特殊工况用工艺管道的失效分析及其解决对策
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综合应用了失效分析的基础理论、测试技术和表征分析方法,系统研究和解决了工业生产企业所发生的非金属材料和金属材料制特殊工况用工艺管道的失效案例。
     采用X射线衍射仪(XRD)、红外光谱仪(FT-IR)、X射线光电子能谱(XPS)等方法对两种颗粒改性PTFE软管的组成、结构等进行了表征分析;利用示差扫描量热法测试(DSC)、热重分析测试(TG)、差热分析仪(DTA)等热分析方法对两种颗粒改性PTFE软管的导热系数及其他热性能进行了测试分析;通过两个月的腐蚀介质浸泡试验,对软管的耐腐蚀性能进行了评价;并使用三维体视电镜对其表面形态进行了观察。
     结果表明国产和进口F4软管均是由基体聚四氟乙烯(PTFE)和填充料石墨粒子所组成的共混材料,进口软管表面质量相对好些。两种软管的热性能基本一致。它们能耐各种化学介质的腐蚀,性能均优异,两者的耐蚀性无明显差异。
     采用光电直读光谱分析和金相组织检验对高压循环气体冷却器三通夹套管的材质进行了检验分析;利用X射线荧光分析(XRF)、X射线衍射分析(XRD)和热重分析(TGA)等方法对夹套管内壁腐蚀物的化学成分和元素组成进行了表征分析,并通过扫描电镜(SEM)和能谱分析(EDS)对腐蚀物的微区形貌和成分进行了系统观察和深入分析。
     采用光电直读光谱(OES)、金相组织检验等方法对高压循环气体冷却器内管的化学成分和微观组织进行了表征分析和观察,并通过扫描电镜(SEM)和能谱分析(EDS)方法对内管断口表面形貌及其表面腐蚀物的主要元素组成进行了观察和分析。
     采用光电直读光谱(OES)和金相组织检验对高压循环气体冷却器内管的材质进行了检验分析,通过扫描电镜(SEM)和能谱分析(EDS)对其爆裂断口的微区形貌和成分进行了系统观察和分析。
     采用ICP-AES等离子发射光谱、离子色谱和红外光谱(FTIR)对循环冷却水的元素种类、阴离子含量和沉淀物的成分进行了表征分析。
     结果表明高压循环气体冷却器的夹套管、内管的材质均符合质量评定标准;含有一定比例氯离子的不合格循环冷却水是导致内管腐蚀速率加快、壁厚局部减薄迅速,以致强度不足而发生爆裂的主要起因;冷却器的夹套管和内管弯头在冷却水出口处附近的严重结垢,产生了垢下腐蚀和点腐蚀,并导致水流改变产生了局部冲刷效应,这是内管、夹套管腐蚀加剧、壁厚减薄变快的另一关键原因;冷却器冷却水出口处及其附近的弯头的腐蚀物堵塞,干湿交替介质工况不仅导致腐蚀物的快速脱落和局部腐蚀加剧,而且脱落的腐蚀物又使水流改变流向产生冲刷作用,这是夹套管出口处附近内管腐蚀减薄快速的又一重要原因;冷却器的结垢现象相当严重,数量多、分布广、垢物硬,这是与加入的阻垢剂功能失效和加入量不足密切相关。
     最后根据上述关于工业生产中所使用的非金属材料和金属材料制特殊工况用工艺管道的失效分析,得出国产颗粒改性PTFE软管的主要性能已达到国外同类产品的水平。针对高压循环冷却器的失效提出了相应的解决对策,从而有效预防了类似事故的再次发生,减少了经济损失,避免了可能的人员伤亡,使企业的生产更加安全、可靠和高效。
In this thesis,the fundamental theory,testing technique and evaluating analysis method were comprehensively utilized to systematically investigate and solve two failure cases concerned with two types of pipes that applied in special industrial operating conditions and which made respectively from nonmetal and metal materials, which occurred in corporation of industrial production.
     The composition and structure of two kinds of particle modified polytetrafluoroethylene(PTFE) flexible tubes were studied by XRD,FT-IR and XPS. The thermal conductivity and other thermal properties of two kinds of particle modified polytetrafluoroethylene(PTFE) flexible tubes were analysed by DSC,TG and DTA.The corrosion resistant properties of the tubes were evaluated by immersing them in chemical corrosion medias.The surface morphology of the tubes was observed by 3D-video electricity microscope system.
     The results show that both domestic and abroad flexible tubes were composite materials consist of PTFE as a matrix and graphite particle as a filling materials,the surface quality of the abroad one is better.The thermal properties of the two types of flexible tubes are almost at the same level.They both can prevent themselves from corrosion attacked by various chemical substances and have little difference with their excellent corrosion resisting properties.
     The chemical composition and structure of triple outlet jacketed piping of high pressure circulating cooler were inspected by optical-electrical spectrometer(OES) and metallurgical structure inspection.The chemical and element composition of inner surface corrosion substances of jacketed piping were evaluated by x-ray flourescence analysis(XRF),X-ray diffraction(XRD) and thermogravimetric analysis (TGA).The Analysis such as microscopic morphology inspection and chemical composition analysis were studied by scanning electron microscope(SEM) and energy dispersive spectroscope(EDS) on those inner surface corrosion substances systematically.
     The chemical composition and structure of inner piping of high pressure circulating cooler were inspected by optical-electrical spectrometer and metallurgical structure analysis.The Analysis such as microscopic morphology inspection and chemical composition analysis were studied by SEM and EDS on the bursting crack of inner piping systematically.
     The chemical and ion composition of circulating cooling water and the chemical composition of its deposits were evaluated by ICP-AES,ion chromatography and FT-IR.
     The results show that the materials quality of the jacketed and inner piping of the high pressure circulating cooler are qualified according to the quality evaluating criterion.The aggravation of corrosion,the accelerated wall thinning of the inner piping and the so caused bursting crack were caused by the unqualified circulating cooling water which contains certain content of chlorine ion.The aggravation of corrosion and the accelerated wall thinning of the jacketed and inner piping were caused by corrosion under scaling and pitting corrosion due to serious scaling near the cooling water outlet of the jacketed piping and the bend of the inner piping and the so caused local erosive.Another important reason which caused the accelerated wall thinning of the inner piping near the outlet of the jacketed piping is the obstruction of corrosion substances in the bend near the cooling water outlet of the cooler,which creates a dry-wet alternative environment that result in the fast striping of the corrosion substances and the aggravation of local corrosion,and moreover,erosive is also induced by the current direction change due to the striped corrosion substances. The scaling of the circulating cooler is very serious with a large amount,a wide range of distribution and a hard character of the scaling,that is due to the function failure and dosage shortage of the using scaling inhibitor.
     Finally,based on results from failure analysis performed respectively on two cases of the pipes made from nonmetal and metal materials which are used in special industrial operating conditions,conclusions were made that most of the properties of domestic modified flexible tubes are almost at the same level of those of the abroad counterparts,corresponding countermeasures aim at the failure of high pressure circulating cooler were put forward.These effective suggestions will not only prevent repeating occurrence similar to the analyzed accidents,reduce unnecessary economic loss and avoid possible personnel casualty,but also make the production of corporation more safe,reliable and effective.
引文
[1]词典编辑出版部.朗文现代英汉双解词典[M].北京:现代出版社,1993.
    [2](英)AS霍恩比.李北达,编译.牛津高阶英汉双解词典[M].北京:商务印书馆,1997.
    [3]朱敦伦,周汉民,强颖怀.机械零件失效分忻[M].徐州:中国矿业大学出版社,1993.
    [4]Bloch,Heinz P.,Geitner,Fred K.Machinery Failure Analysis and Troubleshooting[M].Houston:Elsevier,1999.
    [5]李鹤林.失效分析的任务、方法及其展望[J].理化检验-物理分册,2005,41:1-6.
    [6]陈华辉,邓海金,李明,林小松.现代复合材料[M].北京:中国物资出版社,1998.
    [7]师昌绪.材料大辞典[M].北京:化学工业出版社,1994.
    [8]钟京,杨振国.改性PTFE软管的材质鉴定及其性能比较与评价[J].高分子材料科学与工程,2008,24(10):123-126.
    [1]W.E.Hanford,M.Joyce.Polytetrafluoroethylene[J].J.Am.Chem.Soc.,1946,68(10):2082-2085.
    [2]M.M.Renfrew,E.E.Lewis.Polytetrafluoroethylene.Heat Resistant,Chemically Inert Plastic[J].Ind.Eng.Chem.,1946,38(9):870-877.
    [3]钱知勉.聚四氟乙烯树脂的基本特性[J].有机氟工业,2000,(4):49-54.
    [4]王家序,陈战.填料对聚四氟乙烯工程塑料改性的影响[J].机械工程材料,2002,26(10):35-37.
    [5]任杰,黄岳元.PTFE复合材料填料与性能[J].有机氟工业,1996,1:14-21.
    [6]王亮亮,陶国良.高导热聚四氟乙烯复合材料的研究[J].中国塑料,2004(18):26-28.
    [7]孙爱芳,刘敏珊,董其伍.石墨/PTFE复合材料导热性能的数值模拟[J].材料科学与工程学报,2007,25(3):430-433.
    [8]余国琮,明修慈,吴文林.化工容器及设备[M].天津:天津大学出版社,1988.
    [9]靳明聪,程尚模,赵永湘.换热器[M].重庆:重庆大学出版社,1990.
    [10]EU 施林德尔.马庆芳,马重芳主译.换热器设计手册:换热器的热设计与流动设计[M].北京:机械工业出版,1988.
    [11]褚家瑞.当代管壳式和板式设备的技术进展[J].石油化工设备,1992,21(2):3-6.
    [12]曹纬.国外换热器新进展[J].石油化工设备,1999,28(2):6-9.
    [13]L.Perez,B.Ladevie,P.Tochon,J.C.Batsale.A new transient thermal fouling probe for cross flow tubular heat exchangers[J].International Journal of Heat and Mass Transfer.2009(52):407-414.
    [14]AL.H.Costa,et al.Design optimization of shell-and-tube heat exchangers[J].Applied Thermal Engineering.2008(28):1798-1805.
    [15]M.Pieve.High temperature jacketed piping:Review of the suited thermal models[J].Applied Thermal Engineering.2009(29):431-438.
    [16]刘理舒.管壳式换热器欠效分析及其相关探讨[J].山东建材,2008,1:24-25.
    [17]刘春雷,亲江峰.管壳式换热器常见失效形式浅析及对策探讨[J].化工装备技术,2008,29(3):38-40.
    [18]朱冬生,卜穗安,谭盈科.管壳式换热器的防垢、强化传热技术[J].海湖盐与化工,1994,23(5):20-24.
    [19]张晓峰,张小萌.管壳式换热器的腐蚀与防护分析[J].化工装备技术,1997,18(1):52-54.
    [20]吴金星,董其伍,刘敏珊,王志文.管壳式换热器失效分析、预防及在线检测[J].压力容器,2001,18(6):57-60.
    [21]孙勇.管壳式换热器失效分析及解决措施[J].化工装备技术,2006,27(4):47-48.
    [22]戚晶冰.循环冷却水系统水稳剂性能研究及应用[J].工业水处理,2003,23(4):60-62.
    [23]王作有,刘爱民,何继兴.乙烯高温换热器泄漏原因分析及对策[J].工业技术,2005,17(4):39-41.
    [24]杨传铮.晶体X射线衍射学基础[M].北京:冶金工业出版社,1989.
    [25]王正熙.聚合物红外光谱分析和鉴定[M].成都:四川大学出版社,1989.
    [26]赵霞,张雪芹,黄铃,孙良.同步热分析法研究聚丁二烯橡胶热降解过程[J].橡胶工业,2006,53(6):370-372
    [27]徐新宇,杨璐源.现代分析测试技术在印染行业的应用(三)——扫描电子显微镜原理及在纤维鉴别上的应用[J].印染,2007,5:39-42.
    [28]Bozzola,John J.,Russell,Lonnie Dee.Electron Microscopy:Principles and Techniques for Biologists[M].Sudbury:Jones&Bartlett Publishers,1999.
    [29]Ebdon,L.An Introduction to Analytical Atomic Spectrometry[M].Chichester;New York John Wiley&Sons,Ltd.,1998.
    [1]钱知勉.聚四氟乙烯树脂的基本特性[J].有机氟工业,2000,4:49-54.
    [2]M.M.Renfrew,E.E.Lewis.Polytetrafluoroethylene.Heat Resistant,Chemically Inert Plastic[J].Ind.Eng.Chem.,1946,38(9):870-877.
    [3]王家序,陈战.填料对聚四氟乙烯工程塑料改性的影响[J].机械工程材料,2002,26(10):35-37.
    [4]任杰,黄岳元.PTFE复合材料填料与性能[J].有机氟工业,1996,(1):14-21.
    [5]赵霞,张雪芹,黄铃,孙良.同步热分析法研究聚丁二烯橡胶热降解过程[J].橡胶工业,2006,53(6):370-372.
    [6]薛群基,阎逢元.几种表面分析技术在材料研究中的应用[J].中国表面工程,1998,(1):36-40.
    [7]阎逢元,薛群基.用红外谱研究PTFE/石墨共混时的相互作用[J].科学通报,1997,42(3):282-284.
    [8]陈学林,楚士晋,秦蛟,唐水花.含能材料导热系数及热扩散率的微热量热法测定[J].含能材料,1995,3(1):26-33.
    [9]方征平,查琳琳,胡巧玲,许承威.聚四氟乙烯对工程塑料的共混改性研究进展[J].中国塑料,2001,15(8):11-14.
    [10]钱知勉.聚四氟乙烯塑料的实用性[J].有机氟工业,2003,1:10-20.
    [1]EU 施林德尔.马庆芳,马重芳主译.换热器设计手册:换热器的热设计与流动设计[M].北京:机械工业出版,1988.
    [2]褚家瑞.当代管壳式和板式设备的技术进展[J].石油化工设备,1992,2(3):
    [3]曹纬.国外换热器新技术[J].石油化工设备,1999,28(2):6-9.
    [4]玄哲仙.水中氯离子含量的测定[J].延边大学农学学报,2003,25(1):53-55.
    [5]纪贵.世界标准钢号手册[M],北京:中国标准出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700