    [42] Ulrich R, T.Kamiya. Resolution of self-images in planar optical waveguides. J.Opt.Soc.Am.,1978, 68(5):583–592.
    [43] Levy D, Park K H, Scarmozzino R, et al. Fabrication of ultracompact 3-dB 2×2 MMI powersplitters. IEEE Photonics Technology Letters., 1999, 11(8):1009–1011.
    [44] Okamoto K, Yamada H, Goh T. Fabrication of coherent optical transversal filter consisting ofMMI splitter/combiner and thermo-optic amplitude and phase controllers. Electronics Letters,1999, 35(16):1331–1332.
    [45] Fardad M, Fallahi.M. Sol-gel multimode interference power splitters. IEEE Photonics TechnologyLetters, 1999, 11(6):697–699.
    [46] Lagali.N.S., Paiam.M.R., MacDonald.R.I. Theory of variable-ratio power splitters using multi-mode interference couplers. IEEE Photonics Technology Letters, 1999, 11(6):665–667.
    [47] Qian.Y.H., Owen.M., Bryce.A.C., et al. Process development on the monolithic fabrication ofan ultra-compact 4×4 optical switch matrix on InP-InGaAsP materials. IPRM.: 1999 EleventhInternational Conference, Month, 1999, 90-94.
    [48] Lai.Q., Hunziker.W., Melchior.H. Low-power compact 2×2 thermooptic silica-on-silicon waveg-uide switch with fast response. IEEE Photonics Technology Letters, 1998, 10(5):681–683.
    [49] Lin.K.C., Lee.W.Y. Guided-wave 1.3/1.55μm wavelength division multiplexer based on multi-mode interference. Electronics Letters, 1996, 32(14):1259–1261.
    [50] Paiam M, Janz.C.F., MacDonald.R.I., et al. Compact planar 980/1550nm wavelengthmulti/demultiplexer based on multimode interference. IEEE Photonics Technology Letters, 1995,7(10):1180–1182.
    [51] Paiam.M.R., MacDonald.R.I. Polarisation-insensitive 980/1550 nm wavelength (de)multiplexerusing MMI couplers. Electronics Letters, 1997, 33(14):1219–1220.
    [52] Janz.C.F., Paiam.M.R., Keyworth.B.P., et al. Bent waveguide couplers for (de)multiplexing of ar-bitrary broadly-separated wavelengths using two mode interference. IEEE Photonics TechnologyLetters, 1995, 7(9):1037–1039.
    [53] Ngo N, Yu S, Tjin S, et al. A new theoretical basis of higher-derivative optical differentiators.Optics Communications, 2004, 230:115–129.
    [54] Lierstuen.L.O., Sudbo.A. 8-channel wavelength division multiplexer based on multimode inter-ference couplers. IEEE Photonics Technology Letters, 1995, 7(9):1034–1036.
    [55] Yehia A, Khalil D. Cascaded multimode interference phased array structures for dense wavelengthdivision multiplexing applications. Opt. Eng., 2004, 43(5):1060–1065.
    [56] Roijen.R. V, Pennings.E.C.M., Stralen.M.J.N. V, et al. Compact InP-based ring lasers employingmultimode interference couplers and combiners. Appl. Phys. Lett., 1994, 64(14):1753–1755.
    [57] Rooms F. S I B J E H P. New concept for combining 3 telescopes with integrated optics: multi-mode interferences(MMI). Proceedings of SPIE, 2003, 1359-1369.
    [58] M.Bachmann H. General self-imaging properties in N×N multimode interference couplers in-cluding phase relations. Applied Optics, 1994, 33(18):3905–3910.
    [59] M.Bachmann H. Overlapping-image multimode interference couplers with a reduced number ofself-images for uniform and nonuniform power splitting. Applied Optics, 1995, 34(30):6898–6902.
    [60] P.A.Besse, Gini E, M.Bachmann, et al. New 2×2 and 1×3 multimode interference couplers withfree selection of power splitting ratio. Journal of Lightwave Technology, 1996, 14(10):2286–2292.
    [61] Harstead E, Bohn P, Kallenberg P. Optimal split ratio and channel capacity of point-to-multipointnetworks for FITL. Versailles,France: Pro. IEEE 4th Workshop in Optical Local Networks, 1992.
    [62] Wei H, Yu J, Liu Z, et al. Fabrication of 2×2 tapered multimode interference coupler. ElectronicsLetters, 2000, 36(9):1618–1619.
    [63]王耀祥,黄琨,章兴龙,等.熔盐对Li+/Na+离子交换及折射率分布的影响.光子学报, 2003,32(9):1070–1073.
    [64]王鹏飞,郑杰, Righini G C.高斯折射率分布Cu+-Na+离子交换玻璃波导的制备.中国激光,2004, 31(1):37–40.
    [65]黄腾超,沈亦兵,侯西云,等.离子交换玻璃波导的模型分析.中国激光, 2003, 30(2):141–144.
    [66]慕桓,陆加佳,闻震利,等.掺铒玻璃Ag+-Na+离子交换光波导的分析.上海交通大学学报,2003, 38(20):248–251.
    [67]田贺斌,杨天新,王永强,等.电场辅助K+-Na+交换玻璃光波导的制作与优化.天津理工学院学报, 2002, 18(4):6–8.
    [68] Zhou Z, Liu D. 1×4 buried optical power splitter fabricated by Tl+-Na+ ion-exchange. ChineseOptics Letters, 2003, 1(11):651–652.
    [69]李玉权,崔敏.光波导理论与技术,第1版.中国,北京:人民邮电出版社, 2002.
    [70]吴重庆.光波导理论,第1版.中国,北京:清华大学出版社, 2000.
    [71] Gedeon A. Comparison Between Rigorous Theory and WKB-Analysis of Modes in Graded-indexWaveguides. Opt. Communic., 1974, 12(3):329–332.
    [72] Najafi, Srivastava S I R, Ramaswamy R V. Wavelength-Dependent Propagation Characteristics ofAg+-Na+ Exchanged Planar Glass Waveguides. Appl. Opt., 1986, 25(110):1840–1843.
    [73] Write J M, Heidrich P F. Optical Waveguide Refractive Index Profiles from Measurement of ModeIndices: A Simple Analysis. Appl. Opt., 1976, 15(1):151–155.
    [74] Chiang K S. Construction of Refractive-Index Profiles of Planar Dielectric Waveguides from theDistribution of Effective indexes. J. Lightwave Technol., 1985, LT-3(2):151–155.
    [75] Hertel P, Menzler. H P. Improved Inverse WKB Procedure to Reconstruct Refractive Index Profilesof Dielectric Planar Waveguides. Appl. Phys., 1997, B44(1):75–80.
    [76]秦秉坤,孙雨南.介质光波导及其应用,第1版.中国,北京:北京理工大学出版社, 1991.
    [77]马库塞主编,杜柏林,于耀明译.光纤测量原理,第1版.中国,北京:人民邮电出版社, 1986.
    [78] A. G L. Interferometric profile the refractive-index optical blanks. Appl. Opt., 1996, 35(16):2997–3001.
    [79] Chiang K S, Wong C L, Chan H P, et al. Refractive-Index Profiling of Graded-Index PlanarWaveguides from Effective Indexes Measured for Both Mode Types and at Different Wavelengths.J. Lightwave Technol., 1996, 14(5):827–832.
    [80] Chiang K S, Wong C L, Cheng S Y, et al. Refractive-Index Profiling of Graded-Index PlanarWaveguides from Effective Indexes Measured with Different External Refractive Indexes. J. Light-wave Technol., 2000, 18(10):1412–1417.
    [81] G. H. Chartier A D d O O P. Optical waveguides fabricated by electric-field controlled ion exchangein glass. Electron. Lett., 1978, 14:132–141.
    [82]干福熹主编.玻璃科学技术前沿1984年北京国际玻璃学术讨论会论文集.北京:中国建筑工业出版社, 1986, 285-294.
    [83]潘金生,仝健民,田民波.材料科学基础,第1版.中国,北京:清华大学出版社, 1998.
    [84] Grote N, Venghaus H. Fibre Optic Communication Devices, 1 ed.
    [85]唐天同,王兆宏,陈时.集成光电子学,第1版.中国,西安:西安交通大学出版社, 2005.
    [86] J.Alert, J.W.Y.Lit. Full modeling of field-assisted ion exchange for graded index buried channeloptical waveguides. Appl.Opt., 29(18).
    [87] Ramaswamy R, Najafi S. Planar, buried, ion-exchanged glass waveguides: Diffusion characteris-tics. IEEE J. Quant.Electron., 1986, 22:883–891.
    [88] Lilienhof H J, Voges E, Ritter D, et al. Planar, buried, ion-exchanged glass waveguides: Diffusioncharacteristics. IEEE J. Quant.Electron., 1982, 18(11):1877–891.
    [89] Tervonen A. Introduction to Glass Integrated Optics. Norwood, MA: Artech House, 1992.
    [90] West B R, Madasamy P, Peyghambarian N, et al. Modeling of ion-exchanged glass waveguidestructures. Journal of Non-Crystalline Solids, 2004, 347(1-3):18–26.
    [91] R.H.Doremus. Exchange and Diffusion of Ions in Glass. J. Phys. Chem., 1964, 68:2212.
    [92] Gerald C, Wheatley P. Applied Numerical Analysis, 5nd ed.
    [93] Peaceman D, Jr. H R. The numerical solution of parabolic and elliptic differential equations. J SocInd Appl Math, 1959, 3:28–41.
    [94] Ferziger J. Numerical Methods for Engineering Application, 5nd ed.
    [95] Saarikoski H, Salmio R P, J.Saarinen, et al. The numerical solution of parabolic and ellipticdifferential equations. Opt. Commun., 1997, 134:362.
    [96] K H, M S, H W. Multilayer feed-forward networks are universal approximators. Neural Networks,1989, 2(5):359–366.
    [97] E R D, E H G, J W R. Learning representations by back propagating errors. Nature, 1986,323:533–536.
    [98] S S R, E D R. Reliable classification using neural networks: a genetic algorithm and backpropa-gation comparison. Decision Support Systems, 2000, 30:11–22.
    [99] M Y J, Y K C. A robust evolutionary algorithm for training neural networks. Neural Computingand Application, 2001, 10:214–230.
    [100] M F. Use of a genetic algorithm combined with a local search method for the automatic calibrationof conceptual rainfall-runoff models. Hydrological Science Journal, 1996, 41(1):21–39.
    [101] YH S, RC E. Empirical study of particle swarm optimization. Washington DC, USA: Proceedingsof Congress on Evolutionary Computation, 1999, 1945-1950.
    [102] He Z, Wei C, Yang L, et al. Extracting rules from fuzzy neural network by particle swarm op-timization. Anchorage, USA: Proceedings of IEEE International Conference on EvolutionaryComputation, 1998, 74-77.
    [103] A S, I A. Particle swarm optimization for task assignment problem. Microprocessors and Mi-crosystems, 2002, 26(8):363–371.
    [104] H Y, K K, Fukuyama Y. A Particle Swarm Optimization for Reactive Power and Voltage ControlConsidering Voltage Security Assessment. IEEE transaction on power system, 2000, 15(4):1232–1239.
    [105] R C A, E H B. Improving the fermentation medium for Echinocandin B production part II: Particleswarm optimization. Process Biochemistry, 2001, 36(7):661–669.
    [106] A C, G D. Adapting Particle Swarm Optimization to Dynamic Environments. Las Vegas,NV,USA:Proceedings of ICAI, 2000, 429-434.
    [107] J K, C E R. Particle swarm optimization. Perth, Australia: Proceedings of IEEE InternationalConference on Neutral Networks, 1995, 1942-1948.
    [108] H S Y, C E R. A modified particle swarm optimizer. Anchorage, Alaska: IEEE InternationalConference on Evolutionary Computation, 1998, 1326-1333.
    [109] H S Y, C E R. Parameter Selection in Particle Swarm Optimization. San Diego, USA: The 7thAnnual Conference on Evolutionary Programming, 1998, 1942-1948?
    [110]张立明.人工神经网络的模型及其应用,第1版.中国,上海:复旦大学出版社, 1993.
    [111] RC E, YH. S. Comparison between genetic algorithms and particle swarm Optimization. SanDiego: Annual Conference on Evolutionary Programming, 1998, 1942-1948?
    [112]半导体器件制造技术丛书编写组.半导体器件制造技术丛书12化学清洗.中国,北京:国防工业出版社, 1972.
    [113] Lii. Y. ULSI Technology. New York: McGraw-Hill, 1996, page 342.
    [114]刘德森,高应俊.变折射率介质的物理基础,第1版.中国,北京:国防工业出版社, 1991.
    [115] Hardaker S S, Moghzy. S. Quantitative Characterization of Optical Anisotropy in High RefractiveIndex Films. Journal of Polymer Science: Part B, 1993, 31:1951–1963.
    [116] Marcuse D. Theory of dielectric optical waveguides, 1nd ed. New York, NY: Academic Press,1974, chapter 3, pages 104–105.
    [117] Ulrich R. Light-propagation and imaging in planar optical waveguides. Nouc. Rev. Optique, 1975,6(5):253–262.
    [118] Soldano L, Pennings E. Optical multi-mode interference devices based on self-imaging:principlesand applications. J. Lightwave Technol., 1995, 13(4):615–627.
    [119] Kawano K, Kitoh T. Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equationsand the Schrodinger Equation, 1 ed.
    [120] Roey J B, Donk J B, Lagasse. P E. Beam propagation method: analysis and assessment. J. Opt.Soc. Am., 1988, 71(7):803–810.
    [121] Huang P, Xu C L, Chaudhuri. S K. A finite-difference vector beam propagation method for three-dimensional waveguide structures. IEEE Photon. Tech. Lett., 1992, 4(2):1527–1532.
    [122] Huang P, Xu C L, Chaudhuri. S K. Application of the finite-difference vector beam propagationmethod to directional coupler. IEEE J. Quantum Electron., 1992, 28(6):883–890.
    [123] Deng H, Jin G H, Harari J, et al. Investigation of 3D semivectorial finite-difference beam propa-gation method for bent waveguides. J. Lightwave Tech., 1998, 16(5):915–922.
    [124] Wijnands F, Hoekstra H J W M, Krijnen G J M, et al. Modal fields calculation using the finitedifference beam propagation method. J. Lightwave Tech., 1994, 12(12):2066–2072.
    [125] Yamauchi J, Matsubara K, Tsuda T, et al. Norm-conserving finite-difference beam-propagationmethod for TM wave analysis in step-index optical waveguides. J. Lightwave Tech., 2000,18(5):721–728.
    [126] Liu P L, Zhao Q, Choa F S. Slow wave finite difference beam propagation method. IEEE Photon.Tech. Lett., 1995, 7(8):890–892.
    [127] Huang W, Xu C, Chu S T, et al. The finite difference vector beam propagation method: analysisand assessment. J. Lightwave Tech., 1992, 10(3):295–305.
    [128] Fan P L, Wu M L, Lee C T. Analysis of abrupt bent waveguides by the beam propagation methodand the conformal mapping method. J. Lightwave Tech., 1997, 15(6):1026–1031.
    [129] Causa F, Sarma J. A versatile method for analyzing paraxial optical propagation in dielectricstructures. J. Lightwave Tech., 2000, 10(18):1445 1452.
    [130] Llic I, Scarmozzino R, Osgood R M. Investigation of the Pade approximant-based wide anglebeam propagation method for accurate modeling of waveguiding circuits. J. Lightwave Tech.,1996, 14(12):2813 2822.
    [131]李安英,杨亚培.光波导光束传输法数值分析新进展.激光技术, 2000, 24(4):236–240.
    [132] Hadley G R. Transparent boundary condition for the beam propagation method. IEEE J. QuantumElectron., 1992, 28(1):363 370.
    [133]玄光男,程润伟.遗传算法与工程设计,第1版.中国,北京:科学出版社, 2000.
    [134]陈国良,王煦法,庄镇泉.遗传算法及其应用,第1版.中国,北京:人民邮电出版社, 2001.
    [135]周明,孙树栋.遗传算法原理及应用,第1版.中国,北京:国防工业出版社, 2005.
    [136] West B R, Honkanen S. MMI devices with weak guiding designed in three dimensions using agenetic algorithm. Optics Express, 2004, 12(12):2716–2722.
    [137] Wang Q, Lu J, He S. Optimal design of a multimode interference coupler using a genetic algorithm.Optics Communications, 2002, 209:131–136.
    [138] Xiao Y, He S. An MMI-based demultiplexer with reduced cross-talk. Optics Communications,2005, 247:335–339.
    [139]雷英杰,张善文,李续武,等. Matlab遗传算法工具箱及应用,第1版.中国,西安:西安电子科技大学出版社, 2005.
    [140] Trinh T N, Mittra R. Field profile in a single-mode curved dielectric waveguide of rectangularcoss section. IEEE Trans. Microwave theory Tech., 1981, 29:1315–1318.
    [141] Marcuse D. Field deformation and loss cased by curvature of optical fibers. J. Opt. Soc. Am,1976, 66(4):311–321.
    [142] Ladouceur F, Labeye P. A new general approach to optical waveguide path design. J. LightwaveTech., 1995, 13(4):481–492.
    [143] Mustieles F J, Ballesteros E, Baquero P. Theoretical s-bend profile for optimization of opticalwaveguide radiation losses. IEEE Photon. Tech. Lett., 1993, 6(4):551–553.
    [144] Baets R, Lagasse. P E. Loss calculation and design of arbitrarily curved integrated-optic waveg-uides. J. Opt. Soc. Am., 1983, 73(2):177–182.
    [145] Kitoh T, Takato N, Yasu M, et al. Bending loss reduction in silica-based waveguides by using lateroffsets. J. Lightwave Tech., 1995, 13:555–562.
    [146] Neumann E G. Curved dielectric optical waveguides with reduced transition losses. Electron.Eng.,1982, 129(5):278–280.
    [147] A.W.Snyder, J.D.Love. Optical waveguide theory.
    [148]西原浩,春名正光,栖原敏明.集成光路,第1版.中国,北京:科学出版社, 2005.
    [149] Yuan J, Luo F G, Cao M C. Simulation on 0.85μm MMI optical power splitter by ion exchange.Bandaoti Guangdian/Semiconductor Optoelectronics, 2006, 27(2):133–135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700