纳米颗粒增强铜基复合材料的制备工艺及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弥散强化铜基复合材料以其优异的性能而有着广泛的应用前景。虽然采用原位氧化法制备的弥散强化铜基复合材料性能优于其它众多的制备方法,但是目前尚存在工艺复杂、成本昂贵等问题。机械合金化(MA)作为一种制备弥散强化复合材料的方法,可以导致硬质稳定相弥散分布的细而均匀。本文对用MA法制备的Cu-Cr-(Zr)弥散强化铜基复合材料进行了实验研究,结果表明:MA是制取弥散强化铜基复合材料比较简单、成本较低的一种方法;制备的弥散强化铜基复合材料不仅硬度和导电率较高,而且耐磨性能也好。另外,还对MA的工艺参数进行了研究,理论分析和实验结果表明:
     (1)采用机械合金化技术制备了Cu-Cr复合粉体,利用XRD分析了Cu-Cr复合粉体机械合金化过程。结果表明:随着球磨时间的增加,晶粒不断细化,Cu-Cr复合粉末衍射峰逐渐宽化,衍射强度逐渐下降;经球磨60h后,Cr大部分固溶在Cu晶格中。
     (2)采用粉末冶金的方法制备了颗粒增强铜基复合材料,分析了不同球磨时间和不同颗粒含量对铜基复合材料力学性能的影响,结果表明:随着球磨时间的延长和Cr含量增多,铜基复合材料的硬度和抗弯强度提高,但导电性能下降。
     (3)采用冷压-烧结-复压-复烧工艺对Cu-Cr合金粉末致密化过程进行研究。系统探讨了压制压力、烧结温度对相对密度的影响。研究结果表明初压和复压能显著提高材料相对密度,复烧进一步提高材料的相对密度,其作用主要体现在材料性能的改善和优化。
     (4)由Cu-Cr-Zr和TiC混合粉末经机械球磨后,再经退火、压制、烧结、复压、复烧制备成TiC弥散强化铜基复合材料。该体系的最佳烧结温度为950℃,该材料具有均匀的显微组织和良好的性能。该材料的相对密度和导电性随球磨时间的延长和TiC含量的增高而降低,但其硬度却随球磨时间的延长和TiC含量的提高而增大。
     (5)在M-200型销-盘式摩擦磨损试验机上进行了Cu-Cr-Zr/TiC合金的干滑动摩擦磨损实验,研究了TiC颗粒含量的改变对合金磨损率的影响,并用扫描电子显微镜和X射线能谱对其磨损表面形貌及试样亚表层的微观形貌进行观察分析。结果表明,合金的磨损率随TiC含量的增加而下降;合金的磨损形式主要有粘着磨损和磨粒磨损,试样表面不断的滑动摩擦行为在合金的亚表层形成了高度集中的塑性变形区。基体金属的磨损主要呈现出显微切削和犁沟特征,而金属陶瓷的流失形式主要表现为界面处TiC颗粒的脱落。
Copper matrix composites have a bright application future. Although the properties of the composite is made by IN-SITU method are much better than the others, there are still some problems such as complicated technics and high cost etc. Mechanical alloying(MA) is a method of producing dispersion strengthened composites, which makes the dispersion fine and harmony. In this paper MA was used to produce Cu-Cr-(Zr) composites. The results show that MA is a simple and economical means and that the achieved dispersion reinforced copper composites possess high hardness,electric conductivity and high wear resistance. Also, the processing parameters of MA were studied. The theoretical analysis and experimental results indicate:
     (1) In this paper mechanical alloying was used to make Cu-Cr composites powder. XRD was used to study the mechanical alloying processed Cu-Cr powder. It showed that: with the increasing of ball-milling time, Cu-Cr powder particle and grain become smaller and smaller, and the X-ray diffraction peaks of both copper and chromium become broader and their intensity diminishes. Cu-Cr super saturation solid solution was obtained by 60h milling.
     (2) Powder metallurgical method was used to manufacture particle reinforced copper matrix composites, and the influence of particle content on composite properties was analyzed. The results showed that mechanical properties,such as hardness and bending strength of the composite increased with increasing milling time and Cr content, but conductivity of composite was reduced.
     (3) Densification Process of Cu-Cr alloy powders was studied by means of cold pressing-sintering- repressing-resintering method. The influence of different pressure and temperature on the relative density was discussed systematically. The results showed that pressing and repressing can significantly improve the relative density, however, resintering did not evidently contribute to the relative density, and its main role reflected in the performance improvement and optimization.
     (4) TiC-dispersion-strengthened Cu-based composite powder has been prepared with Cu-Cr-Zr and TiC powders by MA. The composite powder was used to make composite material by annealing,pressing,sintering, e-pressing,re-sintering process. The Suitable sintering temperature for Cu-Cr-Zr/TiC system is 950℃. The material possess uniform microstructure and better properties. Relative density and conductivity of the composite material decreased with increasing milling time and TiC content. But the mechanical property of hardness increased.
     (5) The friction and wear behavior of Cu-Cr-Zr/TiC alloys dry sliding against a brass counterface was investigated on a M-200 pin-on-disk wear tester. The worn surface of Cu-Cr-Zr/TiC alloy was studied by using of SEM and EDS. The results indicated that the wear rate of aged Cu-Cr-Zr/TiC alloy decreased monotonically with the increase of TiC content. Adhesive wear and abrasive wear were the dominant wear mechanisms under unlubricated condition. With continuous loading and sliding, plastic deformation intensified and thus formed a layer with fragmented microstructure and an concentrated plastic deformation zone in subsurface region. The wear mechanisms of the composite include ploughing and spalling of some carbide particles on the worn surfaces. The spalling of TiC micro-particles at the interface has significant influence on the wear resistance of the composite.
引文
[1]雷静果,刘平,井晓天,赵冬梅.高速铁路接触线用时效强化铜合金的发展[J].金属热处理,2005,30(3):1.
    [2]温宏权等.高速列车用新型铜合金接触线[J].材料导报,1998,1(2):25.
    [3]曾汉民.高技术新材料要览[M].北京:中国科学技术出版社,1993,110.
    [4]闵光辉,宋立,于化顺等.高强度导电铜基复合材料[J].功能材料,1997,28(4):342-345.
    [5]程建奕,汪明朴.高强高导高耐热弥散强化铜合金的研究现状[J].材料导报, 2004,18(2): 38-41.
    [6]张晓辉,李永年.高强度高导电耐热弥散强化合金的研究进展[J].贵金属, 2001, 3(1):47.
    [7] Batra.J.S, Dey.G.K. Microstructure and properties of a Cu-Cr-Zr alloy[J]. Journal of Nuclear Materials, 2000, 299: 91-100.
    [8]尹志民,高培庆,汪明朴等.中国发明专利,(99101884.9), 1999.
    [9]杨朝聪.高强高导电铜合金的研究及进展[J].昆明冶金, 2000,29(6):26-29.
    [10]董仕节.点焊电极用TiB2增强铜基复合材料的研究[D].西安:西安交通大学, 1999.
    [11]梁淑华,范志康,时惠英等.改善连铸机结晶器材质的新途径[J].材料导报, 1997,1(7):15-18.
    [12]王绍雄.铜和铜合金在电子工业中的新趋向[J].铜加工,1992, 1(3):6.
    [13]王深强,陈志强,彭德林等.高强高导铜合金的研究概述[J].材料工程,1995, 8(7):3-6.
    [14]马宗义,吕毓雄,毕敬. Ti形态对原位生长陶瓷粒子增强Al复合材料微观结构的影响[J].金属学报,1992,31(12):B545.
    [15] N.State,K.Nagata.Adv.Mater.1989,4:541-543.
    [16]张树玉,阂光辉,于化顺,郑树起.原位反应TiB2/Cu一Zr复合材料的力学与电学性能[J].功能材料,2000,31(3):269.
    [17] R.Stevens.Engineering Ceeamies.Longman Publish Inc,1991.
    [18] JP6270532,1987.
    [19] EPP496367,1982.
    [20] JP.Tu,NY.Wang,et al.Materials Letters,2002,52:442一443.
    [21]董仕节,雷永平,史耀武.原位生成TiB2/Cu复合材料的研究[J].西安交通大学学报,2000,34(5):169.
    [22]刘茂森,徐江平.先进复合材料[M].浙江大学出版社,1995.
    [23] Shojiro Ochiai,Kozo Osamura,et al.Mater.Sci.1990,25:3475.
    [24] SC.Jha,Metal Trans,1993,A24:15-21.
    [25]吴承建,陈国良,强文江.金属材料学[M].北京:冶金工业出版社,2000.
    [26] P. Feltham, J.D.Meakin, On the mechanism of work hardening in face-centered cubic metal, with special reference to polycrystalline copper, Phil.Mag.,1957,2: 105-112.
    [27]王祝堂,田荣璋.铜合金及其加工手册[M].长沙:中南大学出版社, 2002,28.
    [28] L.Thilly, F.Lecouturier, J.von Stebut. Size-induced enhanced mechanical properties of nanocomposite copper/niobium wire: nanoindentation study [J], Acta Materialia,2002,50(20):5049.
    [29] P.Gomiero, Y.Breched, F.Louchet, et al. Microstructure and mechanical properties of 2091Al-Li alloy-ⅡMechanical properties: yield stress and work hardening. Acta Metall. Mater.,1992,4: 857.
    [30]曾德麟.粉末冶金材料[M].冶金工业出版社,1989: 190-191, 161.
    [31]葛继平.形变铜基原位复合材料的研究进展[J],功能材料,1999,30(2):129.
    [32]宋余九.金属材料的设计选用预测[M].北京:机械工业出版社,1998,210.
    [33]凤仪,许少凡,颜世钦.纤维强化全属基复合材料及其应用[J].机械工程材料.1995,19(1):9-11.
    [34]董仕节,史耀武.铜基复合材料的研究进展[J].国外金属热处理.1999,(6): 9-11.
    [35] Harbison J, James P. Anomalous increase in strength of in situ formed Cu-Nb multifilament composites[J].Journal of Applied Physics. 1978,49(12): 6031-6038.
    [36] Ellis T W, Anderson I E. Deformation-processed wire prepared from gas-atomized Cu-Nb alloy powders[J].Metallurgical Transactions A.1993, 24A(1):21-26.
    [37] Hardwick D A, Rhodes C G. Effect of annealing on the microstructure and mechanical properties of Cu-X microcomposites[J].Metallurgical TransactionsA.1993,24A(1):27-34.
    [38]湛永钟.非连续增强铜基复合材料的研究现状[J].材料开发与应用, 2005,20(4):41-46.
    [39] Moustafa S F, El-Badry S A, Sanad A M, et al. Friction and wear of copper-graphite composites made with Cu-coated and uncoated graphite powders.Wear,2002,253:699-710.
    [40] Yih P, Chung D. A comparative study of the coated filler method and theadmixture method of powder metallurgy for making metal-matrix composites.Journal of Materials Science, 1997,32(11):2873-2882.
    [41]邬震泰,裴浩东.Cu-Fe复合材料中铁纤维对性能的影响[J],浙江大学学报,2001,35(1):33.
    [42] Zhang.D.L, Mihara.K, Takakura.E, Suzuki.H.G. Effect of the amount of cold working and ageing on the ductility of a Cu-15%Cr-0.2%Ti in-situ composite[J], Materials Science and Engineering: A, 1999, 266(1-2): 99.
    [43]谢国宏.搅拌铸造法制造颗粒增强铝基复合材料的研究与发展[J].材料导报,1994,5(1):69-73.
    [44]刘德宝,崔春翔.高强度高导电铜基复合材料制备技术回顾与展望[J].天津理工学院学报.2003,19(4):29-33.
    [45]程建奕,汪明朴,钟卫佳等.内氧化法制备的Cu-Al2O3合金的显微组织与性能[J].材料热处理学报,2003 ,24 (1) :24-28.
    [46]申玉田,崔春翔,孟凡斌等.高强度高电导率Cu-Al2O3复合材料的制备[J].金属学报,1999,35(8):887-892.
    [47] A.K.Lee, L.E.Sanchez-Caldera,T.S.Oktay. Liquid-metal mixing process tailors MMC microstructures. Adv. Mater. Proc., 1992, 142(8): 31-34.
    [48] A.Chrysanthou, G.Erbaccio. Production of copper-matrix composites by in-situ processing. Journal of Materials Science, 1995, 30(24): 6339-6344.
    [49] Morris D G, Morris M A. Microstructures and mechanical properties of rapidly solidified Cu-Cr alloys.Acta Metallurgica,1987,135(10):2511-2522.
    [50] J.B.Correia, H.A.Davies and C.M,Sellars. Strengthening in rapidly solidified age hardened Cu -Cr and Cu-Cr-Zr alloys. Acta Mater. 1997, 45(1): 177-190.
    [51] D.L. Zhang. Processing of advanced materials using high-energy mechanical milling. Progress in Materials Science 49 (2004) 537-560.
    [52] Y.M.Pan, M.E.Fine, H.S.Gheng. Aging effects on the wear behavior of P/M aluminum alloy SiC particle composite. Scr. Metall., 1990, 24:1341-1345.
    [53]严有为,魏伯康.淬火处理对原位TiC/Fe复合材料组织及耐磨性的影响[J].摩擦学学报,2000,20(1):6-9.
    [54] A.Sato, R.Meharabian. Aluminum matrix composites: Fabrication and properties. Metall.Trans. A, 1976, 7B: 443-450.
    [55]刘德宝,崔春翔.氮化物陶瓷颗粒增强铜基复合材料的干摩擦磨损性能研究[J].摩擦学学报,2006,26(1):54-59.
    [56] A.T.Alpas, J.Zhang. Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites. Metall. Trans., 1994,25A:969-983.
    [57] S.Chung, B.H.Hwang. A microstructural study of the wear behavior of SiCp/Al composites. Tribol. Int., 1994, 27,307-314.
    [58] S.Skolianos, T.Z.Kattamis. Tribological properties of SiC-reinforced Al-4.5%Cu-1.5%Mg alloy composites. Mater. Sci. Eng. A, 1993, A163:107-113
    [59] K.Anand. On the wear of aluminum-corundum composites. Wear,1983, 85:163-169.
    [60] A.T.Alpas, J.Zhang. Wear rate transition in cast aluminum-silicon alloys reinforced with SiC particles. Scr. Metall., 1992, 26:505-509.
    [61] T Sasada. The dependence of wear rate on sliding velocity and sliding distance for dry Cu/Fe and Ni/Fe. Wear of Materials 1985,432-436.
    [62]孙家枢.金属的磨损[M].北京:冶金工业出版社,1992.
    [63] Rabinowicz E.. Friction and wear of materials,New York,1965,15-128.
    [64] Subramanian C.. Some consideration towards the design of a wear resistant aluminum alloy. Wear,1992,155(1):193-205.
    [65] Suh N. P. The delamination theory of wear. Wear,1973,25:111-124.
    [66] A.T.Alpas, J. Zhang. Effect of SiC particulate reinforcement on the dry sliding wear of aluminium-silicon alloys (A356). Wear, 1992, 155:83-104.
    [67]中国机械工程学会焊接学会.电阻焊理论与实践[M].北京:机械工业出版社,1994.
    [68]金凤浩.国外电阻焊电极材料的发展概况[J].铜加工,1982,5(1):132-142.
    [69] Chatterjee KL , Waddell W. Electrode wear during spot welding of coated steel [J].Welding and Metal Fabrication ,1996,12(3) :110-114.
    [70] Holliday R, Parker J D, Williams N T. Electrode deformation when spot Welding Coated Steels[J]. Welding In the World, 1995, 35(3) : 160.
    [71] S.M.Darwish, A.Al-Samhan. Thermal stresses developed in weld-bonded joints[J]. Journal of Materials Processing Technology, 2004, 153-154:971-977
    [72]郜建新,宋克兴,田保红等.内氧化法制备Al2O3 /Cu点焊电极的装机试验[J].特种铸造及有色合金,2006,26(8): 509-511.
    [73]中国机械工程学会主编,焊接手册:焊接方法与设备[M].北京,机械工业出版社,1992.11.
    [74]美国金属学会主编,金属手册第九版第二卷有色金属[M].北京,机械工业出版社,1994.4:360-582.
    [75]胡连喜,王尔德.机械合金化Cu-5%Cr合金的制备及其组织性能的研究[J].粉末冶金工业,1999,(3):7~12.
    [76]赵冬梅,董企铭,刘平等.铜合金引线框架材料的发展[J].材料导报,2001,15(5):18~23.
    [77] Ghoshg,Miyakej,Fineme.The systems-based design of high strength,high-conductivity alloys[J].JOM,1997,49(3):56~64.
    [78] Oh S T,SandoM.Processing and properties of copper dispersed alumina matrix nanocomposites[J].Nan-structured Materials,1998,12(2):267~272.
    [79]崔晓龙,齐民,王来.Cu-Cr难互溶系机械合金化中氧化控制及介稳相形成[J].大连理工大学学报,2001,(41)2:181-186.
    [80] C. Suryanarayana. Mechanical alloying and milling. Progress in Materials Science 46 (2001) 1-184.
    [81] B.S.Murty and S.Ranganathan. Novel material synthesis by mechanical alloying / milling.Int.Mater.Rev.1998,43(3):1-14.
    [82] D.Maurice,T.H.courtney. Modeling of mechanical alloying:part I. deformation coalescence, and fragmentation mechanisms. Metal.Mater. Trans.1994,25A(1):147-158.
    [83] E. Ma, M. Atzmon . Phase transformations induced by mechanical alloying in binary systems. Materials Chemistry and Physics 39 (1995) 249-267.
    [84] Ratnesh Gupta, Ajay Gupta. Mechanical alloying of Fe–B powders. Materials Science and Engineering, 2001(A304-A306): 442-445.
    [85] Koch C C.Research on metastable structures using high energy ball milling at North Carolina State University. Mater.Trans.JIM,1995,36(2):85-95.
    [86]杨元政.纳米晶Fe及Fe基合金的形成与结构.[硕士论文].合肥,中国科学院固体物理研究所
    [87]王世中,臧鑫士.现代材料研究方法[M].北京,北京航空航天大学出版社,1991.
    [88]赵影,熊瑛,杨保和.微观应力和晶粒尺寸的X射线单峰傅立叶分析法[J].光电子·激光,2003,14(2):160-162.
    [89] Klug H P, Alexander L E. X-ray diffraction procedures for polycrystalline and Amorphous Materials. 2nd Edition, 1986.
    [90]黄培云.粉末冶金原理[M].北京,冶金工业出版社,1982.
    [91]王盘鑫.粉末冶金学[M].北京,冶金工业出版社,1997.
    [92]中国金属学会.金属物理性能及测试方法[M].冶金工业出版社,1987.
    [93]杨德庄.位错与金属强化机制[M].哈尔滨:哈尔滨工业大学出版社,1991.
    [94] J.弗里埃德尔,王煜译.位错[M].北京,科学出版社,1984.
    [95]贾淑果,刘平,田保红.高强高导Cu-0.1Ag-0.11Cr合金的强化机制[J].中国有色金属学报,14(7):1144-1148.
    [96]方俊鑫,陆栋.固体物理[M].北京:高等教育出版社,1981.
    [97] Szablewsk J, Kuznicka B . Electrical Properties of RS Cu-Cr Alloys, Materials Science and Technology,1991,7:407-409.
    [98]张瑞丰,沈宁福.快速凝固高强高导Cu-Cr合金的性能[J].中国有色金属学报,2001,11 (1):105-109.
    [99]洪澜,隋智通.稀土在铜及铜合金中的应用[J].稀土,1991,12(4):38-42.
    [100]凌燕平等.稀土合金在导电铜中的应用[J].北京钢铁学院学报,1988,(7): 354-357.
    [101]王培铭.无机非金属材料学[M].上海:同济大学出版社,1998:222.
    [102]刘利,傅正义.硼化钛系复合材料研究进展[J].粉末冶金技术,2000,18(3):217.
    [103]王尔德,王永前,梁国宪等.机械合金化Al-10Fe-4Ni粉末体组织特征[J].粉末冶金技术,1993,11(3):165-169.
    [104]李玉桐,董治中,齐增生等.纳米Al2O3增强铜基复合材料的组织及性能[J].天津大学学报,1996,29(1):123-129.
    [105]王润.金属材料物理性能[M].北京:冶金工业出版社.1992:41.
    [106] Leon L , Mishnaevky J. Three-dimensional numerical testing of microstructures of particle reinforced composites. Acta Materialia, 2004, 52 (14): 4177- 4188.
    [107]郭成,程羽,尚春阳等.SiC颗粒增强铝合金基复合材料断裂与强化机理[J].复合材料学报,2001,18(4):54-57.
    [108]束德林.工程材料力学性能[M].北京:机械工业出版社.2003:27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700