干湿环境下混凝土收缩与收缩应力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干湿循环是导致混凝土结构性能衰退最为严酷的环境条件之一。本文旨在研究干湿循环下混凝土收缩和收缩应力的变化规律,建立相应的计算方法。重点对干湿循环下混凝土收缩发展、混凝土内部湿度场分布规律、混凝土抗拉徐变和典型混凝土结构的收缩应力等问题进行了研究。
     对3个强度等级混凝土(C30,C50,C80—分别代表普通强度、中等强度和高强混凝土),干湿循环下收缩和内部相对湿度的发展进行了同步试验测量,试验验证了混凝土干缩湿胀的特性。干湿环境下混凝土收缩的发展与其内部相对湿度发展具有很好的同步性,混凝土内部相对湿度变化是其收缩变化的驱动力。建立了基于混凝土内部湿度变化的收缩预测模型,模型结果能够很好的预测干湿循环下混凝土收缩的发展。
     建立了干湿循环下混凝土内部湿度场的计算模型,并对模型所需参数:水泥水化耗水引起的湿度下降、干燥和湿润阶段混凝土水分扩散系数和混凝土表面水分交换系数进行了确定。采用大尺寸混凝土试件,对干湿循环下混凝土内部不同位置处的相对湿度发展进行了试验测量。基于试验测定结果,对干湿循环下混凝土内部湿度场计算模型及相关模型参数进行了验证,模型结果和试验结果吻合良好。
     改进了传统环约束试验方法,试验测量了从混凝土浇筑开始钢环内表面环向应变的发展,研究了混凝土强度等级,钢环厚度和测量位置对试验结果的影响。建立了基于环约束试验的混凝土抗拉徐变系数的求解方法,依据环约束试验结果,对3个强度等级混凝土的抗拉徐变系数进行了确定。
     基于弹性力学原理,建立了干湿循环下混凝土圆柱收缩应力的计算模型,模型计算结果与有限单元法计算的结果吻合良好。对干湿循环制度、环境相对湿度、环境风速和构件尺寸等影响混凝土收缩应力的因素进行了分析;通过对收缩应变的分解,建立了干湿循环下混凝土路面板收缩应力的计算模型,并对模型算法进行了讨论。模型计算结果与有限单元法计算的结果吻合良好。对混凝土强度等级、路面板长度等影响混凝土路面板收缩应力的因素进行了分析。
Drying and wetting cycles is a salient environment responsible for the deteriorationof concrete structures. The purpose of this study is to investigate the characteristics ofthe development of concrete shrinkage and shrinkage induced stresses, and to establisha prediction models for shrinkage strain and stress in concrete structures underdrying-wetting cycles. Hence, emphasizes are laid on the following topics: the patternsof concrete shrinkage under dry and wet cycles, distribution of moisture in concrete,tensile creep and calculations of shrinkage stresses in typical concrete structures.
     As an example, three kinds of concrete with compressive strength of30MPa,50MPa and80MPa at28days respectively, labeled as C30, C50and C80were used inthe study. The shrinkage and interior humidity of the specimen under dry-wet cycleswere continuously measured. The experimental results show that concrete expandsunder wetting and contracts under drying. A close relationship between shrinkage andinterior humidity exists and the interior humidity may serve as the driving force forconcrete shrinkage change, regardless the shrinkage happens during drying or wetting.Based on these test results, a relative-humidity based model for shrinkage prediction ofconcrete under dry-wet cycles was developed. The results of the model prediction haveshown good agreement with the test data, and the calculation models can be used for theprediction of concrete shrinkage under drying and wetting environment.
     Priro to developing the humidity field model of concrete under dry-wet cycles, themodel of humidity drop caused by cement hydration, moisture diffusion coefficients fordrying and wetting process, and concrete moisture diffusion surface factor weredetermined based on experimental data. The development of internal humidity ofconcrete under dry-wet cycles was experimentally investigated using a concrete slabs.The developed moisture calculation model was verified with above experimental results.The model predictions follow the test data well.
     Using the ring test method, the development of inner strain of the steel ring wasmeasured continuously since concrete cast. The effects of concrete strength, thicknessof steel ring on the development of inner strain of the steel ring were studied. A methodfor determination of stress relaxation parameters of concrete under tension was developed. Using the developed method, the stress relaxation parameters of the threekinds of concretes were obtained.
     Based on elasticity thorey, the calculation model for shrinkage induced stresses inconcrete column under dry-wet cycles was developed. The effects of drying and wettingcycle regime, environment humidity, wind velocity and the size of concrete column onshrinkage induced stresses of concrete structure under dry-wet cycles were studied. Theresults were verified with with finite element simulation. By dividing the nonlinearshrinkage strain along the slab depth into three components, an average straincomponent, a linear strain component, and a nonlinear strain component, a calculationmodel of the shrinkage induced sstresses of concrete pavement slab under dry-wetcycles was developed. In addition, calculation methods of this model were discussed,and the calculation results were verified with finite element simulation. The effects ofconcrete strength grade, the length and thickness of concrete pavementslab and onshrinkage-induced stresses were also investigated in this study.
引文
[1]张君,侯东伟,高原.混凝土收缩研究热点与进展.混凝土低碳技术国际学术研讨会暨第九届全国高性能混凝土学术研讨会
    [2] Control of Cracking in Concrete Structures,Reported by ACI Committee224,2000.
    [3] Mehta, P.K. Durability—Critical Issues for the Future. Concrete International. July1997.
    [4] Burrows R. W., The Visible&Invisible Cracking of Concrete, ACI Publisher,1998.
    [5]张君,侯东伟,高原.混凝土自收缩与干燥收缩的统一内因研究.清华大学学报,2010,50(9):1321-1324.
    [6]朱伯芳.大体积混凝土温度应力与温度控制.北京:中国电力出版社,1999.
    [7] GB50476-2008混凝土结构耐久性设计规范.北京:中国建筑工业出版社,2008.
    [8] Hobbs, D W, Matthews J D, Marsh B K. Minimum requirements of durable concrete:carbonation and chloride-induced corrosion, freeze-thaw attack and chemical attack. BritishCement Association;1998.
    [9] W. J. McCarter, D. W. Watson, T. M. Chrisp. Surface zone concrete: drying, absorption,and moisture distribution. ASCE Journal of Materials in Civil Engineering,2001,13(1):49-57.
    [10] R.D.Cody, A.M.Cody.Reduction of conerete deterioration by ettringite using crystal crovthinhibition techtliqlles. FinalRePort,2001.
    [11]王琴,杨鼎宜.干湿循环对混凝土硫酸盐侵蚀的影响.混凝土,2008(3):22-24.
    [12]张亚梅,陈胜霞,高岳毅.浸-烘循环作用下橡胶水泥混凝土的性能研究.建筑材料学报,2005(12):665-671.
    [13]张伟勤,刘连新,代大虎.混凝土在卤水、淡水中的干湿循环腐蚀试验研究.青海大学学报(自然科学版),2006(8):25~29.
    [14]乔宏霞,何忠茂,刘翠兰.粉煤灰混凝土在硫酸盐环境中的动弹性模量研究.粉煤灰综合利用,2006.1:6~8.
    [15] MOHR B J, BIERNACKI J J, KURTIS K E.Microstructural and chemical effects ofwet/dry cycling on pulp fiber cement composites.Cement and Concrete Research,2006(36):1240-1251.
    [16]高润东,赵顺波,李庆斌,等.干湿循环作用下混凝土硫酸盐侵蚀劣化机理试验研究.土木工程学报,2010,43(2):48-54.
    [17] Sahmaran, T.K. Erdem, I.O. Yaman.Sulfate resistance of plain and blended cementsexposed to wetting–drying and heating–cooling environments. Construction and BuildingMaterials,2007,21(8):1771-1778
    [18]王琴.混凝土在干湿循环和硫酸盐侵蚀双重因素作用下的损伤研究[硕士学位论文].扬州:扬州大学,2008.
    [19]梁咏宁,袁迎曙.硫酸钠和硫酸镁溶液中混凝土腐蚀破坏的机理.硅酸盐学报,2007,35(4):504-508
    [20]金祖权,孙伟,张云升,蒋金洋.混凝土在硫酸盐、氯盐溶液中的损伤过程.硅酸盐学报,2006,34(5):630-635
    [21]杨全兵,朱蓓蓉.混凝土盐结晶破坏的研究.建筑材料学报,2007,10(4):392一396
    [22]巩鑫.混凝土抗硫酸盐侵蚀试验研究.硕士学位论文,大连理工大学,2008
    [23] GB-T50082-2009普通混凝土长期性能和耐久性能试验方法标准.北京:中国建筑工业出版社,2009
    [24]李春秋.干湿交替下表层混凝土中水分与离子传输过程研究[博士学位论文].北京:清华大学,2009.
    [25]冷发光,马孝轩,田冠飞.混凝土抗硫酸盐侵蚀试验方法.东南大学学报(自然科学版),2006,36(增刊):45-48
    [26]黄维蓉,杨德斌,周建庭,严海彬.复掺技术对混凝土抗硫酸盐干湿循环性能的影响.重庆交通大学学报(自然科学版),2012,31(2):243-246
    [27]余璟.干湿循环条件混凝土内氯离子输运模型的试验研究[硕士学位论文].华中科技大学,2007.
    [28]谢祥明,莫海鸿.大掺量矿渣微粉提高混凝土抗氯离子渗透性的研究.水利学报,2005,36(6):737-741
    [29]赵羽习,杜攀峰,金伟良.混凝土防腐涂料抗氯离子侵蚀性能试验研究.建筑科学与工程学报,2009,26(2):26-31.
    [30]邓德华,肖佳,元强,刘赞群,张文恩.石灰石粉对水泥基材料抗硫酸盐侵蚀性的影响及其机理.硅酸盐学报,2006,34(10):1243-1248.
    [31] Jun Zhang,Huang Yu,Qi Kun. Calculation of moisture distribution in early age concrete[J]. ASCE Journal of Engineering Mechanics.2009,135(8):871-880.
    [32] Jun Zhang, Yuan Gao and Yudong Han. Interior Humidity of Concrete under Dry-WetCycles[J]. ASCE Journal of Materials in Civil Engineering,2012,24(3):289-298.
    [33]黄瑜,祁锟,张君.早龄期混凝土内部湿度发展特征.清华大学学报(自然科学版),2007,47(3):309-312.
    [34]侯东伟.混凝土自身与干燥收缩一体化及相关问题研究[博士学位论文].北京:清华大学,2010.
    [35] ACI Committee209. Prediction of Creep, Shrinkage and Temperature Effect s in ConcreteStructures (ACI209R-82), American Concrete Institute, Detriot,1982:193–300.
    [36] Bazant Z P, Panula L. Practical prediction of time-dependent deformation of concrete.Materials and Structures,1978(9):307-328.
    [37]王铁梦.工程结构裂缝控制.北京:中国建筑工业出版社,1997,1-10.
    [38] Gillilan J A. Thermal and shrinkage effects in high performance concrete st ructures duringconstruction:University of Calgary,2000.
    [39]高原,张君,孙伟.干湿循环下混凝土湿度与变形的测量.清华大学学报,2012,52(2):144-149.
    [40]侯东伟,张君,孙伟.基于早期变形特征的混凝土凝结时间的确定.硅酸盐学报,2009,37(7):1079-1091.
    [41]张君,陈浩宇,侯东伟.水泥净浆、砂浆及混凝土早期收缩与内部湿度发展分析.建筑材料学报,2011,14(3):287-292.
    [42]侯东伟,张君.早龄期混凝土全变形曲线的实验测量与分析.建筑材料学报,2010,13(5):613-619.
    [43]高原,张君,韩宇栋.混凝土超早期收缩试验与模拟.硅酸盐学报,2012,40(8):1088-1094.
    [44] M Sule, K van Breugel. Cracking behaviour of reinforced concrete subjected to early-ageshrinkage.Materials and Structures,2001,34(5):284-292
    [45] Shin-ichi Igarashi, Arnon Bentur, Konstantin Kovler. Autogenous shrinkage and inducedrestraining stresses in high-strength concretes. Cement and Concrete Research,2000,30(11):1701-1707
    [46] A. Kamen, E. Denarie, E. Bruhwiler.Mechanical behavior of Ultra High Performance FibreReinforced Concretes (UHPFRC) at early age, and under restraint. Proceedings of theSeventh International Conference on Creep, Shrinkage and Durability Mechanics ofConcrete and Other Quasi-Brittle Materials,2005:591-596.
    [47]高原,张君,孙伟.密封养护混凝土内部湿度与收缩的一体化实验与模拟.建筑材料学报,2013,16(2):185-192.
    [48] Kim J K, Lee C S. Moisture diffusion of concrete considering self-desiccation at early age.Cement and Concrete Research,1999(29):1921-1927.
    [49]蒋正武,王培铭.等温干燥条件下混凝土内部相对湿度的分布.武汉理工大学学报,2003,25(7):18-21.
    [50] Sung Won Yoo, Seung-Jun Kwon, Sang Hwa Jung.Analysis technique for autogenousshrinkage in high performance concrete with mineral and chemical admixtures.Constructionand Building Materials,2012,34:1-10.
    [51] Jun Zhang, Yuan Gao, Yudong Han, Wei Sun. Shrinkage and Interior Humidity of Concreteunder Dry-Wet Cycles. Drying Technology,2012,30(6):583–596.
    [52] Zhang Jun, Hou Dongwei, Gao Yuan. Integrative studies on autogenous and dryingshrinkages of concrete at early-age. Advances in Structural Engineering,2012,15(7):1041-1051.
    [53] Zhang Jun, Hou Dongwei, Han Yudong. Micromechanical modeling on autogenous anddrying shrinkages of concrete. Construction and Building Materials,2012,29(3):230-240.
    [54] T.C. Powers, T.L. Brownyard, Studies of the physical properties of hardened Portlandcement paste (nine parts), J. Am. Concr. Inst.43(1946.10–1947.4), Bulletin22, ResearchLaboratories of the Portland Cement Association, Chicago,1948.
    [55] O.M. Jensen,P.F. Hansen.Autogenous deformation and RH-change in perspective.Cementand Concrete Research,2001,31(12):1859-1865.
    [56] G. Santa, A. Kumara, C. Patapyc,et al.The influence of sodium and potassium hydroxide onvolume changes in cementitious materials.Cement and Concrete Research,2012,42(11):1447-1455.
    [57] Mills R H. Factors influencing cessation of hydration in water cured cement pastes[J].Highway Research Board Special Report,1966:406-424.
    [58] Anton K. Schindler, Kevin J. Folliard. Heat of hydration models for cementitious materials.ACI Materials Journal,2005,102(1):24-33.
    [59] Bentz D P, Waller V, De Larrard F. Prediction of adiabatic temperature rise in conventionaland high-performance concretes using a3-D microstructural model. Cement and ConcreteResearch,1998,28(2):285–97
    [60] Giovanni Di Luzio, Gianluca Cusatis. Hygro-thermo-chemical modeling of highperformance concrete. I: Theory. Cement and Concrete Composites,2009,31:301-308.
    [61] H.F.W Taylor. Cement chemistry(2nd ed). London: Thomas Telford,1997.
    [62]侯东伟,张君,陈浩宇,刘文.干燥与潮湿环境下混凝土抗压强度和弹性模量发展分析.水利学报,2012,43(2):198-208.
    [63] Gutsch A. W. Properties of early age concrete-Experiments and modeling. Materials andStructures,2002,35(2):76-79.
    [64] L.J. Parrott, D.C. Killoh, R.G. Patel, Cement hydration under partially saturated curingconditions.8th International Congress on the Chemistry of Cement, Rio de Janeiro,1986,46-50.
    [65] K.A. Snyder, D.P. Bentz. Suspended hydration and loss of freezable water in cement pastesexposed to90%relative humidity. Cement and Concrete Research,2004,34(11):2045-2056
    [66] Dariusz Gawin, Francesco Pesavento, Bernhard A. Schrefler. Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: Hydration andhygro-thermal phenomena. International Journal for Numerical Methods in Engineering,2006,67:299-331
    [67] Mateusz Wyrzykowski, Pietro Lura, Francesco Pesavento, Dariusz Gawin. Modeling ofinternal curing in maturing mortar. Cement and Concrete Research,2011,41(12):1349-1356.
    [68] Mongkhon Narmluk, Toyoharu Nawa.Effect of fly ash on the kinetics of Portland cementhydration at different curing temperatures.Cement and Concrete Research,2011,41(6):579-589.
    [69] Maekawa K, Ishida T, Kishi T. Micro-pore structure formation and moisture transport. In:Multi-scale Modeling of Structural Concrete, London and New York,2009.
    [70] Jun Zhang, Dongwei Hou, Yuan Gao and Wei Sun. Determination of moisture diffusioncoefficient of concrete at early-age from interior humidity measurements. DryingTechnology,2011,29(6):689-696.
    [71] Akita H, Fujiwara T, Ozaka Y. Practical procedure for the analysis of moisture transferwithin concrete due to drying. Magazine of Concrete Research,1997,49(179):129–137.
    [72]高原,张君,侯东伟.早龄期混凝土湿度应力计算与开裂风险评估.工程力学,2012,29(2):121-128.
    [73] Oh B H., Cha S W. Nonlinear analysis of temperature and moisture distributions inearly-age concrete structures based on degree of hydration. ACI Materials Journal,2003,100(5):361-370.
    [74] Wong S F, Wee T H, Swaddiwudhipong S, et al. Study of water movement in concrete.Magazine of Concrete Research,2001,53(3):205–220.
    [75] Sakata K A. Study on moisture diffusion in drying and drying shrinkage of concrete.Cement and Concrete Research,1983,13(3):164-170.
    [76]肖志乔,孙嘉华.水闸结构中混凝土的干缩应力.混凝土,2005(10):80-82.
    [77]梁建文,刘有志,张国新,朱岳明.水工薄壁混凝土结构湿度及干缩应力非线性有限元分析.水利水电技术,2007,28(8):38-41.
    [78]王建,戴会超,顾冲时.混凝土湿度运移数值计算综述.水力发电学报,2005,24(2):85-89.
    [79] Nilsson, L.O., Long-term moisture transport in high performance concrete, Materials andStructures,2002,35,641-649.
    [80] Andrade C, Sarria J, Alonso C., Relative humidity in the interior of concrete exposed tonatural and artificial weathering. Cement and Concrete Research,29(8):1249-1259,1999..
    [81]黄瑜.早龄期混凝土内部湿度研究[硕士学位论文].北京:清华大学,2006.
    [82]刘数华,冯安勇.混凝土的徐变研究综述.红水河,2006,25(3):118-121.
    [83]高原,张君.基于钢环约束实验的早龄期混凝土抗拉应力松弛参数确定.第三届两岸四地高性能混凝土国际研讨会,2012,武汉.
    [84] Neville, A.M., Properties of Concrete [M].3rd edn. Longman Scientific&Technical, Essex,England,1990.
    [85] Zhang Tao, Qin Weizu. Tensile creep due to restraining stresses in high-strength concrete atearly ages. Cement and Concrete Research,2006,36(3):584-591.
    [86] Shin-ichi Igarashi, A. Bentur, K. Kovler. Autogenous shrinkage and induced restrainingstresses in high-strength concretes. Cement and Concrete Research,2000,30(11):1701-1707.
    [87] Lennart stergaarda, David A. Langeb, Salah A. Altoubatb, et al. Tensile basic creep ofearly-age concrete under constant load。Cement and Concrete Research,2001,31(12):1895-1899.
    [88] Darquennes, A., Staquet, S., Delplancke-Ogletree, M-P. and Espion, B.. Effect ofautogenous deformation on the cracking risk of slag cement concretes.Cement and ConcreteComposites,2011,33:368–379.
    [89] Atrushi, D.S., Tensile and Compressive Creep of Early Age Concrete: Testing andModelling. Doctoral Thesis. The Norwegian University of Science and Technology,Trondheim, Norway,2003.
    [90] Shah, H.R., Weiss, J..Quantifying shrinkage cracking in fiber reinforced concrete using thering test. Materials and Structures,2006,39:887-899.
    [91] Briffaut, F. Benboudjema, J.M. Torrenti, et al. Numerical analysis of the thermal activerestrained shrinkage ring test to study the early age behavior of massive concrete structures.Engineering Structures,2011,33(4):1390-1401.
    [92] Zachary C. Grasley, Matthew D. Ambrosia. Viscoelastic properties and drying stressextracted from concrete ring tests. Cement and Concrete Composites,2011.33(2):171-178.
    [93] Yuan Gao, Jun Zhang and Po Han. Determination of Stress Relaxation Parameters ofConcrete in Tension at Early-Age by Ring Test. Construction and Building Materials.2013,41:152-164.
    [94]高原,张君,韩宇栋.基于环约束试验的混凝土早期开裂行为评价方法.建筑材料学报.2012,15(5):621-627
    [95] D.P. Bentz. A review of early-age properties of cement-based materials. Cement andConcrete Research,2008(38):196–204.
    [96] Bazant Z P, Kim J K. Improved prediction model for time-dependent deformations ofconcrete: part2-basic creep. Materials and Structures,1991,24(6):409-421.
    [97] Vandewalle, L..Concrete creep and shrinkage at cyclic ambient conditions.Cement andConcrete Composites,2000,22:201-208.
    [98] V. Y. Garas, L. F. Kahn, K. E. Kurtis. Short-term tensile creep and shrinkage of ultra-highperformance concrete.Cement and Concrete Composites,2009,31(3):147-152.
    [99]王甲春,阎培渝.早龄期混凝土结构开裂风险分析.应用基础与工程科学学报,2006,14(2):262-267.
    [100]张君,祁锟,张明华.早龄期混凝土路面板非线性温度场下温度应力的计算.工程力学,2007,24(11):136-145.
    [101]张君,高原,黄振利.内外保温墙体温度应力对比分析.哈尔滨工程大学学报,2011,32(7):895-905.
    [102]侯东伟,张君,高原.考虑水泥水化放热与太阳辐射的混凝土路面板温度场数值模拟.工程力学,2012,29(6):151-159.
    [103]张君,高原.考虑太阳辐射的保温墙体温度场温度应力及其计算软件.工业建筑,2009,39(S1):162-167.
    [104]高原,张君.加气混凝土自保温与聚苯板外保温墙体隔热性能对比.新型建筑材料,2010,37(3):48-54.
    [105]祁锟.早龄期混凝土路面板温度场及温度应力研究[硕士学位论文].北京:清华大学,2006.
    [106] Westergaard, H M.Stresses in concrete pavements computed by theoretical analysis.PublicRoads.1926,7(2):25-35.
    [107] R. D. Bradbury. Reinforced concrete pavement [M].Washington D C: Wire ReinforcementInstitute,1938.34-41.
    [108]张君,张明华,郭自力.自流平砂浆地面收缩应力的计算及其影响因素.建筑材料学报,2008,11(4):379-385
    [109] Zhang Jun. and Li V C. Influence of supporting base characteristics on the shrinkageinduced stresses in concrete pavements. ASCE Journal of Transportation Engineering,2001,127(6),455-462.
    [110] Timm D H,Guzina B B,Voller V R.Prediction of thermal crack spacing.InternationalJournal of Solids and Structures,2003,40(1):125~142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700